Unified Parallel C

An overview

SC 22/WG 14 N1374
2009-03-24
Raymond Mak (rmak@ca.ibm.com)

Agenda

Productivity, Performance and Parallelism

Execution models

= Message Passing

= Shared Memory

= Partitioned Global Address Space

Overview of UPC
Discussion

Languages Related to C

co-array added to
the FORTRAN standard

PGAS (199x]
CAF/UPC/Titanium

pthreads
MPI

C/C++
1973/1983
Fortran
1954

Productivity -- Ease of Getting Performance

Single thread performance
= Clock frequencies leveling off, power limitations
= Memory is getting farther away

HW: architecture response

= Multi-core .

= More levels in the memory hie%r@y
= Accelerators

= Speculation

Execution Models

Message Passing

explicit
communication

Mem.

Each processor
has local address
space. Interact
via explicit
communication.
(MPI)

Shared Memory

Multiple threads running

concurrently.
Shared memory One address space.
(OMP)

Partitioned Global Address Space

-

Memory accessible
by all ...

Partitioned Global Address Space

EEEE e

Execution Models

O Process/Thread DAddress Space

VQ--’VY

—
A

QQQ QO

Q Q

Computation is performed in A datum in one place may reference a
multiple places. datum in another place.

, Data-structures (e.g. arrays) may be
A place contains data that can be distributed acros(s n%any D ages. y
operated on remotely.

Places may have different computational
Data lives in the place it was properties

created, for its lifetime.

Extension to ISO C

= A PGAS language
C’s design philosophy

= Programmer is knowledgeable

= Minimal language facility to support the right level abstraction,

but not too much to hide underlying hardware
Close to the hardware when needed
Performance without extensive programming effort
Code easy to understand and maintenance

Specification V1.0 completed Feb 20
Current specification V1.2
H

Quick Overview of the UPC Language

hello word:

shared 1nt x;
int y;
int main () {
printf (“hello %d\n”, MYTHREAD) ;

hello word: One copy

shared by all
threads

shared 1int x;

int y;
int main () {
printf (“hello Sd\n’”, MYTHREAD) ;

UPC

hello word: Private - one
per thread

shared 1nt x;

int y;

int main () {
printf (“hello %d\n”, MYTHREAD) ;

hello word: A compiler

predefined
variable

shared 1nt x;

int y;
int main () {
printf (Y“hello $d\n”, MYTHREAD) ;

hello word:

shared 1nt x;
int y;
int main () {
printf (“hello %d\n”, MYTHREAD) ;

Same code
hello O executed by all

hello 1 threads -
PMD
hello 2 > o

UPC

private

hello word:

shared

shared int x;
int y;
int main () {
printf (Yhello $d\n”, MYTHREAD) ;

Same code
executed by all
threads -
SPMD)

shared array:

shared 1int arr[THREADS * 3] ;

Compiler
generated
var — no. of

threads

\ 4

shared array:

. All threads can
shared 1nt arrx[THREADS * 3] ; access all

elements

. 4

Elements are

distributed —

with affinity to
threads. /

shared array:

shared 1int arr[THREADS * 3] ;

wyerel iEoyeat LA = ()2 SRR VD S S el s i)
ereual] = _0)%

Affinity
expression

shared array:

shared 1int arr[THREADS * 3] ;

upc all

Transform
to a for
loop

shared array:

shared 1int arr[THREADS * 3] ;

upc foraddi(1=07 IKTHREADSH S7E£1 7 &arr(1]5)
arr[i] = 0;

threadof
arrfi]

shared array:

shared 1int arr[THREADS * 3] ;

upc all

Transform
to a for
loop

shared array:

shared[3] int arr[THREADS * 3] ;

elements are
distributed by
blocks of 3

UPC

Shared pointers
shared int *p;
shared int * shared p;

Memory management

= upc_global_alloc, upc_local_alloc, upc_free
Synchronization

= upc_lock, upc_unlock

= upc_barrier, upc_fence, upc_wait, upc_notify

Utility functions

= UpC_memcpy, upc_memput, upc_memget, upc_memset
Memory consistency model

s Strict/relaxed

PGAS languages

Features
= Small set of data parallel primitives

typically

g
rafted on an existing language: Co-Array Fortran, UPC, Titanium

= Shared memory-like programming with locality awareness —
shared data is

e
xplicitly declared and distributions are implicit in the declaration

= SPMD threading

m
odel with synchronization primitives (barriers, fences, and locks)

= Collective communication and parallel I/O through libraries

Implementation

= Can be mapped to shared
m
ernory, distriputec J mernory and compinations (clusters of SMPs)

Discussions

Discussion

Given the trend in hardware architecture, should C add
features to support parallel programming ?

From C’'s perspective, is something like UPC attacking
the problem at the right level and scope ?

What should be the role of the language standard ?

How could the C committee be involved ...
= Adviser to the UPC Working groups ?

= Study group within the C committee ?
= [echnical report ?

