
Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved i

ISO/IEC JTC 1/SC 22/WG 23 N 0352

Date July 2011

Contributed by James Moore and John Benito

Original file name

Notes Based on N0338,
• comments from meeting #18, see N0344
• MISRA – L comments, see N0342
• Proposed changed to Clause 6, see N0343

WG 23/N 0352 Baseline Edition 2 TR 24772

ii © ISO/IEC 2011 – All rights reserved

ISO/IEC JTC 1/SC 22 N 0000
Date: 2011-07-01

ISO/IEC TR 24772

Edition 2

ISO/IEC JTC 1/SC 22/WG 23 N0352

Secretariat: ANSI

Information Technology — Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and Use

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (50) publication stage
Document language: E

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved iii

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

WG 23/N 0352 Baseline Edition 2 TR 24772

iv © ISO/IEC 2011 – All rights reserved

Contents Page

Foreword ... x

Introduction .. xi

1. Scope ... 12

2. Normative references ... 12

3. Terms and definitions, symbols and conventions ... 12
3.1 Terms and definitions ... 12
3.2 Symbols and conventions ... 13

4. Basic Concepts .. 14
4.1 Purpose of this Technical Report ... 14
4.2 Intended Audience ... 14
4.3 How to Use This Document ... 15

5 Vulnerability issues ... 16
5.1 Predictable execution ... 16
5.2 Sources of unpredictability in language specification ... 17
5.2.1 Incomplete or evolving specification ... 17
5.2.2 Undefined behaviour .. 17
5.2.3 Unspecified behaviour .. 18
5.2.4 Implementation-defined behaviour .. 18
5.2.5 Difficult features ... 18
5.2.6 Inadequate language support ... 18
5.3 Sources of unpredictability in language usage ... 18
5.3.1 Porting and interoperation ... 18
5.3.2 Compiler selection and usage .. 18

6. Programming Language Vulnerabilities ... 19
6.1 General .. 19
6.2 Terminology ... 19
6.3 Type System [IHN] .. 19
6.4 Bit Representations [STR] .. 22
6.5 Floating-point Arithmetic [PLF] ... 23
6.6 Enumerator Issues [CCB] .. 26
6.7 Numeric Conversion Errors [FLC] ... 27
6.8 String Termination [CJM] .. 30
6.9 Buffer Boundary Violation (Buffer Overflow) [HCB] ... 31
6.10 Unchecked Array Indexing [XYZ] ... 33
6.11 Unchecked Array Copying [XYW] ... 35
6.12 Pointer Casting and Pointer Type Changes [HFC].. 36
6.13 Pointer Arithmetic [RVG] .. 37

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved v

6.14 Null Pointer Dereference [XYH] ... 38
6.15 Dangling Reference to Heap [XYK] .. 39
6.16 Arithmetic Wrap-around Error [FIF] .. 41
6.17 Using Shift Operations for Multiplication and Division [PIK] ... 43
6.18 Sign Extension Error [XZI] ... 44
6.19 Choice of Clear Names [NAI] ... 45
6.20 Dead Store [WXQ] .. 46
6.21 Unused Variable [YZS] .. 48
6.22 Identifier Name Reuse [YOW] ... 49
6.23 Namespace Issues [BJL] .. 51
6.24 Initialization of Variables [LAV] ... 52
6.25 Operator Precedence/Order of Evaluation [JCW] .. 55
6.26 Side-effects and Order of Evaluation [SAM]... 56
6.27 Likely Incorrect Expression [KOA] .. 57
6.28 Dead and Deactivated Code [XYQ] .. 59
6.29 Switch Statements and Static Analysis [CLL] .. 61
6.30 Demarcation of Control Flow [EOJ] ... 63
6.31 Loop Control Variables [TEX]... 64
6.32 Off-by-one Error [XZH] .. 65
6.33 Structured Programming [EWD] .. 67
6.34 Passing Parameters and Return Values [CSJ] ... 68
6.35 Dangling References to Stack Frames [DCM] ... 70
6.36 Subprogram Signature Mismatch [OTR] .. 72
6.37 Recursion [GDL].. 74
6.38 Ignored Error Status and Unhandled Exceptions [OYB] .. 75
6.39 Termination Strategy [REU] .. 77
6.40 Type-breaking Reinterpretation of Data [AMV] ... 79
6.41 Memory Leak [XYL] .. 81
6.42 Templates and Generics [SYM] ... 82
6.43 Inheritance [RIP] .. 84
6.44 Extra Intrinsics [LRM] ... 86
6.45 Argument Passing to Library Functions [TRJ] ... 87
6.46 Inter-language Calling [DJS] .. 88
6.47 Dynamically-linked Code and Self-modifying Code [NYY] ... 90
6.48 Library Signature [NSQ] .. 91
6.49 Unanticipated Exceptions from Library Routines [HJW] ... 92
6.50 Pre-processor Directives [NMP] .. 94
6.51 Suppression of Language-defined Run-time Checking [MXB] ... 95
6.52 Provision of Inherently Unsafe Operations [SKL] ... 96
6.53 Obscure Language Features [BRS] ... 97
6.54 Unspecified Behaviour [BQF] .. 99
6.55 Undefined Behaviour [EWF] .. 100
6.56 Implementation-defined Behaviour [FAB] ... 102
6.57 Deprecated Language Features [MEM] .. 103

WG 23/N 0352 Baseline Edition 2 TR 24772

vi © ISO/IEC 2011 – All rights reserved

7. Application Vulnerabilities .. 105
7.1 General .. 105
7.2 Terminology ... 105
7.3 Unspecified Functionality [BVQ] .. 105
7.4 Distinguished Values in Data Types [KLK] .. 106
7.5 Adherence to Least Privilege [XYN] ... 108
7.6 Privilege Sandbox Issues [XYO] ... 108
7.7 Executing or Loading Untrusted Code [XYS] .. 110
7.8 Memory Locking [XZX] .. 111
7.9 Resource Exhaustion [XZP] .. 112
7.10 Unrestricted File Upload [CBF] .. 113
7.11 Resource Names [HTS] .. 115
7.12 Injection [RST] .. 116
7.13 Cross-site Scripting [XYT] .. 119
7.14 Unquoted Search Path or Element [XZQ] ... 122
7.15 Improperly Verified Signature [XZR] ... 122
7.16 Discrepancy Information Leak [XZL].. 123
7.17 Sensitive Information Uncleared Before Use [XZK] .. 124
7.18 Path Traversal [EWR] .. 125
7.19 Missing Required Cryptographic Step [XZS] ... 127
7.20 Insufficiently Protected Credentials [XYM] .. 128
7.21 Missing or Inconsistent Access Control [XZN]... 128
7.22 Authentication Logic Error [XZO] ... 129
7.23 Hard-coded Password [XYP] .. 131

Annex A (informative) Vulnerability Taxonomy and List ... 133
A.1 General .. 133
A.2 Outline of Programming Language Vulnerabilities .. 133
A.3 Outline of Application Vulnerabilities .. 135
A.4 Vulnerability List .. 135

Annex B (informative) Language Specific Vulnerability Template ... 138

Annex C (informative) Vulnerability descriptions for the language C .. 140

C.1 Identification of standards and associated documents ... 140
C.2 General terminology and concepts .. 140
C.3 Type System [IHN] .. 143
C.4 Bit Representations [STR] ... 144
C.5 Floating-point Arithmetic [PLF] ... 145
C.6 Enumerator Issues [CCB] ... 146
C.7 Numeric Conversion Errors [FLC] ... 147
C.8 String Termination [CJM] .. 148
C.9 Buffer Boundary Violation (Buffer Overflow) [HCB] ... 149
C.10 Unchecked Array Indexing [XYZ] ... 150
C.11 Unchecked Array Copying [XYW] ... 151

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved vii

C.12 Pointer Casting and Pointer Type Changes [HFC] ... 152
C.13 Pointer Arithmetic [RVG] .. 152
C.14 Null Pointer Dereference [XYH] ... 153
C.15 Dangling Reference to Heap [XYK] .. 153
C.16 Arithmetic Wrap-around Error [FIF] .. 155
C.17 Using Shift Operations for Multiplication and Division [PIK] ... 155
C.18 Sign Extension Error [XZI] ... 156
C.19 Choice of Clear Names [NAI] ... 156
C.20 Dead Store [WXQ] .. 156
C.21 Unused Variable [YZS] .. 157
C.22 Identifier Name Reuse [YOW] ... 157
C.23 Namespace Issues [BJL] .. 158
C.24 Initialization of Variables [LAV] ... 158
C.25 Operator Precedence/Order of Evaluation [JCW] .. 158
C.26 Side-effects and Order of Evaluation [SAM]... 158
C.27 Likely Incorrect Expression [KOA] .. 159
C.28 Dead and Deactivated Code [XYQ] .. 161
C.29 Switch Statements and Static Analysis [CLL] .. 161
C.30 Demarcation of Control Flow [EOJ] ... 162
C.31 Loop Control Variables [TEX]... 164
C.32 Off-by-one Error [XZH] .. 164
C.33 Structured Programming [EWD] .. 165
C.34 Passing Parameters and Return Values [CSJ] ... 165
C.35 Dangling References to Stack Frames [DCM] ... 166
C.36 Subprogram Signature Mismatch [OTR] .. 167
C.37 Recursion [GDL].. 167
C.38 Ignored Error Status and Unhandled Exceptions [OYB] .. 168
C.39 Termination Strategy [REU] .. 169
C.40 Type-breaking Reinterpretation of Data [AMV] ... 169
C.41 Memory Leak [XYL] .. 170
C.42 Templates and Generics [SYM] ... 170
C.43 Inheritance [RIP].. 170
C.44 Extra Intrinsics [LRM] ... 170
C.45 Argument Passing to Library Functions [TRJ] ... 171
C.46 Inter-language Calling [DJS] .. 171
C.47 Dynamically-linked Code and Self-modifying Code [NYY] ... 171
C.48 Library Signature [NSQ] .. 172
C.49 Unanticipated Exceptions from Library Routines [HJW] ... 172
C.50 Pre-processor Directives [NMP] .. 173
C.51 Suppression of Language-defined Run-time Checking [MXB] ... 174
C.52 Provision of Inherently Unsafe Operations [SKL] ... 174
C.53 Obscure Language Features [BRS] ... 174
C.54 Unspecified Behaviour [BQF] .. 174
C.55 Undefined Behaviour [EWF] .. 175

WG 23/N 0352 Baseline Edition 2 TR 24772

viii © ISO/IEC 2011 – All rights reserved

C.56 Implementation-defined Behaviour [FAB] ... 176
C.57 Deprecated Language Features [MEM] .. 176
C.58 Implications for standardization .. 177

Annex Ruby (informative) Vulnerability descriptions for the language Ruby ... 180

Ruby.1 Identification of standards and associated documents ... 180
Ruby.2 General Terminology and Concepts ... 180
Ruby.3 Type System [IHN] .. 181
Ruby.4 Bit Representations [STR] ... 182
Ruby.5 Floating-point Arithmetic [PLF] ... 183
Ruby.6 Enumerator Issues [CCB] ... 183
Ruby.7 Numeric Conversion Errors [FLC] ... 184
Ruby.8 String Termination [CJM] .. 184
Ruby.9 Buffer Boundary Violation (Buffer Overflow) [HCB] ... 184
Ruby.10 Unchecked Array Indexing [XYZ] .. 184
Ruby.11 Unchecked Array Copying [XYW] .. 184
Ruby.12 Pointer Casting and Pointer Type Changes [HFC]... 184
Ruby.13 Pointer Arithmetic [RVG] ... 185
Ruby.14 Null Pointer Dereference [XYH] .. 185
Ruby.15 Dangling Reference to Heap [XYK] .. 185
Ruby.16 Arithmetic Wrap-around Error [FIF] .. 185
Ruby.17 Using Shift Operations for Multiplication and Division [PIK] .. 185
Ruby.18 Sign Extension Error [XZI] ... 185
Ruby.19 Choice of Clear Names [NAI] .. 185
Ruby.20 Dead Store [WXQ] ... 186
Ruby.21 Unused Variable [YZS] ... 186
Ruby.22 Identifier Name Reuse [YOW] .. 186
Ruby.23 Namespace Issues [BJL] ... 187
Ruby.24 Initialization of Variables [LAV] .. 187
Ruby.25 Operator Precedence/Order of Evaluation [JCW] .. 187
Ruby.26 Side-effects and Order of Evaluation [SAM] .. 188
Ruby.27 Likely Incorrect Expression [KOA] ... 189
Ruby.28 Dead and Deactivated Code [XYQ] ... 189
Ruby.29 Switch Statements and Static Analysis [CLL] ... 190
Ruby.30 Demarcation of Control Flow [EOJ]... 190
Ruby.31 Loop Control Variables [TEX] .. 190
Ruby.32 Off-by-one Error [XZH] ... 190
Ruby.33 Structured Programming [EWD] ... 191
Ruby.34 Passing Parameters and Return Values [CSJ] ... 192
Ruby.35 Dangling References to Stack Frames [DCM]... 192
Ruby.36 Subprogram Signature Mismatch [OTR].. 192
Ruby.37 Recursion [GDL] ... 193
Ruby.38 Ignored Error Status and Unhandled Exceptions [OYB] ... 193
Ruby.39 Termination Strategy [REU] ... 194

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved ix

Ruby.40 Type-breaking Reinterpretation of Data [AMV] .. 194
Ruby.41 Memory Leak [XYL] ... 194
Ruby.42 Templates and Generics [SYM] .. 194
Ruby.43 Inheritance [RIP] ... 194
Ruby.44 Extra Intrinsics [LRM] .. 194
Ruby.45 Argument Passing to Library Functions [TRJ] .. 195
Ruby.46 Inter-language Calling [DJS] ... 195
Ruby.47 Dynamically-linked Code and Self-modifying Code [NYY] .. 195
Ruby.48 Library Signature [NSQ] ... 195
Ruby.49 Unanticipated Exceptions from Library Routines [HJW] .. 196
Ruby.50 Pre-processor Directives [NMP] ... 196
Ruby.51 Suppression of Language-defined Run-time Checking [MXB] .. 196
Ruby.52 Provision of Inherently Unsafe Operations [SKL] .. 196
Ruby.53 Obscure Language Features [BRS] .. 196
Ruby.54 Unspecified Behaviour [BQF] ... 196
Ruby.55 Undefined Behaviour [EWF] ... 197
Ruby.56 Implementation-defined Behaviour [FAB] .. 197
Ruby.57 Deprecated Language Features [MEM] ... 197

Bibliography ... 198

Index .. 201

WG 23/N 0352 Baseline Edition 2 TR 24772

x © ISO/IEC 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772, which is a Technical Report of type 3, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and
system software interfaces.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved xi

Introduction

All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour,
are implementation-dependent, or are difficult to use correctly. The use of those constructs may therefore
give rise to vulnerabilities, as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnerabilities can compromise the safety of a system or be exploited by
attackers to compromise the security or privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosen language and their attendant consequences. This guidance can also be
used by developers to select source code evaluation tools that can discover and eliminate some constructs
that could lead to vulnerabilities in their software or to select a programming language that avoids
anticipated problems.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a
complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

Furthermore, to focus its limited resources, the working group developing this report decided to defer
comprehensive treatment of several subject areas until future editions of the report. These subject areas
include:

• Object-oriented language features (Although some simple issues related to inheritance are
described in RIP)

• Concurrency
• Numerical analysis (although some simple items regarding the use of floating point are described in

PLF)
• Scripting languages
• Inter-language operability
• Language-specific annexes

Technical Report Baseline Ed 2 of ISO/IEC TR 24772:2011(E)

© ISO/IEC 2010 – All rights reserved 12

Information Technology — Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

1. Scope

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical and business critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC 80000–2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural
sciences and technology
ISO/IEC 2382–1:1993, Information technology — Vocabulary — Part 1: Fundamental terms

3. Terms and definitions, symbols and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1 and the following apply.
Other terms are defined where they appear in italic type.

3.1.1
language vulnerability
property (of a programming language) that can contribute to, or that is strongly correlated with, application
vulnerabilities in programs written in that language

Note 1: The term "property" can mean the presence or the absence of a specific feature, used singly or in
combination. As an example of the absence of a feature, encapsulation (control of where names can be
referenced from) is generally considered beneficial since it narrows the interface between modules and can
help prevent data corruption. The absence of encapsulation from a programming language can thus be
regarded as a vulnerability. Note that a property together with its complement can both be considered
language vulnerabilities. For example, automatic storage reclamation (garbage collection) can be a

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 13

vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand,
the absence of automatic storage reclamation can also be a vulnerability since programmers can mistakenly
free storage prematurely, resulting in dangling references.

3.1.2
application vulnerability
security vulnerability or safety hazard, or defect

3.1.3
security vulnerability
weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat

3.1.4
safety hazard
potential source of harm

Note: IEC 61508–4: defines a “Hazard” as a “potential source of harm”, where “harm” is “physical injury or
damage to the health of people either directly or indirectly as a result of damage to property or to the
environment”. Some derived standards, such as UK Defence Standard 00-56, broaden the definition of
“harm” to include material and environmental damage (not just harm to people caused by property and
environmental damage).

3.1.5
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death

Note: IEC 61508–4: defines “Safety-related software” as “software that is used to implement safety
functions in a safety-related system. Notwithstanding that in some domains a distinction is made between
safety-related (can lead to any harm) and safety-critical (life threatening), this Technical Report uses the term
safety-critical for all vulnerabilities that can result in safety hazards.

3.1.6
software quality
degree to which software implements the requirements described by its specification and the degree to which
the characteristics of a software product fulfill its requirements

3.1.7
predictable execution
property of the program such that all possible executions have results that can be predicted from the source code

3.2 Symbols and conventions

3.2.1 Symbols

For the purposes of this document, the symbols given in ISO/IEC 80000–2 apply. Other symbols are defined
where they appear in this document.

WG 23/N 0352 Baseline Edition 2 TR 24772

14 © ISO/IEC 2011 – All rights reserved

3.2.2 Conventions

Programming language token and syntactic token appear in courier font.

4. Basic Concepts

4.1 Purpose of this Technical Report

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical and business critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This Technical Report does not address software engineering and management issues such as how to design and
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of properties and applications to be assured are not treated.

While this Technical Report does not discuss specification or design issues, there is recognition that boundaries
among the various activities are not clear-cut. This Technical Report seeks to avoid the debate about where low-
level design ends and implementation begins by treating selected issues that some might consider design issues
rather than coding issues.

The body of this Technical Report provides users of programming languages with a language-independent
overview of potential vulnerabilities in their usage. Annexes describe how the general observations apply to
specific languages.

4.2 Intended Audience

The intended audience for this Technical Report are those who are concerned with assuring the predictable
execution of the software of their system; that is, those who are developing, qualifying, or maintaining a software
system and need to avoid language constructs that could cause the software to execute in a manner other than
intended.

Developers of applications that have clear safety, security or mission criticality are expected to be aware of the
risks associated with their code and could use this Technical Report to ensure that their development practices
address the issues presented by the chosen programming languages, for example by subsetting or providing
coding guidelines.

It should not be assumed, however, that other developers can ignore this Technical Report. A weakness in a non-
critical application may provide the route by which an attacker gains control of a system or otherwise disrupts co-
hosted applications that are critical. It is hoped that all developers would use this Technical Report to ensure that
common vulnerabilities are removed or at least minimized from all applications.

Specific audiences for this International Technical Report include developers, maintainers and regulators of:

• Safety-critical applications that might cause loss of life, human injury, or damage to the environment.
• Security-critical applications that must ensure properties of confidentiality, integrity, and availability.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 15

• Mission-critical applications that must avoid loss or damage to property or finance.
• Business-critical applications where correct operation is essential to the successful operation of the

business.
• Scientific, modeling and simulation applications which require high confidence in the results of possibly

complex, expensive and extended calculation.

4.3 How to Use This Document

This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilities, which have occurred in the past and are likely to occur again. Because new
vulnerabilities are always being discovered, it is anticipated that this Technical Report will be revised and new
descriptions added. For that reason, a scheme that is distinct from sub-clause numbering has been adopted to
identify the vulnerability descriptions. Each description has been assigned an arbitrarily generated, unique three-
letter code. These codes should be used in preference to sub-clause numbers when referencing descriptions
because they will not change as additional descriptions are added to future editions of this Technical Report.

The main part of this Technical Report contains descriptions that are intended to be language-independent to the
greatest possible extent. Annexes apply the generic guidance to particular programming languages.

This Technical Report has been written with several possible usages in mind:

• Programmers familiar with the vulnerabilities of a specific language can reference the guide for more
generic descriptions and their manifestations in less familiar languages.

• Tool vendors can use the three-letter codes as a succinct way to “profile” the selection of vulnerabilities
considered by their tools.

• Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selection of coding guidelines to be enforced.

• Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

The descriptions include suggestions for ways of avoiding the vulnerabilities. Some are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification and validation
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause 2 provides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.

Clause 4 provides the basic concepts used for this Technical Report.

Clause 5, Vulnerability Issues, provides rationale for this Technical Report and explains how many of the
vulnerabilities occur.

Clause 6, Programming Language Vulnerabilities, provides language-independent descriptions of vulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:

• a summary of the vulnerability,
• characteristics of languages where the vulnerability may be found,

WG 23/N 0352 Baseline Edition 2 TR 24772

16 © ISO/IEC 2011 – All rights reserved

• typical mechanisms of failure,
• techniques that programmers can use to avoid the vulnerability, and
• ways that language designers can modify language specifications in the future to help programmers

mitigate the vulnerability.

Clause 7, Application Vulnerabilities, provides descriptions of selected application vulnerabilities which have been
found and exploited in a number of applications and which have well known mitigation techniques, and which
result from design decisions made by coders in the absence of suitable language library routines or other
mechanisms. For these vulnerabilities, each description provides:

• a summary of the vulnerability,
• typical mechanisms of failure, and
• techniques that programmers can use to avoid the vulnerability.

Annex D, Vulnerability Outline and List, is a categorization of the vulnerabilities of this report in the form of a
hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three letter code.

Annex E, Language Specific Vulnerability Template, is a template for the writing of programming language specific
annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show
how they are absent), and how they might be mitigated in language-specific terms. Future revisions of this
Technical Report are planned to contain language-specific annexes that are developed using Annex E.

5 Vulnerability issues

5.1 Predictable execution

There are many reasons why software might not execute as expected by its developers, its users or other
stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of others.
This Technical Report focuses on one cause—the usage of programming languages in ways that render the
execution of the code less predictable.

Predictable execution is a property of a program such that all possible executions have results that can be
predicted from examination of the source code. Achieving predictability is complicated by that fact that software
may be used:

• on unanticipated platforms (for example, ported to a different processor)
• in unanticipated ways (as usage patterns change),
• in unanticipated contexts (for example, software reuse and system-of-system integrations), and
• by unanticipated users (for example, those seeking to exploit and penetrate a software system).

Furthermore, today’s ubiquitous connectivity of software systems virtually guarantees that most software will be
attacked—either because it is a target for penetration or because it offers a springboard for penetration of other
software. Accordingly, today’s programmers must take additional care to ensure predictable execution despite
the new challenges.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 17

Software vulnerabilities are unwanted characteristics of software that may allow software to execute in ways that
are unexpected. Programmers introduce vulnerabilities into software by using language features that are
inherently unpredictable in the variable circumstances outlined above or by using features in a manner that
reduces what predictability they could offer. Of course, complete predictability is an ideal (particularly because
new vulnerabilities are often discovered through experience), but any programmer can improve predictability by
careful avoiding the introduction of known vulnerabilities into code.

This Technical Report focuses on a particular class of vulnerabilities, language vulnerabilities. These are
properties of programming languages that can contribute to (or are strongly correlated with) application
vulnerabilities—security weaknesses, safety hazards, or defects. An example may clarify the relationship. The
programmer’s use of a string copying function that does check length may be exploited by an attacker to place
incorrect return values on the program stack, hence passing control of the execution to code provided by the
attacker. The string copying function is the language vulnerability and the resulting weakness of the program in
the face of the stack attack is the application vulnerability. The programming language vulnerability enables the
application vulnerability. The language vulnerability can be avoided by using a string copying function that does
set appropriate bounds on the length of the string to be copied. By using a bounded copy function the
programmer improves the predictability of the code’s execution.

The primary purpose of this Technical Report is to survey common programming language vulnerabilities; this is
done in Clause 6. Each description explains how an application vulnerability can result. In Clause 7, a few
additional application vulnerabilities are described. These are selected because they are associated with language
weaknesses even if they do not directly result from language vulnerabilities. For example, a programmer might
have stored a password in plaintext (see [XYM]) because the programming language did not provide a suitable
library function for storing the password in a non-recoverable format.

In addition to considering the individual vulnerabilities, it is instructive to consider the sources of uncertainty that
can decrease the predictability of software. These sources are briefly considered in the remainder of this clause.

5.2 Sources of unpredictability in language specification

5.2.1 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different from the
use of the language in programming. Language specifiers often need to maintain compatibility with older
versions of the language—even to the extent of retaining inherently vulnerable features. Sometimes the
semantics of new or complex features aren’t completely known, especially when used in combination with other
features.

5.2.2 Undefined behaviour

It’s simply not possible for the specifier of a programming language to describe every possible behaviour. For
example, the result of using a variable to which no value has been assigned is left undefined by most languages.
In such cases, a program might do anything—including crashing with no diagnostic or executing with wrong data,
leading to incorrect results.

WG 23/N 0352 Baseline Edition 2 TR 24772

18 © ISO/IEC 2011 – All rights reserved

5.2.3 Unspecified behaviour

The behaviour of some features may be incompletely defined. The language implementer would have to choose
from finite set of choices, but the choice may not be apparent to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation-defined behaviour

In some cases, the results of execution may depend upon characteristics of the compiler that was used, the
processor upon which the software is executed, or the other systems with which the software has interfaces. In
principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to obtain. Furthermore, dependence on a specific implementation-defined behaviour will
lead to problems when a different processor or compiler is used—sometimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features may be difficult to understand or to use appropriately, either due to complicated
semantics (for example, floating point in numerical analysis applications) or human limitations (for example,
deeply nested program constructs or expressions). Sometimes simple typing errors can lead to major changes in
behaviour without a diagnostic (for example, typing “=” for assignment when one really intended “==” for
comparison).

5.2.6 Inadequate language support

No language is suitable for every possible application. Furthermore, programmers sometimes do not have the
freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to
supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage

5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, executed with
different libraries, executed on a different platform, or even interfaced with different systems, its behaviour will
change. Changes result from different choices for unspecified and implementation-defined behaviour,
differences in library function, and differences in underlying hardware and operating system support. The
problem is far worse if the original programmer chose to use implementation-dependent extensions to the
language rather than staying with the standardized language.

5.3.2 Compiler selection and usage

Nearly all software has bugs and compilers are no exception. They should be carefully selected from trusted
sources and qualified prior to use. Perhaps less obvious, though, is the use of compiler switches. Different switch

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 19

settings will result in differences in generated code. A careful selection of settings can improve the predictability
of code, for example, a setting that causes the flagging of any usage of an implementation-defined extension.

6. Programming Language Vulnerabilities

6.1 General

This clause provides language-independent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilities. Each description provides:

• a summary of the vulnerability,
• characteristics of languages where the vulnerability may be found,
• typical mechanisms of failure,
• techniques that programmers can use to avoid the vulnerability, and
• ways that language designers can modify language specifications in the future to help programmers

mitigate the vulnerability.

Descriptions of how vulnerabilities are manifested in particular programming languages are provided in annexes
of this Technical Report. In each case, the behaviour of the language is assumed to be as specified by the standard
cited in the annex. Clearly, programs could have different vulnerabilities in a non-standard implementation.
Examples of non-standard implementations include:

• compilers written to implement some specification other than the standard,
• use of non-standard vendor extensions to the language, and
• use of compiler switches providing alternative semantics.

6.2 Terminology

The following descriptions are written in a language-independent manner except when specific languages are
used in examples. The annexes may be consulted for language specific descriptions.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence terminology may differ from description to description.

6.3 Type System [IHN]

6.3.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.3.2 Cross reference

JSF AV Rule: 148 and 183
MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5
MISRA C++ 2008: 3-9-2, 5-0-3 to 5-0-14
CERT C guidelines: DCL07-C, DCL11-C, DCL35-C, EXP05-C and EXP32-C

WG 23/N 0352 Baseline Edition 2 TR 24772

20 © ISO/IEC 2011 – All rights reserved

Ada Quaility and Style Guide: 3.4

6.3.3 Mechanism of failure

The type of a data object informs the compiler how values should be represented and which operations may be
applied. The type system of a language is the set of rules used by the language to structure and organize its
collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A
program is said to be type safe (or type secure) if it can be demonstrated that it has no type errors [27].

Every programming language has some sort of type system. A language is statically typed if the type of every
expression is known at compile time. The type system is said to be strong if it guarantees type safety and weak if
it does not. There are strongly typed languages that are not statically typed because they enforce type safety
with run time checks [27].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because every
language has a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to another compatible one. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a := a + i;

The variable "i" is of integer type. It must be converted to the float type before it can be added to the data value.
An implicit conversion, as shown, is called coercion. If, on the other hand, the conversion must be explicit, for
example, "a := a + float(i)", then the conversion is called a cast.

Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible
without using coercion or casting. Type equivalence is usually characterized in terms of name type equivalence—
two variables have the same type if they are declared in the same declaration or declarations that use the same
type name—or structure type equivalence—two variables have the same type if they have identical structures.
There are variations of these approaches and most languages use different combinations of them [28]. Therefore,
a programmer skilled in one language may very well code inadvertent type errors when using a different
language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problems. Searching for type errors is a valuable exercise because their presence often
reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time,
others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always bear
the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 21

while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from a type with
a longer representation to a type with a shorter representation risks the loss of significant digits. T his can
produce particularly puzzling results if the value is used to index an array. Conversion of a floating-point value
from a type with a longer representation to a type with a shorter representation risks the loss of precision. This
can be particularly severe in computations where the number of calculations increases as a power of the problem
size. (It should be noted that similar surprises can occur when an application is retargeted to a machine with
different representations of numeric values.)

Second, a programmer can use the type system to increase the probability of catching design errors or coding
blunders. For example, the following Ada fragment declares two distinct floating-point types:

 type Celsius is new Float;
 type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit
conversion.

6.3.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that support multiple types and allow conversions between types.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Take advantage of any facility offered by the programming language to declare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

• Use available language and tools facilities to preclude or detect the occurrence of coercion. If it is not
possible, use human review to assist in searching for coercions.

• Avoid casting data values except when there is no alternative. Document such occurrences so that the
justification is made available to maintainers.

• Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration
type to select from a limited set of choices (such as, a switch statement or the discriminant of a union
type) rather than a more general type, such as integer. This will make it possible for tooling to check if all
possible choices have been covered.

• Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem by modifying the code by inserting an explicit cast, without further analysis; instead
examine the underlying design to determine if the type error is a symptom of a deeper problem.

• Never ignore instances of coercion; if the conversion is necessary, convert it to a cast and document the
rationale for use by maintainers.

• Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results.

WG 23/N 0352 Baseline Edition 2 TR 24772

22 © ISO/IEC 2011 – All rights reserved

6.3.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language specifiers should standardize on a common, uniform terminology to describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to them.

• Provide a mechanism for selecting data types with sufficient capability for the problem at hand.
• Provide a way for the computation to determine the limits of the data types actually selected.
• Language implementers should consider providing compiler switches or other tools to provide the highest

possible degree of checking for type errors.

6.4 Bit Representations [STR]

6.4.1 Description of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single
computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can
be made as to what bits are to be accessed because of the “endianness” of the processor (see below) or because
of miscalculations. Access to those specific bits may affect surrounding bits in ways that compromise their
integrity. This can result in the wrong information being read from hardware, incorrect data or commands being
given, or information being mangled, which can result in arbitrary effects on components attached to the system.

6.4.2 Cross reference

JSF AV Rules 147, 154 and 155
MISRA C 2004: 3.5, 6.4, 6.5, and 12.7
MISRA C++ 2008: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1
CERT C guidelines: EXP38-C, INT00-C, INT07-C, INT12-C, INT13-C, and INT14-C
Ada Quaility and Style Guide: 7.6.1 through 7.6.9, and 7.3.1

6.4.3 Mechanism of failure

Computer languages frequently provide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular language implementation. When they do
not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of
two to pick out individual bits or using sums of powers of 2 to pick out subsets of bits (for example, using
28=22+23+24 to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.
Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these.
Problems can arise when programmers mix their techniques to reference the bits or output the bits. Problems
can arise when programmers mix arithmetic and logical operations to reference the bits or output the bits. The
storage ordering of the bits may not be what the programmer expects.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 23

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programming must be known. Some computers or other devices store the bits left to right while others
store them right to left. The type of storage can cause problems when interfacing with external devices that
expect the bits in the opposite order. One problem arises when assumptions are made when interfacing with
external constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers
may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign
extension) is being performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, a left shift can cause the sign bit to be one. Bit manipulations can also be problematic when the
manipulations are done on binary encoded records that span multiple words. The storage and ordering of the
bits must be considered when doing bitwise operations across multiple words as bytes may be stored in big-
endian or little-endian format.

6.4.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow bit manipulations.

6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Any assumption about bit ordering should be explicitly documented.
• The way bit ordering is done on the host system and on the systems with which the bit manipulations will

be interfaced should be understood.
• Bit fields should be used in languages that support them.
• Bit operators should not be used on signed operands.
• Localize and document the code associated with explicit manipulation of bits and bit fields.

6.4.6 Implications for standardization

In future standardization activities, the following items should be considered:

• For languages that are commonly used for bit manipulations, an API (Application Programming Interface)
for bit manipulations that is independent of word size and machine instruction set should be defined and
standardized.

6.5 Floating-point Arithmetic [PLF]

6.5.1 Description of application vulnerability

Most real numbers cannot be represented exactly in a computer. To represent real numbers, most computers
use ANSI/IEEE Std 754 [35]. The bit representation for a floating-point number can vary from compiler to compiler
and on different platforms. Relying on a particular representation can cause problems when a different compiler
is used or the code is reused on another platform. Regardless of the representation, many real numbers can only
be approximated since representing the real number using a binary representation would require an endlessly

WG 23/N 0352 Baseline Edition 2 TR 24772

24 © ISO/IEC 2011 – All rights reserved

repeating string of bits or more binary digits than are available for representation. Therefore it should be
assumed that a floating-point number is only an approximation, even though it may be an extremely good one.
Floating-point representation of a real number or a conversion to floating-point can cause surprising results and
unexpected consequences to those unaccustomed to the idiosyncrasies of floating-point arithmetic.

Algorithms that use floating point can have anomalous behaviour when used with certain values. The most
common results are erroneous results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated values.

6.5.2 Cross reference

JSF AV Rules: 146, 147, 184, 197, and 202
MISRA C 2004: 1.5, 12.12, 13.3, and 13.4
MISRA C++ 2008: 0-4-3, 3-9-3, and 6-2-2
CERT C guidelines: FLP00-C, FP01-C, FLP02-C and FLP30-C
Ada Quaility and Style Guide: 5.5.6 and 7.2.1 through 7.2.8

6.5.3 Mechanism of failure

Floating-point numbers are generally only an approximation of the actual value. In the base 10 world, the value
of 1/3 is 0.333333… The same type of situation occurs in the binary world, but numbers that can be represented
with a limited number of digits in base 10, such as 1/10=0.1 become endlessly repeating sequences in the binary
world. So 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011…

Which is 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64… and no matter how many digits are used, the
representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result
may or may not be exactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small values,
can provide unexpected results. Using an accumulated value to terminate a loop can result in an unexpected
number of iterations. Rounding and truncation can cause tests of floating-point numbers against other values to
yield unexpected results. Another cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value with zero. Tests of equality/inequality can vary due to
propagation or conversion errors. Differences in magnitudes of floating-point numbers can result in no change of
a very large floating-point number when a relatively small number is added to or subtracted from it.

Manipulating bits in floating-point numbers is also very implementation dependent. Though IEEE 754 is a
commonly used representation for floating-point data types, it is not universally used or required by all computer
languages. Some languages predate IEEE 754 and make the support for the standard optional. One IEEE 754
representation uses a 24-bit mantissa (including the sign bit) and an 8-bit exponent, but the number of bits
allocated to the mantissa and exponent can vary when using other representations, as can the particular
representation used for the mantissa and exponent. Even within IEEE 754, various alternative representations are
permitted for the “extended precision” format (from 80- to 128-bit representations, with or without a hidden bit).
Typically special representations are specified for positive and negative zero and infinity. Relying on a particular

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 25

bit representation is inherently problematic, especially when a new compiler is introduced or the code is reused
on another platform. The uncertainties arising from floating-point can be divided into uncertainty about the
actual bit representation of a given value (such as, big-endian or little-endian) and the uncertainty arising from
the rounding of arithmetic operations (for example, the accumulation of errors when imprecise floating-point
values are used as loop indices).

6.5.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages with floating-point variables can be subject to rounding or truncation errors.

6.5.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not use a floating-point expression in a Boolean test for equality. Instead, use coding that determines
the difference between the two values to determine whether the difference is acceptably small enough
so that two values can be considered equal. Note that if the two values are very large, the “small
enough” difference can be a very large number.

• Use library functions with known numerical characteristics whenever possible.
• Unless the use of floating-point is simple, an expert in numerical analysis should check the stability and

accuracy of the algorithm employed.
• Avoid the use of a floating-point variable as a loop counter. If necessary to use a floating-point value as a

loop control, use inequality to determine the loop control (that is, <, <=, > or >=).
• Understand the floating-point format used to represent the floating-point numbers. This will provide

some understanding of the underlying idiosyncrasies of floating-point arithmetic.
• Manipulating the bit representation of a floating-point number should not be done except with built-in

language operators and functions that are designed to extract the mantissa and exponent.
• Do not use floating-point for exact values such as monetary amounts. Use floating-point only when

necessary such as for fundamentally inexact values such as measurements.
• Consider the use of decimal floating-point facilities when available.

6.5.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages that do not already adhere to or only adhere to a subset of ANSI/IEEE 754 should consider
adhering completely to the standard. Examples of standardization that should be considered:

o C should consider requiring ANSI/IEEE 754 for floating-point arithmetic, rather than providing it as
an option, as is the case in ISO/IEC 9899:1999[4].

o Java should consider fully adhering to ANSI/IEEE 754 instead of a subset.
• Languages should consider providing a means to generate diagnostics for code that attempts to test

equality of two floating point values.
• Languages should consider standardizing their data type to ISO/IEC 10967-1:1994 and ISO/IEC 10967-

2:2001.

WG 23/N 0352 Baseline Edition 2 TR 24772

26 © ISO/IEC 2011 – All rights reserved

6.6 Enumerator Issues [CCB]

6.6.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages
there are no other operations available except order, equality, first, last, previous, and next; in others the full
underlying representation operators are available, such as integer “+” and “-” and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representations. If
these mechanisms do not enforce whole-type operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong mappings. If the value-setting mechanisms are positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes, and
if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions and annotations. Similarly mismatches in enumeration value specification can be detected statically.
Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as
being difficult to detect by human review.

6.6.2 Cross reference

JSF AV Rule: 145
MISRA C 2004: 9.2 and 9.3
MISRA C++ 2008: 8-5-3
CERT C guidelines: INT09-C
Holzmann rule 6
Ada Quaility and Style Guide: 3.4.2

6.6.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of values of the items) change. Expressions that depend on the full set or specific relationships between
elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
“holes” in the representation where values that cannot be defined are propagated.

If arrays are indexed by enumerations containing non-default representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibility of unnecessarily large memory
allocations or a way to pass information undetected (hidden channel).

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 27

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes
to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being
assigned or default values being assigned improperly. Subsequent indexing can result in illegal accesses and
possibly unbounded behaviours.

6.6.4 Applicable language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positional-only mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

• Languages that provide a trivial mapping to a type such as integer require additional static analysis tools
to prevent mixed type errors. They also cannot prevent illegal values from being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;

In this example, c may have a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

• Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.6.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

6.6.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages that currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations program-wide.

• Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initialization expressions could provide a mechanism to enforce such matching.

6.7 Numeric Conversion Errors [FLC]

6.7.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to types [32]:

aVar := anExpression

WG 23/N 0352 Baseline Edition 2 TR 24772

28 © ISO/IEC 2011 – All rights reserved

value1 + value2
foo(arg1, arg2, arg3, … , argN)

Type conversion seeks to follow these exact match rules while allowing programmers some flexibility in using
values such as: structurally-equivalent types in a name-equivalent language, types whose value ranges may be
distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floats). Explicit conversions are called type casts. An implicit type conversion between
compatible but not necessarily equivalent types is called type coercion.

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the
original value. For example, converting from an integer type to a smaller integer type can result in truncation if
the original value cannot be represented in the smaller size and converting a floating point to an integer can
result in a loss of precision or an out-of-range value.

Type conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array
bounds errors, and arbitrary program execution.

6.7.2 Cross reference

CWE:
192. Integer Coercion Error

MISRA C 2004: 10.1-10.6, 11.3-11.5, and 12.9
MISRA C++ 2008: 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2
CERT C guidelines: FLP34-C, INT02-C, INT08-C, INT31-C, and INT35-C

6.7.3 Mechanism of failure

Numeric conversion errors results in data integrity issues, but they may also result in a number of safety and
security vulnerabilities.

Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values are
encountered. These can result in safety issues, for example, when the Ariane 5 launcher failure occurred due to
an improperly handled conversion error resulting in the processor being shutdown [29].

Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a
flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a
length, a size, state data, or in some other security critical manner. For example, a truncated integer value may
be used to allocate memory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overflow [30].

Numeric type conversion errors often lead to undefined states of execution resulting in infinite loops or crashes.
In some cases, integer type conversion errors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integer type conversion errors result in an incorrect value being stored for the
variable in question.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 29

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that perform implicit type conversion (coercion).
• Weakly typed languages that do not strictly enforce type rules.
• Languages that support logical, arithmetic, or circular shifts on integer values.
• Languages that do not generate exceptions on problematic conversions.

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The first line of defense against integer vulnerabilities should be range checking, either explicitly or
through strong typing. All integer values originating from a source that is not trusted should be validated
for correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated
to cause an error to occur in some operation somewhere in a program [30].

• An alternative or ancillary approach is to protect each operation. However, because of the large number
of integer operations that are susceptible to these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive
to implement.

• A language that generates exceptions on erroneous data conversions might be chosen. Design objects
and program flow such that multiple or complex casts are unnecessary. Ensure that any data type casting
that you must use is entirely understood to reduce the plausibility of error in use.

• The use of static analysis can often identify whether or not unacceptable numeric conversions will occur.

Verifiably in-range operations are often preferable to treating out of range values as an error condition because
the handling of these errors has been repeatedly shown to cause denial-of-service problems in actual
applications. Faced with a numeric conversion error, the underlying computer system may do one of two things:
(a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable
values on that system. The latter semantics may be preferable in some situations in that it allows the computation
to proceed, thus avoiding a denial-of-service attack. However, it raises the question of what numeric result to
return to the user.

A recent innovation from ISO/IEC TR 24731-1 [13] is the definition of the rsize_t type for the C programming
language. Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For
example, negative numbers appear as very large positive numbers when converted to an unsigned type like
size_t. Also, some implementations do not support objects as large as the maximum value that can be
represented by type size_t. For these reasons, it is sometimes beneficial to restrict the range of object sizes to
detect programming errors. For implementations targeting machines with large address spaces, it is
recommended that RSIZE_MAX be defined as the smaller of the size of the largest object supported or
(SIZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very large, objects.
Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX,
which means that there is no object size that is considered a runtime-constraint violation.

6.7.6 Implications for standardization

In future standardization activities, the following items should be considered:

WG 23/N 0352 Baseline Edition 2 TR 24772

30 © ISO/IEC 2011 – All rights reserved

• Languages should consider providing means similar to the ISO/IEC TR 24731-1 definition of rsize_t
type for C to restrict object sizes so as to expose programming errors.

• Languages should consider making all type conversions explicit or at least generating warnings for implicit
conversions where loss of data might occur.

6.8 String Termination [CJM]

6.8.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to either exploitation or unexpected
behaviour.

6.8.2 Cross reference

CWE:
170. Improper Null Termination

CERT C guidelines: STR03-C, STR31-C, STR32-C, and STR36-C

6.8.3 Mechanism of failure

String termination errors occur when the termination character is solely relied upon to stop processing on the
string and the termination character is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assumption
that a string that is passed as input or generated by a library contains a string termination character when it does
not.

Programmers may forget to allocate space for the string termination character and expect to be able to store an n
length character string in an array that is n characters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.8.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that use a termination character to indicate the end of a string.
• Languages that do not do bounds checking when accessing a string or array.

6.8.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not rely solely on the string termination character.
• Use library calls that do not rely on string termination characters such as strncpy instead of strcpy in

the standard C library.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 31

6.8.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Eliminating library calls that make assumptions about string termination characters.
• Checking bounds when an array or string is accessed.
• Specifying a string construct that does not need a string termination character.

6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

6.9.1 Description of application vulnerability

A buffer boundary violation arises when, due to unchecked array indexing or unchecked array copying, storage
outside the buffer is accessed. Usually boundary violations describe the situation where such storage is then
written. Depending on where the buffer is located, logically unrelated portions of the stack or the heap could be
modified maliciously or unintentionally. Usually, buffer boundary violations are accesses to contiguous memory
beyond either end of the buffer data, accessing before the beginning or beyond the end of the buffer data is
equally possible, dangerous and maliciously exploitable.

6.9.2 Cross reference

CWE:
120. Buffer copy without Checking Size of Input (‘Classic Buffer Overflow’)
122. Heap-based Buffer Overflow
124. Boundary Beginning Violation (‘Buffer Underwrite’)
129. Unchecked Array Indexing
131: Incorrect Calculation of Buffer Size
787: Out-of-bounds Write
805: Buffer Access with Incorrect Length Value

JSF AV Rule: 15 and 25
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C

6.9.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

There are several kinds of failures (in all cases an exception may be raised if the accessed location is outside of
some permitted range of the run-time environment):

• A read access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

• An out-of-bounds read access may be used to obtain information that is intended to be confidential.
• A write access will not result in the intended value being updated and may result in the value of an

unrelated object (that happens to exist at the given storage location) being modified, including the
possibility of changes in external devices resulting from the memory location being hardware-mapped.

WG 23/N 0352 Baseline Edition 2 TR 24772

32 © ISO/IEC 2011 – All rights reserved

• When an array has been allocated storage on the stack an out-of-bounds write access may modify
internal runtime housekeeping information (for example, a function's return address) which might change
a program’s control flow.

• An inadvertent or malicious overwrite of function pointers that may be in memory, pointing them to the
attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually
store pointers to functions in memory. For example, object methods in object-oriented languages are
generally implemented using function pointers in a data structure or structures that are kept in memory.
The consequence of a buffer boundary violation can be targeted to cause arbitrary code execution; this
vulnerability may be used to subvert any security service.

6.9.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not detect and prevent an array being accessed outside of its declared bounds (either
by means of an index or by pointer1

• Languages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

).

• Languages that provide bounds checking but permit the check to be suppressed.
• Languages that allow a copy or move operation without an automatic length check ensuring that source

and target locations are of at least the same size. The destination target can be larger than the source
being copied.

6.9.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use of implementation-provided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

• Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly specified, or that pre- and post-conditions be specified.

• Sanity checks should be performed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned data type when indexing an
array, on the basis that an unsigned data type can never be negative. This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negative one. Also some languages support arrays whose lower bound is greater than zero, so an
index can be positive and be less than the lower bound.

In the past the implementation of array bound checking has sometimes incurred what has been considered to be
a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators

1 Using the physical memory address to access the memory location.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 33

to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are
only made when it cannot be shown statically that no bound violations can occur).

6.9.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should provide safe copying of arrays as built-in operation.
• Languages should consider only providing array copy routines in libraries that perform checks on the

parameters to ensure that no buffer overrun can occur.
• Languages should perform automatic bounds checking on accesses to array elements. This capability may

need to be optional for performance reasons.
• Languages that use pointer types should consider specifying a standardized feature for a pointer type that

would enable array bounds checking.

6.10 Unchecked Array Indexing [XYZ]

6.10.1 Description of application vulnerability

Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls
within the acceptable index range.

6.10.2 Cross reference

CWE:
129. Unchecked Array Indexing

JSF AV Rules: 164 and 15
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, and ARR38-C
Ada Quaility and Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

6.10.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index
overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; that is, "buffer
overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to
this fact, consequences range from denial of service, and data corruption, to arbitrary code execution. The most
common condition situation leading to unchecked array indexing is the use of loop index variables as buffer
indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore
causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a
function's return value, or the resulting value of a calculation directly as an index in to a buffer. Unchecked array
indexing can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if
the values are outside of the valid memory area. If the memory corrupted is data, rather than instructions, the

WG 23/N 0352 Baseline Edition 2 TR 24772

34 © ISO/IEC 2011 – All rights reserved

system might continue to function with improper values. If the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access and generate a compile-time
diagnostic. At runtime the implementation might or might not detect the out-of-bounds access and provide a
notification at runtime. The notification might be treatable by the program or it might not be. Accesses might
violate the bounds of the entire array or violate the bounds of a particular index. It is possible that the former is
checked and detected by the implementation while the latter is not. The information needed to detect the
violation might or might not be available depending on the context of use. (For example, passing an array to a
subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of protecting against out-of-bounds accesses. Some
languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.10.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not automatically bounds check array accesses.
• Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.10.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Include sanity checks to ensure the validity of any values used as index variables.
• The choice could be made to use a language that is not susceptible to these issues.
• When available, use whole array operations whenever possible.

6.10.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider providing compiler switches or other tools to check the size and bounds of
arrays and their extents that are statically determinable.

• Languages should consider providing whole array operations that may obviate the need to access
individual elements.

• Languages should consider the capability to generate exceptions or automatically extend the bounds of
an array to accommodate accesses that might otherwise have been beyond the bounds.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 35

6.11 Unchecked Array Copying [XYW]

6.11.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

6.11.2 Cross reference

CWE:
121. Stack-based Buffer Overflow

JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR33-C and STR31-C
Ada Quaility and Style Guide: 7.6.7 and 7.6.8

6.11.3 Mechanism of failure

Many languages and some third party libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/to storage area is large enough to accommodate the amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to the
source/destination area. When passed incorrect parameters the library function performs one or more
unchecked array index accesses, as described in Unchecked Array Indexing [XYZ].

6.11.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that contain standard library functions for performing bulk copying of storage areas.
• The same range of languages having the characteristics listed in Unchecked Array Indexing [XYZ].

6.11.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functions). Perform checks on the argument
expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.

• Use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun. Such analysis may require that source code contain certain kinds of
information, for example, that the bounds of all declared arrays be explicitly specified, or that pre- and
post-conditions be specified as annotations or language constructs.

WG 23/N 0352 Baseline Edition 2 TR 24772

36 © ISO/IEC 2011 – All rights reserved

6.11.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.

• Languages should consider providing full array assignment.

6.12 Pointer Casting and Pointer Type Changes [HFC]

6.12.1 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate
for the data or function being accessed. Otherwise undefined behaviour can occur. Specifically, “access via a
data pointer” is defined to be “fetch or store indirectly through that pointer” and “access via a function pointer” is
defined to be “invocation indirectly through that pointer.” The detailed requirements for what is meant by the
“appropriate” type may vary among languages.

Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.

 6.12.2 Cross reference

CWE:
136. Type Errors
188. Reliance on Data/Memory Layout

JSF AV Rules: 182 and 183
MISRA C 2004: 11.1, 11.2, 11.3, 11.4, and 11.5
MISRA C++ 2008: 5-2-2 to 5-2-9
CERT C guidelines: INT11-C and EXP36-A
Hatton 13: Pointer casts
Ada Quaility and Style Guide: 7.6.7 and 7.6.8

6.12.3 Mechanism of failure

If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted or privacy can
be broken by inappropriate read or write operation using the indirection provided by the pointer value. With a
suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data objects will generally lead to value faults of the application. Modification of code elements
such as function pointers or internal data structures for the support of object-orientation can affect control flow.
This can make the code susceptible to targeted attacks by causing invocation via a pointer-to-function that has
been manipulated to point to an attacker’s payload.

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Pointers (and/or references) can be converted to different pointer types.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 37

• Pointers to functions can be converted to pointers to data.

6.12.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Treat the compiler’s pointer-conversion warnings as serious errors.
• Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.

For example, consider the rules itemized above from JSF AV [15], CERT C [11], Hatton [18], or MISRA C
[12].

• Other means of assurance might include proofs of correctness, analysis with tools, verification
techniques, or other methods.

6.12.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider creating a mode that provides a runtime check of the validity of all accessed
objects before the object is read, written or executed.

6.13 Pointer Arithmetic [RVG]

6.13.1 Description of application vulnerability

Using pointer arithmetic incorrectly can result in addressing arbitrary locations, which in turn can cause a program
to behave in unexpected ways.

6.13.2 Cross reference

JSF AV Rule: 215
MISRA C 2004: 17.1, 17.2, 17.3, and 17.4
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: EXP08-C

6.13.3 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

• Addressing arbitrary memory locations, including buffer underflow and overflow.
• Arbitrary code execution.
• Addressing memory outside the range of the program.

6.13.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow pointer arithmetic.

WG 23/N 0352 Baseline Edition 2 TR 24772

38 © ISO/IEC 2011 – All rights reserved

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid using pointer arithmetic for accessing anything except composite types.
• Prefer indexing for accessing array elements rather than using pointer arithmetic.
• Limit pointer arithmetic calculations to the addition and subtraction of integers.

6.13.6 Implications for standardization

 [None]

6.14 Null Pointer Dereference [XYH]

6.14.1 Description of application vulnerability

A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a valid
memory location. This is a special case of accessing storage via an invalid pointer.

6.14.2 Cross reference

CWE:
476. NULL Pointer Dereference

JSF AV Rule 174
CERT C guidelines: EXP34-C
Ada Quaility and Style Guide: 5.4.5

6.14.3 Mechanism of failure

When a pointer with a value of NULL is used as though it pointed to a valid memory location, then a null-pointer
dereference is said to take place. This can result in a segmentation fault, unhandled exception, or accessing
unanticipated memory locations.

6.14.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit the use of pointers and that do not check the validity of the location being
accessed prior to the access.

• Languages that allow the use of a NULL pointer.

6.14.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Before dereferencing a pointer, ensure it is not equal to NULL.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 39

6.14.6 Implications for standardization

In future standardization activities, the following items should be considered:

• A language feature that would check a pointer value for NULL before performing an access should be
considered.

6.15 Dangling Reference to Heap [XYK]

6.15.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack
frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object
may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns the former case, dangling references to the heap. The description of dangling
references to stack frames is [DCM]. In many languages references are called pointers; the issues are identical.

A notable special case of using a dangling reference is calling a deallocator, for example, free(), twice on the
same pointer value. Such a “Double Free” may corrupt internal data structures of the heap administration,
leading to faulty application behaviour (such as infinite loops within the allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the first free()call, to name but a few), or it may have no adverse effects at all.

Memory corruption through the use of a dangling reference is among the most difficult of errors to locate.

With sufficient knowledge about the heap management scheme (often provided by the OS (Operating System) or
run-time system), use of dangling references is an exploitable vulnerability, since the dangling reference provides
a method with which to read and modify valid data in the designated memory locations after freed memory has
been re-allocated by subsequent allocations.

6.15.2 Cross reference

CWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2004: 17.1-6
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1
CERT C guidelines: MEM01-C, MEM30-C, and MEM31.C
Ada Quaility and Style Guide: 5.4.5, 7.3.3, and 7.6.6

6.15.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists and retains its last-stored value throughout its lifetime. If an object is referred to outside of
its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the

WG 23/N 0352 Baseline Edition 2 TR 24772

40 © ISO/IEC 2011 – All rights reserved

object residing at this memory location (as does leaving the dynamic scope of a declared variable). The value of a
pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previously freed memory can have any number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and
timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse
of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leaks and errors due to double de-allocation, the use of dangling references has two common and
sometimes overlapping causes:

• An error condition or other exceptional circumstances.
• Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect of changing the value of an unrelated variable.
This induces unexpected behaviour in the affected program. If the newly allocated data happens to hold a class
description, in an object-oriented language for example, various function pointers may be scattered within the
heap data. If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be achieved.

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate memory still pointed to by some pointer value.

• Languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

6.15.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

• Use a coding style that does not permit deallocation.
• In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If

the language is object-oriented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all pointers are set to NULL once the memory they point to have been freed can be an
effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

• Use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to is no longer a pointer to valid memory location.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 41

• Allocating and freeing memory in different modules and levels of abstraction burdens the programmer
with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as double-free
vulnerabilities, accessing freed memory, or dereferencing NULL pointers or pointers that are not
initialized. To avoid these situations, it is recommended that memory be allocated and freed at the same
level of abstraction, and ideally in the same code module.

6.15.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

• Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a compile-time error.

• For properties that cannot be checked at compile time, language specifiers should provide an assertion
mechanism for checking properties at run-time. It should be possible to inhibit assertion checking if
efficiency is a concern.

• A storage allocation interface should be provided that will allow the called function to set the pointer
used to NULL after the referenced storage is deallocated.

6.16 Arithmetic Wrap-around Error [FIF]

6.16.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representable in its type and, depending upon

• whether the type is signed or unsigned,
• the specification of the language semantics and/or
• implementation choices,

"wraps around" to an unexpected value. This vulnerability is related to Using Shift Operations for Multiplication
and Division [PIK]2

6.16.2 Cross reference

.

CWE:
128. Wrap-around Error
190: Integer Overflow or Wraparound

JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1

2 This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.

WG 23/N 0352 Baseline Edition 2 TR 24772

42 © ISO/IEC 2011 – All rights reserved

CERT C guidelines: INT30-C, INT32-C, and INT34-C

6.16.3 Mechanism of failure

Due to how arithmetic is performed by computers, if a variable’s value is increased past the maximum value
representable in its type, the system may fail to provide an overflow indication to the program. One of the most
common processor behaviour is to “wrap” to a very large negative value, or set a condition flag for overflow or
underflow, or saturate at the largest representable value.

Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrap-around can sometimes trigger buffer overflows that can be used to execute arbitrary
code.

It should be noted that the precise consequences of wrap-around differ depending on:

• Whether the type is signed or unsigned
• Whether the type is a modulus type
• Whether the type’s range is violated by exceeding the maximum representable value or falling short of

the minimum representable value
• The semantics of the language specification
• Implementation decisions

However, in all cases, the resulting problem is that the value yielded by the computation may be unexpected.

6.16.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not trigger an exception condition when a wrap-around error occurs.

6.16.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

• Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.

6.16.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occurs. Ideally, the selection among these alternatives
could be made by the programmer.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 43

6.17 Using Shift Operations for Multiplication and Division [PIK]

6.17.1 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide may produce an unexpected value when the sign bit is
changed or when value bits are lost. This vulnerability is related to Arithmetic Wrap-around Error [FIF]3

6.17.2 Cross reference

.

CWE:
128. Wrap-around Error
190: Integer Overflow or Wraparound

JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C

6.17.3 Mechanism of failure

Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results
if the shift operation affects the sign bit or shifts significant bits from the value.

Such errors often generate an unexpected negative value; this unexpected value may cause a loop to continue for
a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. The error can sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.17.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit logical shift operations on variables of arithmetic type.

6.17.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

• Analyze the software using static analysis looking for unexpected consequences of shift operations.
• Avoid using shift operations as a surrogate for multiplication and division. Most compilers will use the

correct operation in the appropriate fashion when it is applicable.

6.17.6 Implications for standardization

In future standardization activities, the following items should be considered:

3 This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.

WG 23/N 0352 Baseline Edition 2 TR 24772

44 © ISO/IEC 2011 – All rights reserved

• Not providing logical shifting on arithmetic values or flagging it for reviewers.

6.18 Sign Extension Error [XZI]

6.18.1 Description of application vulnerability

Extending a signed variable that holds a negative value may produce an incorrect result.

6.18.2 Cross reference

CWE:
194. Incorrect Sign Extension

MISRA C++ 2008: 5-0-4
CERT C guidelines: INT13-C

6.18.3 Mechanism of failure

Converting a signed data type to a larger data type or pointer can cause unexpected behaviour due to the
extension of the sign bit. A negative data element that is extended with an unsigned extension algorithm will
produce an incorrect result. For instance, this can occur when a signed character is converted to a type short or a
signed integer (32-bit) is converted to an integer type long (64-bit). Sign extension errors can lead to buffer
overflows and other memory based problems. This can occur unexpectedly when moving software designed and
tested on a 32-bit architecture to a 64-bit architecture computer.

6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that are weakly typed due to their lack of enforcement of type classifications and interactions.
• Languages that explicitly or implicitly allow applying unsigned extension operations to signed entities or

vice-versa.

6.18.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use a sign extension library, standard function, or appropriate language-specific coding methods to
extend signed values.

• Use static analysis tools to help locate situations in which the conversion of variables might have
unintended consequences.

6.18.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language definitions should define implicit and explicit conversions in a way that prevents alteration of
the mathematical value beyond traditional rounding rules.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 45

6.19 Choice of Clear Names [NAI]

6.19.1 Description of application vulnerability

Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristics that are specific to the native language of the software developer to
aid in this effort, such as use of mixed-casing, underscores and periods, or use of plural and singular forms to
support the separation of items with similar names. Similarly, development conventions sometimes use casing
for differentiation (for example, all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish between them, or when the system maps such
entities to a single entity.

Conventions such as the use of capitalization, and singular/plural distinctions may work in small and medium
projects, but there are a number of significant issues to be considered:

• Large projects often have mixed languages and such conventions are often language-specific.
• Many implementations support identifiers that contain international character sets and some language

character sets have different notions of casing and plurality.
• Different word-forms tend to be language and dialect specific, such as a pidgin, and may be meaningless

to humans that speak other dialects.

An important general issue is the choice of names that differ from each other negligibly (in human terms), for
example by differing by only underscores, (none, "_" "__"), plurals ("s"), visually similar characters (such as "l" and
"1", "O" and "0"), or underscores/dashes ("-","_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, such as FOO, Foo, and foo in some computer languages.] Character sets
extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their
implementations may pay attention to only the first n characters of an identifier.

The problems described above are different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
reserved names which can lead to a conflict with the reserved use and the use of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understood. This can lead to outright errors, or leave in place code that may
execute sometime in the future with unacceptable consequences.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking
surreptitious behaviour is a goal.

6.19.2 Cross reference

JSF AV Rules: 48-56
MISRA C 2004: 1.4
CERT C guidelines: DCL02-C

WG 23/N 0352 Baseline Edition 2 TR 24772

46 © ISO/IEC 2011 – All rights reserved

Ada Quaility and Style Guide: 3.2

6.19.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can
result in unintended behaviour. Language processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages with relatively flat name spaces will be more susceptible. Systems with modules, classes,
packages can use qualification to disambiguate names that originate from different parents.

• Languages that provide preconditions, post conditions, invariances and assertions or redundant coding of
subprogram signatures help to ensure that the subprograms in the module will behave as expected, but
do nothing if different subprograms are called.

• Languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Implementers can create coding standards that provide meaningful guidance on name selection and use.
Good language specific guidelines could eliminate most problems.

• Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review can then often spot the names that are sorted at an unexpected location or which
look almost identical to an adjacent name in the list.

• Use static tools (often the compiler) to detect declarations that are unused.
• Use languages with a requirement to declare names before use or use available tool or compiler options

to enforce such a requirement.

6.19.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.20 Dead Store [WXQ]

6.20.1 Description of application vulnerability

A variable's value is assigned but never subsequently used, either because the variable is not referenced again, or
because a second value is assigned before the first is used. This may suggest that the design has been
incompletely or inaccurately implemented, for example, a value has been created and then ‘forgotten about’.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 47

This vulnerability is very similar to Unused Variable [YZS].

6.20.2 Cross reference

CWE:
563. Unused Variable

MISRA C++ 2008: 0-1-4 and 0-1-6
CERT C guidelines: MSC13-C
See also Unused Variable [YZS]

6.20.3 Mechanism of failure

A variable is assigned a value but this is never subsequently used. Such an assignment is then generally referred to
as a dead store.

A dead store may be indicative of careless programming or of a design or coding error; as either the use of the
value was forgotten (almost certainly an error) or the assignment was performed even though it was not needed
(at best inefficient). Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable might be intended to
be read by another execution thread or an external device. In such cases, though, the variable should be marked
as volatile. Common compiler optimization techniques will remove apparent dead stores if the variables are not
marked as volatile, hence causing incorrect execution.

A dead store is justifiable if, for example:

• The code has been automatically generated, where it is commonplace to find dead stores introduced to
keep the generation process simple and uniform.

• The code is initializing a sparse data set, where all members are cleared, and then selected values
assigned a value.

6.20.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Any programming language that provides assignment.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use static analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

• If variables are intended to be accessed by other execution threads or external devices, mark them as
volatile.

• Avoid declaring variables of compatible types in nested scopes with similar names.

WG 23/N 0352 Baseline Edition 2 TR 24772

48 © ISO/IEC 2011 – All rights reserved

6.20.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider providing optional warning messages for dead store.

6.21 Unused Variable [YZS]

6.21.1 Description of application vulnerability

An unused variable is one that is declared but neither read nor written in the program. This type of error suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocuous, but they may provide memory space that attackers could use in
combination with other techniques.

This vulnerability is similar to Dead Store [WXQ] if the variable is initialized but never used.

6.21.2 Cross reference

CWE:
 563. Unused Variable

MISRA C++ 2008: 0-1-3
CERT C guidelines: MSC13-C
See also Dead Store [WXQ]

6.21.3 Mechanism of failure

A variable is declared, but never used. The existence of an unused variable may indicate a design or coding error.

Because compilers routinely diagnose unused local variables, their presence may be an indication that compiler
warnings are either suppressed or are being ignored.

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.21.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that provide variable declarations.

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Enable detection of unused variables in the compiler.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 49

6.21.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider requiring mandatory diagnostics for unused variables.

6.22 Identifier Name Reuse [YOW]

6.22.1 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name it is possible that program logic will
operate on an entity other than the one intended.

When it is not clear which identifier is used, the program could behave in ways that were not predicted by reading
the source code. This can be found by testing, but circumstances can arise (such as the values of the same-named
objects being mostly the same) where harmful consequences occur. This weakness can also lead to vulnerabilities
such as hidden channels where humans believe that important objects are being rewritten or overwritten when in
fact other objects are being manipulated.

For example, the innermost definition is deleted from the source, the program will continue to compile without a
diagnostic being issued (but execution can produce unexpected results).

6.22.2 Cross reference

JSF AV Rules: 120 and 135-9
MISRA C 2004: 5.2, 5.5, 5.6, 5.7, 20.1, 20.2
MISRA C++ 2008: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3
CERT C guidelines: DCL01-C and DCL32-C
Ada Quaility and Style Guide: 5.6.1 and 5.7.1

6.22.3 Mechanism of failure

Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a
mechanism for the independent definition of identifiers that may share the same name.

For instance, in the following code fragment:

int some_var;
{
 int t_var;
 int some_var; /* definition in nested scope */

 t_var = 3;
 some_var = 2;
}

an identifier called some_var has been defined in different scopes.

WG 23/N 0352 Baseline Edition 2 TR 24772

50 © ISO/IEC 2011 – All rights reserved

If either the definition of some_var or t_var that occurs in the nested scope is deleted (for example, when the
source is modified) it is necessary to delete all other references to the identifier’s scope. If a developer deletes
the definition of t_var but fails to delete the statement that references it, then most languages require a
diagnostic to be issued (such as reference to undefined variable). However, if the nested definition of some_var
is deleted but the reference to it in the nested scope is not deleted, then no diagnostic will be issued (because the
reference resolves to the definition in the outer scope).

In some cases non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table_b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant. This
situation only occurs in languages that allow multiple declarations of the same identifier (other languages require
a diagnostic message to be issued).

A related problem exists in languages that allow overloading or overriding of keywords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

Definitions for new identifiers should not use a name that is already visible within the scope containing the new
definition. Alternately, utilize language-specific facilities that check for and prevent inadvertent overloading of
names should be used.

6.22.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that allow the same name to be used for identifiers defined in nested scopes.
• Languages where unique names can be transformed into non-unique names as part of the normal tool

chain.

6.22.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A language-specific project coding convention
can be used to ensure that such errors are detectable with static analysis.

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and has a type that permits it to occur in at least one context where the first entity can
occur.

• Use language features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

• Develop or use tools that identify name collisions or reuse when truncated versions of names cause
conflicts.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 51

• Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

6.22.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should require mandatory diagnostics for variables with the same name in nested scopes.
• Languages should require mandatory diagnostics for variable names that exceed the length that the

implementation considers unique.
• Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or

standard library function identifiers.

6.23 Namespace Issues [BJL]

6.23.1 Description of Application Vulnerability

If a language provides separate, non-hierarchical namespaces and a means to make names declared in these
name spaces directly visible to an application, the potential of unintentional and possible disastrous change in
application behavior can arise, when names are added to a namespace during maintenance.

Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping
declarations for import into other program units.

6.23.2 Cross references

 MISRA C++ 2008: 7-3-1, 7-3-3, 7-3-5, 14-5-1, and 16-0-2

6.23.3 Mechanism of Failure

The failure is best illustrated by an example. Namespace N1 provides the name A but not B; Namespace N2
provides the name B but not A. The application wishes to use A from N1 and B from N2. At this point, there are
no obvious issues. The application chooses (or needs to) import the namespaces to obtain names for direct
usage, for an example.

Use N1, N2; – presumed to make all names in N1 and N2 directly visible

… X := A + B;

The semantics of the above example are intuitive and unambiguous.

Later, during maintenance, the name B is added to N1. The change to the namespace usually implies a
recompilation of dependent units. At this point, two declarations of B are applicable for the use of B in the above
example.

Some languages try to disambiguate the above situation by stating preference rules in case of such ambiguity
among names provided by different name spaces. If, in the above example, N1 is preferred over N2, the meaning
of the use of B changes silently, presuming that no typing error arises. Consequently the semantics of the

WG 23/N 0352 Baseline Edition 2 TR 24772

52 © ISO/IEC 2011 – All rights reserved

program change silently and assuredly unintentionally, since the implementer of N1 cannot assume that all users
of N1 would prefer to take any declaration of B from N1 rather than its previous namespace.

It does not matter what the preference rules actually is, as long as the namespaces are mutable. The above
example is easily extended by adding A to N2 to show a symmetric error situation for a different precedence rule.

If a language supports overloading of subprograms, the notion of “same name” used in the above example is
extended to mean not only the same name, but also the same signature of the subprogram. For vulnerabilities
associated with overloading and overriding, see Identifier Name Reuse [YOW]. In the context of namespaces,
however, adding signature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In
particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errors. It also can be exploited maliciously, if the source of the
application and of the namespaces is known to the aggressor and one of the namespaces is mutable by the
attacker.

6.23.4 Applicable Language Characteristics

The vulnerability is applicable to languages with the following characteristics:

• Languages that support non-hierarchical separate name-spaces, have means to import all names of a
namespace “wholesale” for direct use, and have preference rules to choose among multiple imported
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.

6.23.5 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoiding “wholesale” import directives
• Using only selective “single name” import directives or using fully qualified names (in both cases,

provided that the language offers the respective capabilities)

6.23.6 Implications for Standardization

In future standardization activities, the following items should be considered:

• Languages should not have preference rules among mutable namespaces. Ambiguities should be illegal
and avoidable by the user, for example, by using names qualified by their originating namespace.

6.24 Initialization of Variables [LAV]

6.24.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution in
the block that uses the value of the variable, and has the potential to export bad values to callers, or cause out-of-
bounds memory accesses.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 53

Uninitialized variable usage is frequently not detected until after testing and often when the code in question is
delivered and in use, because happenstance will provide variables with adequate values (such as default data
settings or accidental left-over values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may
have alternate paths that can read values before they are set. This can happen in straight sequential code but is
more prevalent when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added under maintenance.

When possible and supported by the language, whole-structure initialization is preferable to field-by-field
initialization statements, and named association is preferable to positional, as it facilitates human review and is
less susceptible to failures under maintenance. For classes, the declaration and initialization may occur in
separate modules. In such cases it must be possible to show that every field that needs an initial value receives
that value, and to document ones that do not require initial values.

6.24.2 Cross reference

CWE:
457. Use of Uninitialized Variable

JSF AV Rules: 71, 143, and 147
MISRA C 2004: 9.1, 9.2, and 9.3
CERT C guidelines: DCL14-C and EXP33-C
MISRA C++ 2008: 8-5-1
Ada Quaility and Style Guide: 5.9.6

6.24.3 Mechanism of failure

Uninitialized objects may have illegal values, legal but wrong values, or legal and dangerous values. Wrong values
could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause wrong
calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a bound violation and
hardware exception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect erroneous data or can destroy data that is in use by another part of the program; when
such a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap
may occur or a transfer to an unknown code fragment can occur. All of these scenarios can result in undefined
behaviour.

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety
situations.

6.24.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

WG 23/N 0352 Baseline Edition 2 TR 24772

54 © ISO/IEC 2011 – All rights reserved

• Languages that permit variables to be read before they are assigned.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The general problem of showing that all objects are initialized is intractable; hence developers must
carefully structure programs to show that all variables are set before first read on every path throughout
the subprogram. Where objects are visible from many modules, it is difficult to determine where the first
read occurs, and identify a module that must set the value before that read. When concurrency,
interrupts and coroutines are present, it becomes especially imperative to identify where early
initialization occurs and to show that the correct order is set via program structure, not by timing, OS
precedence, or chance.

• The simplest method is to initialize each object at elaboration time, or immediately after subprogram
execution commences and before any branches. If the subprogram must commence with conditional
statements, then the programmer is responsible to show that every variable declared and not initialized
earlier is initialized on each branch.

• Applications can consider defining or reserving fields or portions of the object to only be set when fully
initialized. However, this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables.

• It should be possible to use static analysis tools to show that all objects are set before use in certain
specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that they can be analyzed.

• When declaring and initializing the object together, if the language does not require that the compiler
statically verify that the declarative structure and the initialization structure match, use static analysis
tools to help detect any mismatches.

• When setting compound objects, if the language provides mechanisms to set all components together, use
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools that
perform such coverage analysis and document the initialization. Do not perform partial initializations
unless there is no choice, and document any deviations from 100% initialization.

• Where default assignments of multiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

• Some languages have named assignments that can be used to build reviewable assignment structures
that can be analyzed by the language processor for completeness. Languages with positional notation
only can use comments and secondary tools to help show correct assignment.

6.24.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Some languages have ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if this does not occur. Languages that do not could consider adding such capabilities.

• Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially for security and safety domains.

• Languages that do not support whole-object initialization could consider adding this capability.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 55

6.25 Operator Precedence/Order of Evaluation [JCW]

6.25.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
operators. These rules are also known as “grouping” or “binding”.

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. See, Developer beliefs about binary operator precedence. C Vu, 18(4):14-
21, August 2006

6.25.2 Cross reference

JSF AV Rules: 204 and 213
MISRA C 2004: 12.1, 12.2, 12.5, 12.6, 13.2, 19.10, 19.12, and 19.13
MISRA C++ 2008: 4-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2
CERT C guidelines: EXP00-C
Ada Quaility and Style Guide: 7.1.8 and 7.1.9

6.25.3 Mechanism of failure

In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the
programmer having similar precedence to arithmetic operations, so just as one might correctly write “x – 1 ==
0” (“x minus one is equal to zero”), a programmer might erroneously write “x & 1 == 0”, mentally thinking “x
anded-with 1 is equal to zero”, whereas the operator precedence rules of C and C++ actually bind the expression
as “compute 1==0, producing ‘false’ interpreted as zero, then bitwise-and the result with x”, producing (a
constant) zero, contrary to the programmer’s intent.

Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the
absence of any distinctions of precedence. One commonly made mistake is to write “a * b + c”, intending to
produce “a times b plus c”, whereas APL’s uniform right-to-left associativity produces “b plus c, times a”.

6.25.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages whose precedence and associativity rules are sufficiently complex that developers do not
remember them.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JSF C++ [15], CERT C [11] or MISRA C [12].

• Use parentheses around binary operator combinations that are known to be a source of error (for
example, mixed arithmetic/bitwise and bitwise/relational operator combinations).

WG 23/N 0352 Baseline Edition 2 TR 24772

56 © ISO/IEC 2011 – All rights reserved

• Break up complex expressions and use temporary variables to make the order clearer.

6.25.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretation.

6.26 Side-effects and Order of Evaluation [SAM]

6.26.1 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects (such as assignment, increment, or
decrement). For example, some programming languages permit such side-effects, and if, within one expression
(such as “i = v[i++]”), two or more side-effects modify the same object, undefined behaviour results.

Some languages allow subexpressions to be evaluated in an unspecified ordering, or even removed during
optimization. If these subexpressions contain side-effects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can receive values
that are dependent upon the order of evaluation.

If a program contains these unspecified or undefined behaviours, testing the program and seeing that it yields the
expected results may give the false impression that the expression will always yield the expected result.

6.26.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 2004: 12.1-12.5
MISRA C++ 2008: 5-0-1
CERT C guidelines: EXP10-C, EXP30-C
Ada Quaility and Style Guide: 7.1.8 and 7.1.9

6.26.3 Mechanism of failure

When subexpressions with side effects are used within an expression, the unspecified order of evaluation can
result in a program producing different results on different platforms, or even at different times on the same
platform. For example, consider

a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) may be a
different value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) may be called with a
different value of b.

Other examples of unspecified order, or even undefined behaviour, can be manifested, such as

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 57

a = f(i) + i++;

or

a[i++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-
effects and order of evaluation are not changed by the presence of parentheses; consider

j = i++ * i++;

where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains. (All
examples use the syntax of C or Java for brevity; the effects can be created in any language that allows functions
with side-effects in the places where C allows the increment operations.)

The unpredictable nature of the calculation means that the program cannot be tested adequately to any degree
of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.26.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit expressions to contain subexpressions with side effects.
• Languages whose subexpressions are computed in an unspecified ordering.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Make use of one or more programming guidelines which (a) prohibit these unspecified or undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
clause [SAM])

• Keep expressions simple. Complicated code is prone to error and difficult to maintain.

6.26.6 Implications for standardization

In future standardization activities, the following items should be considered:

• In developing new or revised languages, give consideration to language features that will eliminate or
mitigate this vulnerability, such as pure functions.

6.27 Likely Incorrect Expression [KOA]

6.27.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the programmer. The statement is
not wrong, but it is unlikely to be right. The statement may have no effect and effectively is a null statement or
may introduce an unintended side-effect. A common example is the use of = in an if expression in C where the

WG 23/N 0352 Baseline Edition 2 TR 24772

58 © ISO/IEC 2011 – All rights reserved

programmer meant to do an equality test using the == operator. Other easily confused operators in C are the
logical operators such as && for the bitwise operator &, or vice versa. It is legal and possible that the programmer
intended to do an assignment within the if expression, but due to this being a common error, a programmer
doing so would be using a poor programming practice. A less likely occurrence, but still possible is the
substitution of == for = in what is supposed to be an assignment statement, but which effectively becomes a null
statement. These mistakes may survive testing only to manifest themselves in deployed code where they may be
maliciously exploited.

6.27.2 Cross reference

CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True

JSF AV Rules: 160 and 166
MISRA C 2004: 12.3, 12.4, 12.13, 13.1, 13.7, and 14.2
MISRA C++ 2008: 0-1-9, 5-0-1, 6-2-1, and 6-5-2
CERT C guidelines: MSC02-C and MSC03-C

6.27.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitution of = instead of == in a Boolean
test is easy to do and most C and C++ programmers have made this mistake at one time or another. Other
instances can be the result of intricacies of the language definition that specifies what part of an expression must
be evaluated. For instance, having an assignment expression in a Boolean statement is likely making an
assumption that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truth-value of the Boolean expression can be determined after only executing some portion of the
expression. For instance:

if ((a == b) | (c = (d-1)))

There is no guarantee which of the two subexpressions (a == b) or (c=(d-1)) will be executed first.
Should (a==b) be determined to be true, then there is no need for the subexpression (c=(d-1)) to be
executed and as such, the assignment (c=(d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Increment and decrement operators
(++ and --) can also yield unexpected results when mixed into a complex expression.

Incorrectly calculated results can lead to a wide variety of erroneous program execution

6.27.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages are susceptible to likely incorrect expressions.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 59

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Simplify expressions.
• Do not use assignment expressions as function parameters. Sometimes the assignment may not be

executed as expected. Instead, perform the assignment before the function call.
• Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move

the assignment outside of the Boolean expression for clarity and robustness.
• On some rare occasions, some statements intentionally do not have side effects and do not cause control

flow to change. These should be annotated through comments and made obvious that they are
intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instances, all statements should either have a side effect or cause control
flow to change.

6.27.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effects. A null (no-op) statement may need to be added to the language for
those rare instances where an intentional null statement is needed. Having a null statement as part of
the language will reduce confusion as to why a statement with no side effects is present in code.

• Languages should consider not allowing assignments used as function parameters.
• Languages should consider not allowing assignments within a Boolean expression.
• Language definitions should avoid situations where easily confused symbols (such as = and ==, or ; and

:, or != and /=) are legal in the same context. For example, = is not generally legal in an if statement in
Java because it does not normally return a boolean value.

6.28 Dead and Deactivated Code [XYQ]

6.28.1 Description of application vulnerability

Dead and Deactivated code (the distinction is addressed in [XYQ]) is code that exists in the executable, but which
can never be executed, either because there is no call path that leads to it (for example, a function that is never
called), or the path is semantically infeasible (for example, its execution depends on the state of a conditional that
can never be achieved).

Dead and Deactivated code may be undesirable because it may indicate the possibility of a coding error. A
security issue is also possible if a “jump target” is injected. Many safety standards prohibit dead code because
dead code is not traceable to a requirement.

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

Dead and Deactivated code is considered different than used data, used data is covered in a different
vulnerability, see [YZS].

WG 23/N 0352 Baseline Edition 2 TR 24772

60 © ISO/IEC 2011 – All rights reserved

6.28.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True

JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 2008: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3
CERT C guidelines: MSC07-C and MSC12-C
DO-178B/C

6.28.3 Mechanism of failure

DO-178B defines Dead and Deactivated code as:

• Dead code – Executable object code (or data) which... cannot be executed (code) or used (data) in an
operational configuration of the target computer environment and is not traceable to a system or
software requirement.

• Deactivated code – Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a previously developed software component, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dead code is code that exists in an application, but which can never be executed, either because there is no call
path to the code (for example, a function that is never called) or because the execution path to the code is
semantically infeasible, as in

integer i = 0;
if (i == 0)

then fun_a();
else fun_b();

fun_b is dead code, as only fun_a can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of separately compiled modules.

The presence of dead code is not in itself an error its presence may be an indication that the developer believed it
to be necessary, but some error means it will never be executed? There may also be legitimate reasons for its
presence, for example:

• Defensive code, only executed as the result of a hardware failure.
• Code that is part of a library not required in this application.
• Diagnostic code not executed in the operational environment.
• Code that is temporarily deactivated buy may be needed soon. This may occur as a way to make sure the

code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 61

• Code that is made available so that it can be executed manually via a debugger

Such code may be referred to as “deactivated”. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions and other
constructs that use complex name resolution strategies. The developer may believe that some code is not going
to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading function. That is, although the
developer believes it is never going to be used, in practice it is used in preference to the intended function.

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow code to exist in the executable that can never be executed.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The developer should endeavor to remove dead code from an application unless its presence serves a
purpose.

• When a developer identifies code that is dead because a conditional always evaluates to the same value,
this could be indicative of an earlier bug and additional testing may be needed to ascertain why the same
value is occurring.

• The developer should identify any dead code in the application, and provide a justification (if only to
themselves) as to why it is there.

• The developer should also ensure that any code that was expected to be unused is actually recognized as
dead code.

• The developer should apply standard branch coverage measurement tools and ensure by 100% coverage
that all branches are neither dead nor deactivated

6.28.6 Implications for standardization

[None]

6.29 Switch Statements and Static Analysis [CLL]

6.29.1 Description of application vulnerability

Many programming languages provide a construct, such as a switch statement, that chooses among multiple
alternative control flows based upon the evaluated result of an expression. The use of such constructs may
introduce application vulnerabilities if not all possible cases appear within the switch or if control unexpectedly
flows from one alternative to another.

WG 23/N 0352 Baseline Edition 2 TR 24772

62 © ISO/IEC 2011 – All rights reserved

6.29.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5
MISRA C++ 2008: 6-4-3, 6-4-5, 6-4-6, and 6-4-8
CERT C guidelines: MSC01-C
Ada Quaility and Style Guide: 5.6.1 and 5.6.10

6.29.3 Mechanism of failure

The fundamental challenge when using a switch statement is to make sure that all possible cases are, in fact,
treated correctly.

6.29.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that contain a construct, such as a switch statement, that provides a selection among
alternative control flows based on the evaluation of an expression.

• Languages that do not require full coverage of a switch statement.
• Languages that provide a default case (choice) in a switch statement.

6.29.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Switch on an expression that has a small number of potential values that can be statically enumerated. In
languages that provide them, a variable of an enumerated type is to be preferred because a possible set
of values is known statically and is small in number (as compared, for example, to the value set of an
integer variable). Where it is practical to statically enumerate the switched type, it is preferable to omit
the default case, because the static analysis is simplified and because maintainers can better understand
the intent of the original programmer. When one must switch on some other form of type, it is necessary
to have a default case, preferably to be regarded as a serious error condition.

• Avoid “flowing through” from one case to another. Even if correctly implemented, it is difficult for
reviewers and maintainers to distinguish whether the construct was intended or is an error of omission4

• Perform static analysis to determine if all cases are, in fact, covered by the code. (Note that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatment.)

.
In cases where flow-through is necessary and intended, an explicitly coded branch may be preferable to
clearly mark the intent. Providing comments regarding intention can be helpful to reviewers and
maintainers.

• Other means of mitigation include manual review, bounds testing, tool analysis, verification techniques,
and proofs of correctness.

4 Using multiple labels on individual alternatives is not a violation of this recommendation, though.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 63

6.29.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language specifications could require compilers to ensure that a complete set of alternatives is provided
in cases where the value set of the switch variable can be statically determined.

6.30 Demarcation of Control Flow [EOJ]

6.30.1 Description of application vulnerability

Some programming languages explicitly mark the end of an if statement or a loop, whereas other languages
mark only the end of a block of statements. Languages of the latter category are prone to oversights by the
programmer, causing unintended sequences of control flow.

6.30.2 Cross reference

JSF AV Rules: 59 and 192
MISRA C 2004: 14.8, 14.9, 14.10, and 19.5
MISRA C++ 2008: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and16-0-2
Hatton 18: Control flow – if structure
Ada Quaility and Style Guide: 3, 5.6.1 through 5.6.10

6.30.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the
software may not reveal that statements thought to be included in an if-then, if-then-else, or loops that
are not in reality a part of the if statement. Moreover, for a nested if-then-else statement the
programmer may be confused about which if statement controls the else part directly. This can lead to
unexpected results.

6.30.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that contain loops and conditional statements that are not explicitly terminated by an “end”
construct.

6.30.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

• Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

• Other means of assurance might include proofs of correctness, analysis with tools, verification
techniques, or other methods.

WG 23/N 0352 Baseline Edition 2 TR 24772

64 © ISO/IEC 2011 – All rights reserved

• Pretty-printers and syntax-aware editors may be helpful in finding such problems, but sometimes disguise
them.

• Include a final else statement at the end of if-…-else-if constructs to avoid confusion.
• Always enclose the body of statements of an if, while, for, or other statements potentially

introducing a block of code in braces (“{}”) or other demarcation indicators appropriate to the language
used.

6.30.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Specifiers of languages should consider adding a mode that strictly enforces compound conditional and
looping constructs with explicit termination, such as “end if” or a closing bracket.

• Specifiers of languages might consider explicit termination of loops and conditional statements.
• Specifiers might consider features to terminate named loops and conditionals and determine if the

structure as named matches the structure as inferred.

6.31 Loop Control Variables [TEX]

6.31.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a
test that terminates the loop and the quantity by which it should be decremented or incremented on each loop
iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.31.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C++ 2008: 6-5-1 to 6-5-6

6.31.3 Mechanism of failure

Readers of source code often make assumptions about what has been written. A common assumption is that a
loop control variable is a constant since such variables are not usually modified in the body of the associated loop.
A reader of the source may incorrectly assume that a loop control variable is not modified in the body of its loop
and write (incorrect) code based on this assumption.

6.31.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit a loop control variable to be modified in the body of its associated loop.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 65

6.31.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Not modifying a loop control variable in the body of its associated loop body.
• Some languages, such as C and C++ do not explicitly specify which of the variables appearing in a loop

header is the control variable for the loop. MISRA-C [12] and MISRA C++ [16] have proposed algorithms
for deducing which, if any, of these variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages that support a C-like for-loop).

6.31.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

6.32 Off-by-one Error [XZH]

6.32.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This
usually arises from one of a number of situations where the bounds as understood by the developer differ from
the design, such as:

• Confusion between the need for < and <= or > and >= in a test.
• Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying

structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1
(or some other start point); or using the length of a structure as its bound instead of the sentinel values.

• Failing to allow for storage of a sentinel value, such as the NULL string terminator that is used in the C
and C++ programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with different default array bounds.

The issue also can arise in algorithms where relationships exist between components, and the existence of a
bounds value changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden
channels.

6.32.2 Cross reference

CWE:
193. Off-by-one Error

WG 23/N 0352 Baseline Edition 2 TR 24772

66 © ISO/IEC 2011 – All rights reserved

6.32.3 Mechanism of failure

An off-by-one error could lead to:

• an out-of bounds access to an array (buffer overflow),
• incomplete comparisons or calculation mistakes,
• a read from the wrong memory location, or
• an incorrect conditional.

Such incorrect accesses can cause cascading errors or references to illegal locations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally,
but the cascading errors and boundary-condition errors can be severe.

6.32.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

• The language relies on the developer having implicit knowledge of structure start and end indices (for
example, knowing whether arrays start at 0 or 1 – or indeed some other value).

• Where the language relies upon explicit bounds values to terminate variable length arrays.

6.32.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• A systematic development process, use of development/analysis tools and thorough testing are all
common ways of preventing errors, and in this case, off-by-one errors.

• Where references are being made to structure indices and the languages provide ways to specify the
whole structure or the starting and ending indices explicitly (for example, Ada provides xxx'First and
xxx'Last for each dimension), these should be used always. Where the language doesn't provide these,
constants can be declared and used in preference to numeric literals.

• Where the language doesn’t encapsulate variable length arrays, encapsulation should be provided
through library objects and a coding standard developed that requires such arrays to only be used via
those library objects, so the developer does not need to be explicitly concerned with managing bounds
values.

6.32.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should provide encapsulations for arrays that:
o Prevent the need for the developer to be concerned with explicit bounds values.
o Provide the developer with symbolic access to the array start, end and iterators.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 67

6.33 Structured Programming [EWD]

6.33.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less
understandable, harder to maintain, more difficult to modify, harder to statically analyze, more difficult to match
the allocation and release of resources, and more likely to be incorrect.

6.33.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191
MISRA C 2004: 14.4, 14.5, and 20.7
MISRA C++ 2008: 6-6-1, 6-6-2, 6-6-3, and 17-0-5
CERT C guidelines: SIG32-C
Ada Quaility and Style Guide: 3, 4, 5.4, 5.6, and 5.7

6.33.3 Mechanism of failure

Lack of structured programming can lead to:

• Memory or resource leaks.
• Error prone maintenance.
• Design that is difficult or impossible to validate.
• Source code that is difficult or impossible to statically analyze.

6.33.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow leaving a loop without consideration for the loop control.
• Languages that allow local jumps (goto statement).
• Languages that allow non-local jumps (setjmp/longjmp in the C programming language).
• Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.33.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that enforce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, do, and
while.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid using language features such as goto.
• Avoid using language features such as continue and break in the middle of loops.
• Avoid using language features that transfer control of the program flow via a jump.
• Avoid multiple exit points to a function/procedure/method/subroutine.
• Avoid multiple entry points to a function/procedure/method/subroutine.

WG 23/N 0352 Baseline Edition 2 TR 24772

68 © ISO/IEC 2011 – All rights reserved

6.33.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should support and favor structured programming through their constructs to the extent
possible.

6.34 Passing Parameters and Return Values [CSJ]

6.34.1 Description of application vulnerability

Nearly every procedural language provides some method of process abstraction permitting decomposition of the
flow of control into routines, functions, subprograms, or methods. (For the purpose of this description, the term
subprogram will be used.) To have any effect on the computation, the subprogram must change data visible to
the calling program. It can do this by changing the value of a non-local variable, changing the value of a
parameter, or, in the case of a function, providing a return value. Because different languages use different
mechanisms with different semantics for passing parameters, a programmer using an unfamiliar language may
obtain unexpected results.

6.34.2 Cross reference

JSF AV Rules: 116, 117, and 118
MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4
CERT C guidelines: EXP12-C and DCL33-C
Ada Quaility and Style Guide: 5.2 and 8.3

6.34.3 Mechanism of failure

The mechanisms for parameter passing include: call by reference, call by copy, and call by name. The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed. If the actual argument is an expression or a constant, then the address of a temporary location is
passed to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variables. Values are passed between the actual arguments and the formal parameters by copying.
Some languages may control changes to formal parameters based on labels such as in, out, or inout. There
are three cases to consider: call by value for in parameters; call by result for out parameters and function return
values; and call by value-result for inout parameters. For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters that are then treated as local variables
by the subprogram. For call by result, the values of the locals corresponding to formal parameters are copied to

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 69

the corresponding actual arguments. For call by value-result, the values are copied in from the actual arguments
at the beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required
to produce the copies. Particularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be high. For this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that the calling program cannot be assured that the subprogram hasn't
changed data that was intended to be unchanged. For example, if an array is passed by reference to a
subprogram intended to sum its elements, the subprogram could also change the values of one or more elements
of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling
of actual arguments with modes—such as in, out, or inout or by constant pointers.

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in storage. A subprogram,
assuming the two formal parameters to be distinct, may treat them inappropriately. For example, if one codes a
subprogram to swap two values using the exclusive-or method, then a call to swap(x,x) will zero the value of
x. Aliasing can also occur between arguments and non-local objects. For example, if a subprogram modifies a
non-local object as a side-effect of its execution, referencing that object by a formal parameter will result in
aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer
to synthesize appropriate mechanisms. Often, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structures. Of course, the latter amounts to using call
by reference with no checking by the language processor. In such cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such as
arrays. The choice of mechanism may even be implementation-defined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprogram. In the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parameter. This error may be difficult to detect through review because the
failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have side-effects that result in a change to the value of another or
unintended aliasing. Implementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is described in Side-effects and Order of Evaluation clause [SAM].

6.34.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

WG 23/N 0352 Baseline Edition 2 TR 24772

70 © ISO/IEC 2011 – All rights reserved

• Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and return values. This includes methods in many popular
object-oriented languages.

6.34.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use available mechanisms to label parameters as constants or with modes like in, out, or inout.
• When a choice of mechanisms is available, pass small simple objects using call by copy.
• When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger

objects using call by copy.
• When the choice of language or the computational cost of copying forbids using call by copy, then take

safeguards to prevent aliasing:
o Minimize side-effects of subprograms on non-local objects; when side-effects are coded, ensure

that the affected non-local objects are not passed as parameters using call by reference.
o To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead

assign the result of the expression to a temporary local and pass the local.
o Utilize tooling or other forms of analysis to ensure that non-obvious instances of aliasing are

absent.
o Perform reviews or analysis to determine that called subprograms fulfill their responsibilities to

assign values to all output parameters.

6.34.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Programming language specifications could provide labels—such as in, out, and inout—that control
the subprogram’s access to its formal parameters, and enforce the access.

6.35 Dangling References to Stack Frames [DCM]

6.35.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In some
languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual
parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime
of the local variable has expired. Technically, the stack frame, in which the local variable lived, has been popped
and memory may have been reused for a subsequent call. Therefore, the invalidity of the stored address is very
difficult to decide. This situation can be described as a “dangling reference to the stack”.

6.35.2 Cross reference

CWE:
562. Return of Stack Variable Address

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 71

JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, and 7-5-3
CERT C guidelines: EXP35-C and DCL30-C
Ada Quaility and Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.35.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically predictable
variant, which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to
impossible to elicit during testing. The following code sample illustrates the two variants; the behaviour is not
language-specific:

struct s { … };
typedef struct s array_type[1000];
array_type* ptr;
array_type* F()
{
 struct s Arr[1000];
 ptr = &Arr; // Risk of variant 1;
 return &Arr; // Risk of variant 2;
}
…
 struct s secret;
 array_type* ptr2;
 ptr2 = F();
 secret = (*ptr2)[10]; // Fault of variant 2
 …

 secret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of
Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows
systematic examination of portions of the stack contents without triggering an array-bounds-checking violation.
Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code portions. (A life-time check as part of pointer assignment can prevent
the risk. In many cases, such as the situations above, the check is statically decidable by a compiler. However, for
the general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the
designated object.)

The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable to avoid an expensive
copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is based on the
ill-founded assumption that the stack will not be affected by anything until this next call is issued. The
assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack
stealing”, that is, using the current stack to satisfy its memory requirements. Thus, the value of Arr can be
overwritten before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after
the call has returned but before the returned result is consumed, the fault is highly intermittent and next to
impossible to re-create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by

WG 23/N 0352 Baseline Edition 2 TR 24772

72 © ISO/IEC 2011 – All rights reserved

testing. It can begin to occur after a completely unrelated interrupt handler has been coded or altered. Only
static analysis can relatively easily detect the danger (unless the code combines it with risks of variant 1). Some
compilers issue warnings for this situation; such warnings need to be heeded, and some forms of static analysis
are effective in identifying such problems.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable
or can be returned by this routine as a result.

• No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entity.

6.35.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable).

• Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.

• Never return the address of a local variable as the result of a function call.

6.35.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Do not provide means to obtain the address of a locally declared entity as a storable value; or
• Define implicit checks to implement the assurance of enclosed lifetime expressed in subclause 5 of this

vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statement or expression.

6.36 Subprogram Signature Mismatch [OTR]

6.36.1 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of different
types than it expects, then the results will be incorrect. Depending on the language, the operating environment,
and the implementation, the error might be as benign as a diagnostic message or as extreme as a program
continuing to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for
penetration.

6.36.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 73

686. Function Call with Incorrect Argument Type
683. Function Call with Incorrect Order of Arguments

JSF AV Rule: 108
MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 16.5, and 16.6
MISRA C++ 2008: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8-4-1, and 8-4-2
CERT C guidelines: DCL31-C, and DCL35-C

6.36.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When the
subprogram terminates, the formal parameters are popped off the stack. If the number and type of the actual
arguments do not match the number and type of the formal parameters, then the push and the pop will not be
commensurable and the stack will be corrupted. Stack corruption can lead to unpredictable execution of the
program and can provide opportunities for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared set of formal parameters and return value (the
subprogram signature) in both number and type. (In some cases, programmers should observe a set of
conventions to ensure that this is true.) However, when the call is being made to an externally compiled
subprogram, an object-code library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.36.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not require their implementations to ensure that the number and types of actual
arguments are equal to the number and types of the formal parameters.

• Implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libraries, and any
subprograms compiled in other languages.

6.36.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Take advantage of any mechanism provided by the language to ensure that subprogram signatures
match.

• Avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

• Take advantage of any language or implementation feature that would guarantee matching the
subprogram signature in linking to other languages or to separately compiled modules.

• Intensively review subprogram calls where the match is not guaranteed by tooling.

6.36.6 Implications for standardization

In future standardization activities, the following items should be considered:

WG 23/N 0352 Baseline Edition 2 TR 24772

74 © ISO/IEC 2011 – All rights reserved

• Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could provide features for asserting and checking the match with externally compiled
subprograms.

6.37 Recursion [GDL]

6.37.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to
write code that mirrors the mathematics. However, the use of recursion in a computer can have a profound
effect on the consumption of finite resources, leading to denial of service.

6.37.2 Cross reference

CWE:
674. Uncontrolled Recursion

JSF AV Rule: 119
MISRA C 2004: 16.2
MISRA C++ 2008: 7-5-4
CERT C guidelines: MEM05-C
Ada Quaility and Style Guide: 5.6.6

6.37.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functions. However, economical
definition and economical calculation are two different subjects. It is tempting to calculate the value of a
recursive function using recursive subprograms because the expression in the programming language is
straightforward and easy to understand. However, the impact on finite computing resources can be profound.
Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local
variables. If stack space is limited and the calculation of some values will lead to an exhaustion of resources
resulting in the program terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is
not true in the general case. For example, finalization of a computing context after treating an error condition
might result in recursion (such as attempting to "clean up" by closing a file after an error was encountered in
closing the same file). Although such situations may have other problems, they typically do not result in
exhaustion of resources but may otherwise result in a denial of service.

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Any language that permits the recursive invocation of subprograms.

6.37.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 75

• Minimize the use of recursion.
• Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive

calculation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder for a human to comprehend. The cost to human
understanding must be weighed against the practical limits of computing resource.

• In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be noted that some languages or implementations provide special (more economical) treatment of a
form of recursion known as tail-recursion. In this case, the impact on computing economy is reduced. When using
such a language, tail recursion may be preferred to an iterative calculation.

6.37.6 Implications for standardization

[None]

6.38 Ignored Error Status and Unhandled Exceptions [OYB]

6.38.1 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended
functioning of the code. They are detected and reported by the language implementation or by explicit code
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action. Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.38.2 Cross reference

CWE:
754: Improper Check for Unusual or Exceptional Conditions

JSF AV Rules: 115 and 208
MISRA C 2004: 16.10
MISRA C++ 2008: 15-3-2 and 19-3-1
CERT C guidelines: DCL09-C, ERR00-C, and ERR02-C

6.38.3 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution may continue outside the envelope provided by its specification, making
additional errors or serious malfunction of the software likely. Alternatively, execution may terminate. The
mechanism can be easily exploited to perform denial-of-service attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a language or
applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or thread-local error
indicators, the error indications need to be checked after each call. As these frequent checks cost execution time

WG 23/N 0352 Baseline Edition 2 TR 24772

76 © ISO/IEC 2011 – All rights reserved

and clutter the code immensely to deal with situations that may occur rarely, programmers are reluctant to apply
the scheme systematically and consistently. Failure to check for and handle an arising error condition continues
execution as if the error never occurred. In most cases, this continued execution in an ill-defined program state
will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these problems. They bundle
the exceptional code in exception handlers, they need not cost execution time if no error is present, and they will
not allow the program to continue execution by default when an error occurs, since upon raising the exception,
control of execution is automatically transferred to a handler for the exception found on the call stack. The risk
and the failure mechanism is that there is no such handler (unless the language enforces restrictions that
guarantees its existence), resulting in the termination of the current thread of control. Also, a handler that is
found might not be geared to handle the multitude of error situations that are vectored to it. Exception handling
is therefore in practice more complex for the programmer than, for example, the use of status parameters.
Furthermore, different languages provide exception-handling mechanisms that differ in details of their design,
which in turn may lead to misunderstandings by the programmer.

The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more
commonly, a mismatch in the expectations of where fault detection and fault recovery is to be done. Particularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases and creates vulnerabilities.

Another cause of the failure is the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this case, the caller cannot possibly react sensibly to all
error situations that might arise. As yet another cause, the error information provided when the error occurs may
be insufficiently complete to allow recovery from the error.

6.38.4 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomatically present in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.38.5 Avoiding the vulnerability or mitigating its effects

Given the variety of error handling mechanisms, it is difficult to provide general guidelines. However, dealing with
exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysis. Inversely, the use of error status variables can lead to confusingly
complicated control structures, particularly when recovery is not possible locally. Therefore, for situations where
the highest of reliability is required, the decision for or against exception handling deserves careful thought. In
any case, exception-handling mechanisms should be reserved for truly unexpected situations and other situations
where no local recovery is possible. Situations which are merely unusual, like the end of file condition, should be
treated by explicit testing—either prior to the call which might raise the error or immediately afterward. In
general, error detection, reporting, correction, and recovery should not be a late opportunistic add-on, but should
be an integral part of a system design.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 77

• Checking error return values or auxiliary status variables following a call to a subprogram is mandatory
unless it can be demonstrated that the error condition is impossible.

• Equally, exceptions need to be handled by the exception handlers of an enclosing construct as close as
possible to the origin of the exception but as far out as necessary to be able to deal with the error.

• For each routine, all error conditions need to be documented and matching error detection and reporting
needs to be implemented, providing sufficient information for handling the error situation.

• When execution within a particular context is abandoned due to an exception or error condition, it is
important to finalize the context by closing open files, releasing resources and restoring any invariants
associated with the context.

• It is often not appropriate to repair an error situation and retry the operation. It is usually a better
solution to finalize and terminate the current context and retreat to a context where the fault can be
handled completely.

• Error checking provided by the language, the software system, or the hardware should never be disabled
in the absence of a conclusive analysis that the error condition is rendered impossible.

• Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

• In applications with the highest requirements for reliability, defense-in-depth approaches are often
appropriate, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization

In future standardization activities, the following items should be considered:

• A standardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use them. This does not mean that all languages should use the
same mechanisms as there should be a variety, but each of the mechanisms should be standardized.

6.39 Termination Strategy [REU]

6.39.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as
expected and not fail in normal use. The dependability of a system and its fault tolerance can be measured
through the component part's reliability, availability, safety and security. Reliability is the ability of a system or
component to perform its required functions under stated conditions for a specified period of time [IEEE 1990
glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter
highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as power outages/variations, floods, or
other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the
safety and security of the system and its users.

When the software does not terminate in the planned mechanism, safety or security is compromised, as failing in
an unspecified way interferes with the alternative recovery features. In safety-related systems the results can be
catastrophic: for other systems the result can mean failure of the complete system.

WG 23/N 0352 Baseline Edition 2 TR 24772

78 © ISO/IEC 2011 – All rights reserved

6.39.2 Cross reference

JSF AV Rule: 24
MISRA C 2004: 20.11
MISRA C++ 2008: 0-3-2, 15-5-2, 15-5-3, and 18-0-3
CERT C guidelines: ERR04-C, ERR06-C and ENV32-C
Ada Quaility and Style Guide: 5.8 and 7.5

6.39.3 Mechanism of failure

The reaction to a fault in a system can depend on the criticality of the part in which the fault originates. When a
program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be
restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt
leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the
entire program. The latency of task termination and whether tasks can ignore termination signals should be
clearly specified. Having inconsistent reactions to a fault can potentially be a vulnerability.

When a fault is detected, there are many ways in which a system can react. The quickest and most noticeable
way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the
system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with
the faults present, but the performance of the system would be degraded. Systems used in a high availability
environment such as telephone switching centers, e-commerce, or other "always available" applications would
likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the
system is used for safety critical or security critical purposes. For fail-safe systems, such as flight controllers,
traffic signals, or medical monitoring systems, there would be no effort to meet normal operational requirements,
but rather to limit the damage or danger caused by the fault. A system that fails securely, such as cryptologic
systems, would maintain maximum security when a fault is detected, possibly through a denial of service.

6.39.4 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages.

6.39.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• A strategy for fault handling should be decided. Consistency in fault handling should be the same with
respect to critically similar parts.

• A multi-tiered approach of fault prevention, fault detection and fault reaction should be used.
• System-defined components that assist in uniformity of fault handling should be used when available. For

one example, designing a "runtime constraint handler" (as described in ISO/IEC TR 24731-1 [13]) permits
the application to intercept various erroneous situations and perform one consistent response, such as
flushing a previous transaction and re-starting at the next one.

• When there are multiple tasks, a fault-handling policy should be specified whereby a task may
o Halt, and keep its resources available for other tasks (perhaps permitting restarting of the faulting

task).

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 79

o Halt, and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task).

o Halt, and signal the rest of the program to likewise halt.

6.39.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider providing a means to perform fault handling. Terminology and the means
should be coordinated with other languages.

6.40 Type-breaking Reinterpretation of Data [AMV]

6.40.1 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same
storage space is assigned to more than one object—either statically or temporarily—then a change in the value of
one object will have an effect on the value of the other. Furthermore, if the representation of the value of an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur.

6.40.2 Cross reference

JSF AV Rules 153 and183
MISRA 2004: 18.2, 18.3, and 18.4
MISRA C++ 2008: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
CERT C guidelines: MEM08-C
Ada Quaility and Style Guide: 7.6.7 and 7.6.8

6.40.3 Mechanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same stored
representation of data. The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invoking it. Most programming languages permit
type-breaking reinterpretation of data, however, some offer less error prone alternatives for commonly
encountered situations.

Type-breaking reinterpretation of representation presents obstacles to human understanding of the code, the
ability of tools to perform effective static analysis, and the ability of code optimizers to do their job.

Examples include:

• Providing alternative mappings of objects into blocks of storage performed either statically (such as
Fortran common) or dynamically (such as pointers).

• Union types, particularly unions that do not have a discriminant stored as part of the data structure.
• Operations that permit a stored value to be interpreted as a different type (such as treating the

representation of a pointer as an integer).

WG 23/N 0352 Baseline Edition 2 TR 24772

80 © ISO/IEC 2011 – All rights reserved

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might
refer to the same storage area. That vulnerability is described in Passing Parameters and Return Values [CSJ].

6.40.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• A programming language that permits multiple interpretations of the same bit pattern.

6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string data should be avoided. When type-breaking
reinterpretation is necessary, it should be carefully documented in the code. However this vulnerability
cannot be completely avoided because some applications view stored data in alternative ways.

• When using union types it is preferable to use discriminated unions. This is a type of a union where a
stored value indicates which interpretation is to be placed upon the data. Some languages (such as
variant records in Ada) enforce the view of data indicated by the value of the discriminant. If the
language does not enforce the interpretation (for example, equivalence in Fortran and union in C and
C++), then the code should implement an explicit discriminant and check its value before accessing the
data in the union, or use some other mechanism to ensure that correct interpretation is placed upon the
data value.

• Operations that reinterpret the same stored value as representing a different type should be avoided. It
is easier to avoid such operations when the language clearly identifies them. For example, the name of
Ada's Unchecked_Conversion function explicitly warns of the problem. A much more difficult
situation occurs when pointers are used to achieve type reinterpretation. Some languages perform type-
checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in
storage. Others permit the free use of pointers. In such cases, code must be carefully reviewed in a
search for unintended reinterpretation of stored values. Therefore it is important to explicitly comment
the source code where intended reinterpretations occur.

• Static analysis tools may be helpful in locating situations where unintended reinterpretation occurs. On
the other hand, the presence of reinterpretation greatly complicates static analysis for other problems, so
it may be appropriate to segregate intended reinterpretation operations into distinct subprograms.

6.40.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider putting caution labels on operations that permit

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 81

reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked_Conversion.

• Because of the difficulties with undiscriminated unions, programming language designers might consider
offering union types that include distinct discriminants with appropriate enforcement of access to objects.

6.41 Memory Leak [XYL]

6.41.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available memory. A memory leak can be
exploited by attackers to generate denial-of-service by causing the program to execute repeatedly a sequence
that triggers the leak. Moreover, a memory leak can cause any long-running critical program to shutdown
prematurely.

6.41.2 Cross reference

CWE:
401. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)

JSF AV Rule: 206
MISRA C 2004: 20.4
CERT C guidelines: MEM00-C and MEM31-C
Ada Quaility and Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.41.3 Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the
runtime system or a garbage collector) after it ceases to be used, may result in future memory allocation requests
failing for lack of free space. Alternatively, memory claimed and returned can cause the heap to fragment, which
will eventually result in an inability to take the necessary size storage. Either condition will result in a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of an existing memory leak, the attacker may be able to cause the
application to leak quickly and therefore cause the application to crash.

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that support mechanisms to dynamically allocate memory and reclaim memory under program
control.

6.41.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

WG 23/N 0352 Baseline Edition 2 TR 24772

82 © ISO/IEC 2011 – All rights reserved

• Use of garbage collectors that reclaim memory that will never be used by the application again. Some
garbage collectors are part of the language while others are add-ons.

• Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation request. This may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory
leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

• Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded region. When used with strong typing one can ensure a
strong relationship between pointers and the space accessed such that storage exhaustion in one pool
does not affect the code operating on other memory.

• Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. For safety-critical
systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted
to the initialization phase of execution.

• Use static analysis, which can sometimes detect when allocated storage is no longer used and has not
been freed.

6.41.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages can provide syntax and semantics to guarantee program-wide that dynamic memory is not
used (such as the configuration pragmas feature offered by some programming languages).

• Languages can document or specify that implementations must document choices for dynamic memory
management algorithms, to hope designers decide on appropriate usage patterns and recovery
techniques as necessary

6.42 Templates and Generics [SYM]

6.42.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type
and then instantiated for specific types. In C++ and related languages, these are referred to as “templates”, and in
Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this clause these will simply be
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to maintain. Used badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.42.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 2008: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 83

6.42.3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the code. It should also assist in the
understanding of the code during review and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated
with a user defined type that doesn’t have a relational operator. Where ‘misuse’ of a generic leads to a compiler
error, this can be regarded as a development issue, and not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently illegal, but
doesn’t result in a compiler error. For example, a generic class defines a set of members, a subset of which rely
on a particular property of the instantiation type (such as a generic container class with a sort member function,
only the sort function relies on the instantiating type having a defined relational operator). In some languages,
such as C++, if the generic is instantiated with a type that doesn’t meet all the requirements but the program
never subsequently makes use of the subset of members that rely on the property of the instantiating type, the
code will compile and execute (for example, the generic container is instantiated with a user defined class that
doesn’t define a relational operator, but the program never calls the sort member of this instantiation). When
the code is reviewed the generic class will appear to reference a member of the instantiating type that doesn’t
exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (such as the concepts
language feature being designed by the C++ committee).

Similar confusion can arise if the language permits specific elements of a generic to be explicitly defined, rather
than using the common code, so that behaviour is not consistent for all instantiations. For example, for the same
generic container class, the sort member normally sorts the elements of the container into ascending order. In
languages such as C++, a ‘special case’ can be created for the instantiation of the generic with a particular type.
For example, the sort member for a ‘float’ container may be explicitly defined to provide different behaviour, say
sorting the elements into descending order. Specialization that doesn’t affect the apparent behaviour of the
instantiation is not an issue. Again, for C++, there are some irregularities in the semantics of arrays and pointers
that can lead to the generic having different behaviour for different, but apparently very similar, types. In such
cases, specialization can be used to enforce consistent behaviour.

6.42.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that permit definitions of objects or functions to be parameterized by type, for later
instantiation with specific types, such as:

WG 23/N 0352 Baseline Edition 2 TR 24772

84 © ISO/IEC 2011 – All rights reserved

o Templates in C++
o Generics in Ada, Java.

6.42.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Document the properties of an instantiating type necessary for a generic to be valid.
• If an instantiating type has the required properties, the whole of the generic should be ensured to be

valid, whether actually used in the program or not.
• Preferably avoid, but at least carefully document, any ‘special cases’ where a generic is instantiated with

a specific type doesn’t behave as it does for other types.

6.42.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language specifiers should standardize on a common, uniform terminology to describe
generics/templates so that programmers experienced in one language can reliably learn and refer to the
type system of another language that has the same concept, but with a different name.

• Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a compile-time error.

• Language specifiers should provide an assertion mechanism for checking properties at run-time, for those
properties that cannot be checked at compile time. It should be possible to inhibit assertion checking if
efficiency is a concern.

6.43 Inheritance [RIP]

6.43.1 Description of application vulnerability

Inheritance, the ability to create enhanced and/or restricted object classes based on existing object classes can
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding
of methods of the parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also,
since an overriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during
constructor and destructor methods.

Languages that allow multiple inheritance add additional complexities to the resolution of method invocations.
Different object brokerage systems may resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.43.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C++ 2008: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 85

Ada Quaility and Style Guide: 9 (complete clause)

6.43.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in
several ways:

• Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy
that overrides commonly called methods in the parent classes.

• Accidental redefinition, where a method is defined that inadvertently overrides a method that has already
been defined in a parent class.

• Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class.

• Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data
without including that initialization or validation in the overriding methods.

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use
of multiple inheritance.

6.43.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow single and multiple inheritances.

6.43.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid the use of multiple inheritance whenever possible.
• Provide complete documentation of all encapsulated data, and how each method affects that data for

each object in the hierarchy.
• Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during

compilation and/or initialization.
• Provide a method that provides versioning information for each class.

6.43.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language specification should include the definition of a common versioning method.
• Compilers should provide an option to report the class in which a resolved method resides.
• Runtime environments should provide a trace of all runtime method resolutions.

WG 23/N 0352 Baseline Edition 2 TR 24772

86 © ISO/IEC 2011 – All rights reserved

6.44 Extra Intrinsics [LRM]

6.44.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available", to any
translation unit. If a translator extends the set of intrinsics beyond those defined by the standard, and the
standard specifies that intrinsics are selected before procedures of the same signature defined by the application,
a different procedure may be unexpectedly used when switching between translators.

6.44.2 Cross reference

 [None]

6.44.3 Mechanism of failure

Most standard programming languages define a set of intrinsic procedures which may be used in any application.
Some language standards allow a translator to extend this set of intrinsic procedures. Some language standards
specify that intrinsic procedures are selected ahead of an application procedure of the same signature. This may
cause a different procedure to be used when switching between translators.

For example, most languages provide a routine to calculate the square root of a number, usually named sqrt().
If a translator also provided, as an extension, a cube root routine, say named cbrt(), that extension may
override an application defined procedure of the same signature. If the two different cbrt() routines chose
different branch cuts when applied to complex arguments, the application could unpredictably go wrong.

If the language standard specifies that application defined procedures are selected ahead of intrinsic procedures
of the same signature, the use of the wrong procedure may mask a linking error.

6.44.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Any language where translators may extend the set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or external library defined) procedures of the same
signature.

6.44.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use whatever language features are available to mark a procedure as language defined or application
defined.

• Be aware of the documentation for every translator in use and avoid using procedure signatures matching
those defined by the translator as extending the standard set.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 87

6.44.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Clearly state whether translators can extend the set of intrinsic procedures or not.
• Clearly state what the precedence is for resolving collisions.
• Clearly provide ways to mark a procedure signature as being the intrinsic or an application provided

procedure.
• Require that a diagnostic is issued when an application procedure matches the signature of an intrinsic

procedure.

6.45 Argument Passing to Library Functions [TRJ]

6.45.1 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters
passed to them. In those cases where parameter validation is required there might not be adequate parameter
validation.

6.45.2 Cross reference

CWE:
114. Process Control

JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 2004: 20.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12
MISRA C++ 2008: 17-0-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1
CERT C guidelines: INT03-C and STR07-C

6.45.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about parameters. For
example, it may be assumed by a library that a parameter is non-zero so division by that parameter is performed
without checking the value. Sometimes some validation is performed by the calling function, but the library may
use the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can
cause unanticipated results.

6.45.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages providing or using libraries that do not validate the parameters accepted by functions,
methods and objects.

6.45.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

WG 23/N 0352 Baseline Edition 2 TR 24772

88 © ISO/IEC 2011 – All rights reserved

• Libraries should be defined so that as many parameters as possible are validated.
• Libraries should be defined to validate any values passed to the library before the value is used.
• Develop wrappers around library functions that check the parameters before calling the function.
• Demonstrate statically that the parameters are never invalid.
• Use only libraries known to have been developed with consistent and validated interface requirements.

It is noted that several approaches can be taken, some work best if used in conjunction with each other.

6.45.6 Implications for standardization

In future standardization activities, the following items should be considered:

• All languages that define a support library should consider removing most if not all cases of undefined
behaviour from the library clauses.

• Languages should define libraries that provide the capability to validate parameters during compilation,
during execution or by static analysis.

6.46 Inter-language Calling [DJS]

6.46.1 Description of application vulnerability

When an application is developed using more than one programming language, complications arise. The calling
conventions, data layout, error handing and return conventions all differ between languages; if these are not
addressed correctly, stack overflow/underflow, data corruption, and memory corruption are possible.

In multi-language development environments it is also difficult to reuse data structures and object code across
the languages.

6.46.2 Cross reference

[None]

6.46.3 Mechanism of failure

When calling a function that has been developed using a language different from the calling language, the call
convention and the return convention used must be taken into account. If these conventions are not handled
correctly, there is a good chance the calling stack will be corrupted, see [OTR]. The call convention covers how
the language invokes the call, see [CJS], and how the parameters are handled.

Many languages restrict the length of identifiers, the type of characters that can be used as the first character,
and the case of the characters used. All of these need to be taken into account when invoking a routine written in
a language other than the calling language. Otherwise the identifiers might bind in a manner different than
intended.

Character and aggregate data types require special treatment in a multi-language development environment. The
data layout of all languages that are to be used must be taken into consideration; this includes padding and
alignment. If these data types are not handled correctly, the data could be corrupted, the memory could be

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 89

corrupted, or both may become corrupt. This can happen by writing/reading past either end of the data
structure, see [HCB]. For example, a Pascal STRING data type

 VAR str: STRING(10);

corresponds to a C structure

struct {
 int length;
 char str [10];
};

and not to the C structure

char str [10]

where length contains the actual length of STRING. The second C construct is implemented with a physical
length that is different from physical length of the Pascal STRING and assumes a null terminator.

Most numeric data types have counterparts across languages, but again the layout should be understood, and
only those types that match the languages should be used. For example, in some implementations of C++ a

 signed char

would match a Fortran

 integer(1)

and would match a Pascal

 PACKED -128..127

These correspondences can be implementation-defined and should be verified.

6.46.4 Applicable language characteristics

The vulnerability is applicable to languages with the following characteristics:

• All high level programming languages and low level programming languages are susceptible to this
vulnerability when used in a multi-language development environment.

6.46.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use the inter-language methods and syntax specified by the applicable language standard(s). For
example, Fortran and Ada specify how to call a C function.

• Understand the calling conventions of all languages used.
• For items comprising the inter-language interface:

o Understand the data layout of all data types used.
o Understand the return conventions of all languages used.

WG 23/N 0352 Baseline Edition 2 TR 24772

90 © ISO/IEC 2011 – All rights reserved

o Ensure that the language in which error check occurs is the one that handles the error.
o Avoid assuming that the language makes a distinction between upper case and lower case letters

in identifiers.
o Avoid using a special character as the first character in identifiers.
o Avoid using long identifier names.

6.46.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Standards committees should consider developing standard provisions for inter-language calling with
languages most often used with their programming language.

6.47 Dynamically-linked Code and Self-modifying Code [NYY]

6.47.1 Description of application vulnerability

Code that is dynamically linked may be different from the code that was tested. This may be the result of
replacing a library with another of the same name or by altering an environment variable such as
LD_LIBRARY_PATH on UNIX platforms so that a different directory is searched for the library file. Executing
code that is different than that which was tested may lead to unanticipated errors or intentional malicious
activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically self-modifying code was needed for software that was required to run on a platform with very limited
memory. It is now primarily used (or misused) to hide functionality of software and make it more difficult to
reverse engineer or for specialty applications such as graphics where the algorithm is tuned at runtime to give
better performance. Self-modifying code can be difficult to write correctly and even more difficult to test and
maintain correctly leading to unanticipated errors.

6.47.2 Cross reference

JSF AV Rule: 2

6.47.3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynamically linked may be
different from the code which was tested resulting in different functionality.

On some platforms, a pointer-to-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour
can result.

6.47.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 91

• Languages that allow a pointer-to-data to be assigned an address value that designates a location in the
instruction space.

• Languages that allow execution of code that exists in data space.
• Languages that permit the use of dynamically linked or shared libraries.
• Languages that execute on an OS that permits program memory to be both writable and executable.

6.47.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Verify that the dynamically linked or shared code being used is the same as that which was tested.
• Do not write self-modifying code except in extremely rare instances. Most software applications should

never have a requirement for self-modifying code.
• In those extremely rare instances where its use is justified, self-modifying code should be very limited and

heavily documented.

6.47.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should consider providing a means so that a program can either automatically or manually
check that the digital signature of a library matches the one in the compile/test environment.

6.48 Library Signature [NSQ]

6.48.1 Description of application vulnerability

Programs written in modern languages may use libraries written in other languages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions use by
hand may be tedious and error-prone. Portable cross-language signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to interface
the function calls, argument list and global data structures so the symbols match in the object code during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming languages
are different. Each language may also align structure data differently.

6.48.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008: 1-0-2

6.48.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the specification
of signatures is complicated by inter-language issues.

WG 23/N 0352 Baseline Edition 2 TR 24772

92 © ISO/IEC 2011 – All rights reserved

As used in this vulnerability description, the term library includes the interface to the operating system, which
may be specified only for the language used to code the operating system itself. In this case, any program written
in any other language faces the inter-language interoperability issue of creating a fully-functional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard may not exist, or be very difficult. Thus, a translator-by-translator solution may be
needed, which maximizes the probability of incorrect signatures (since the solution must be recreated for each
translator pair). Incorrect signatures may or may not be caught during the linking phase.

6.48.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not specify how to describe signatures for subprograms written in other languages.

6.48.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use tools to create the signatures.
• Avoid using translator options or language features to reference library subprograms without proper

signatures.

6.48.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Provide correct linkage even in the absence of correctly specified procedure signatures. (Note that this
may be very difficult where the original source code is unavailable.)

• Provide specified means to describe the signatures of subprograms.

6.49 Unanticipated Exceptions from Library Routines [HJW]

6.49.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main
application developer, usually by a third party, and where the application developer may not have access to the
source. In such circumstances the application developer has limited knowledge of the library functions, other than
from their behavioural interface.

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

6.49.2 Cross reference

JSF AV Rule: 208
MISRA C 2004: 3.6, 20.3
MISRA C++ 2008: 15-3-1, 15-3-2, 17-0-4

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 93

Ada Quaility and Style Guide: 5.8 and 7.5

6.49.3 Mechanism of failure

In some languages, unhandled exceptions lead to implementation-defined behaviour. This can include immediate
termination, without for example, releasing previously allocated resources. If a library routine raises an
unanticipated exception, this undesirable behaviour may result.

It should be noted that the considerations of [OYB], Ignored Error Status and Unhandled Exceptions, are also
relevant here.

6.49.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that can link previously developed library code (where the developer and compiler don’t have
access to the library source).

• Languages that permit exceptions to be thrown but do not require handlers for them.

6.49.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• All library calls should be wrapped within a ‘catch-all’ exception handler (if the language supports such a
construct), so that any unanticipated exceptions can be caught and handled appropriately. This wrapping
may be done for each library function call or for the entire behaviour of the program, for example, having
the exception handler in main for C++. However, note that the latter isn’t a complete solution, as static
objects are constructed before main is entered and are destroyed after it has been exited. Consequently,
MISRA C++ [16] bars class constructors and destructors from throwing exceptions (unless handled locally).

• An alternative approach would be to use only library routines for which all possible exceptions are
specified.

6.49.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages that provide exceptions should provide a mechanism for catching all possible exceptions (for
example, a ‘catch-all’ handler). The behaviour of the program when encountering an unhandled
exception should be fully defined.

• Languages should provide a mechanism to determine which exceptions might be thrown by a called
library routine.

WG 23/N 0352 Baseline Edition 2 TR 24772

94 © ISO/IEC 2011 – All rights reserved

6.50 Pre-processor Directives [NMP]

6.50.1 Description of application vulnerability

Pre-processor replacements happen before any source code syntax check, therefore there is no type checking –
this is especially important in function-like macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In
many cases if explicit delimiters are not added around the macro text and around all macro arguments within the
macro text, unexpected expansion is the result.

Source code that relies heavily on complicated pre-processor directives may result in obscure and hard to
maintain code since the syntax they expect may be different from the expressions programmers regularly expect
in a given programming language.

6.50.2 Cross reference

Holzmann-8
JSF SV Rules: 26, 27, 28, 29, 30, 31, and 32
MISRA C 2004: 19.6, 19.7, 19.8, and 19.9
MISRA C++ 2008: 16-0-3, 16-0-4, and 16-0-5
CERT C guidelines: PRE01-C, PRE02-C, PRE10-C, and PRE31-C

6.50.3 Mechanism of failure

Readability and maintainability may be greatly decreased if pre-processing directives are used instead of language
features.

While static analysis can identify many problems early; heavy use of the pre-processor can limit the effectiveness
of many static analysis tools, which typically work on the pre-processed source code.

In many cases where complicated macros are used, the program does not do what is intended. For example:

define a macro as follows,

 #define CD(x, y) (x + y - 1) / y
whose purpose is to divide. Then suppose it is used as follows

 a = CD (b & c, sizeof (int));
which expands into

 a = (b & c + sizeof (int) - 1) / sizeof (int);
which most times will not do what is intended. Defining the macro as

 #define CD(x, y) ((x) + (y) - 1) / (y)
will provide the desired result.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 95

6.50.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that have a lexical-level pre-processor.
• Languages that allow unintended groupings of arithmetic statements.
• Languages that allow cascading macros.
• Languages that allow duplication of side effects.
• Languages that allow macros that reference themselves.
• Languages that allow nested macro calls.
• Languages that allow complicated macros.

6.50.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Where it is possible to achieve the desired functionality without the use of pre-processor directives, this
should be done in preference to the use of pre-processor directives.

6.50.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Standards should reduce or eliminate dependence on lexical-level pre-processors for essential
functionality (such as conditional compilation).

• Standards should consider providing capabilities to inline functions and procedure calls, to reduce the
need for pre-processor macros.

6.51 Suppression of Language-defined Run-time Checking [MXB]

6.51.1 Description of application vulnerability

Some languages include the provision for runtime checking to prevent vulnerabilities to arise. Canonical
examples are bounds or length checks on array operations or null-value checks upon dereferencing pointers or
references. In most cases, the reaction to a failed check is the raising of a language-defined exception.

As run-time checking requires execution time and as some project guidelines exclude the use of exceptions,
languages may define a way to optionally suppress such checking for regions of the code or for the entire
program. Analogously, compiler options may be used to achieve this effect.

6.51.2 Cross reference

[None]

WG 23/N 0352 Baseline Edition 2 TR 24772

96 © ISO/IEC 2011 – All rights reserved

6.51.3 Mechanism of Failure

Vulnerabilities that could have been prevented by the run-time checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.51.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that define runtime checks to prevent certain vulnerabilities and
• Languages that allow the above checks to be suppressed,
• Languages or compilers that suppress checking by default, or whose compilers or interpreters provide

options to omit the above checks

6.51.5 Avoiding the vulnerability

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not suppress checks at all or restrict the suppression of checks to regions of the code that have been
proved to be performance-critical.

• If the default behaviour of the compiler or the language is to suppress checks, then enable them.
• Where checks are suppressed, verify that the suppressed checks could not have failed.
• Clearly identify code sections where checks are suppressed.
• Do not assume that checks in code verified to satisfy all checks could not fail nevertheless due to

hardware faults.

6.51.6 Implications for standardization

[None]

6.52 Provision of Inherently Unsafe Operations [SKL]

6.52.1 Description of application vulnerability

Languages define semantic rules to be obeyed by conforming programs. Compilers enforce these rules and
diagnose violating programs.

A canonical example are the rules of type checking, intended among other reasons to prevent semantically
incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real numbers to booleans, or
complex numbers to two-dimensional coordinates.

Occasionally there arises a need to step outside the rules of the type model to achieve needed functionally. One
such situation is the casting of memory as part of the implementation of a heap allocator to the type of object for
which the memory is allocated. A type-safe assignment is impossible for this functionality. Thus, a capability for
unchecked “type casting” between arbitrary types to interpret the bits in a different fashion is a necessary but
inherently unsafe operation, without which the type-safe allocator cannot be programmed.

Another example is the provision of operations known to be inherently unsafe, such as the deallocation of heap
memory without prevention of dangling references.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 97

A third example is any interfacing with another language, since the checks ensuring type-safeness rarely extend
across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by programmers in
situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitable to violate program security.

6.52.2 Cross reference

[None]

6.52.3 Mechanism of Failure

The use of inherently unsafe operations or the suppression of checking circumvents the features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesses can be corrupted as a
consequence. See the respective vulnerabilities resulting from such corruption.

6.52.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow compile-time checks for the prevention of vulnerabilities to be suppressed by
compiler or interpreter options or by language constructs, or

• Languages that provide inherently unsafe operations

6.52.5 Avoiding the vulnerability

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Restrict the suppression of compile-time checks to where the suppression is functionally essential.
• Use inherently unsafe operations only when they are functionally essential.
• Clearly identify program code that suppresses checks or uses unsafe operations. This permits the focusing

of review effort to examine whether the function could be performed in a safer manner.

6.53 Obscure Language Features [BRS]

6.53.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand or difficult to use correctly.
The problem is compounded if a software design must be reviewed by people who may not be language experts,
such as, hardware engineers, human-factors engineers, or safety officers. Even if the design and code are initially
correct, maintainers of the software may not fully understand the intent. The consequences of the problem are
more severe if the software is to be used in trusted applications, such as safety or mission critical ones.

Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities in
development or in maintenance.

WG 23/N 0352 Baseline Edition 2 TR 24772

98 © ISO/IEC 2011 – All rights reserved

6.53.2 Cross reference

JSF AV Rules: 84, 86, 88, and 97
MISRA C 2004: 3.2, 10.2, 13.1, 17.5, 20.6-20.12, and 12.10
MISRA C++ 2008: 0-2-1, 2-3-1, and 12-1-1
CERT C guidelines: FIO03-C, MSC05-C, MSC30-C, and MSC31-C.
ISO/IEC TR 15942:2000: 5.4.2, 5.6.2 and 5.9.3

6.53.3 Mechanism of failure

The use of obscure language features can lead to an application vulnerability in several ways:

• The original programmer may misunderstand the correct usage of the feature and could utilize it
incorrectly in the design or code it incorrectly.

• Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.
• Maintainers of the code cannot fully understand the intent or the usage and could introduce problems

during maintenance.

6.53.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any language.

6.53.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Individual programmers should avoid the use of language features that are obscure or difficult to use,
especially in combination with other difficult language features. Organizations should adopt coding
standards that discourage use of such features or show how to use them correctly.

• Organizations developing software with critically important requirements should adopt a mechanism to
monitor which language features are correlated with failures during the development process and during
deployment.

• Organizations should adopt or develop stereotypical idioms for the use of difficult language features,
codify them in organizational standards, and enforce them via review processes.

• Avoid the use of complicated features of a language.
• Avoid the use of rarely used constructs that could be difficult for entry-level maintenance personnel to

understand.
• Static analysis can be used to find incorrect usage of some language features.

It should be noted that consistency in coding is desirable for each of review and maintenance. Therefore, the
desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
proven.

6.53.6 Implications for standardization

In future standardization activities, the following items should be considered:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 99

• Language designers should consider removing or deprecating obscure, difficult to understand, or difficult
to use features.

• Language designers should provide language directives that optionally disable obscure language features.

6.54 Unspecified Behaviour [BQF]

6.54.1 Description of application vulnerability

The external behaviour of a program whose source code contains one or more instances of constructs having
unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.54.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 5-0-1, 5-2-6, 7-2-1, and 16-3-1
CERT C guidelines: MSC15-C
See: Undefined Behaviour [EWF] and Implementation-defined Behaviour [FAB].

6.54.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time)
implementations are permitted to choose from the set of behaviours allowed by the language specification. The
term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to
analyze and document the terms used by their respective language).

A developer may use a construct in a way that depends on a subset of the possible behaviours occurring. The
behaviour of a program containing such a usage is dependent on the translator used to build it always selecting
the 'expected' behaviour.

Many language constructs may have unspecified behaviour and unconditionally recommending against any use of
these constructs may be impractical. For instance, in many languages the order of evaluation of the operands
appearing on the left- and right-hand side of an assignment is unspecified, but in most cases the set of possible
behaviours always produce the same result.

The appearance of unspecified behaviour in a language specification is recognition by the language designers that
in some cases flexibility is needed by software developers and provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence of
machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a
program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce the
same external effect when the program containing them is executed, then rebuilding the program cannot result in
a change of behaviour for that specific usage of the construct.

WG 23/N 0352 Baseline Edition 2 TR 24772

100 © ISO/IEC 2011 – All rights reserved

For instance, while the following assignment statement contains unspecified behaviour in many languages (that
is, it is possible to evaluate either the A or B operand first, followed by the other operand):

A = B;

in most cases the order in which A and B are evaluated does not affect the external behaviour of a program
containing this statement.

6.54.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages whose specification allows a finite set of more than one behaviour for how a translator
handles some construct, where two or more of the behaviours can result in differences in external
program behaviour.

6.54.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use language constructs that have specified behaviour.
• Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same

for all of the possible behaviours permitted by the language specification.
• When developing coding guidelines for a specific language all constructs that have unspecified behaviour

should be documented and for each construct the situations where the set of possible behaviours can
vary should be enumerated.

6.54.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Languages should minimize the amount of unspecified behaviours, minimize the number of possible
behaviours for any given "unspecified" choice, and document what might be the difference in external
effect associated with different choices.

6.55 Undefined Behaviour [EWF]

6.55.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined
by the language specification, is not predictable.

6.55.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1, 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 2-13-1, 5-2-2, 16-2-4, and 16-2-5
CERT C guidelines: MSC15-C

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 101

See: Unspecified Behaviour [BQF] and Implementation-defined Behaviour [FAB].

6.55.3 Mechanism of failure

Language specifications may categorize the behaviour of a language construct as undefined rather than as a
semantic violation (that is, an erroneous use of the language) because of the potentially high implementation cost
of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator
or runtime system is at liberty to do anything it pleases (which may include issuing a diagnostic).

The behaviour of a program built from successfully translated source code containing a construct having
undefined behaviour is not predictable. For example, in some languages the value of a variable is undefined
before it is initialized.

6.55.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that do not fully define the extent to which the use of a particular construct is a violation of
the language specification.

• Languages that do not fully define the behaviour of constructs during compile, link and program
execution.

6.55.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Ensuring that undefined language constructs are not used.
• Ensuring that a use of a construct having undefined behaviour does not operate within the domain in

which the behaviour is undefined. When it is not possible to completely verify the domain of operation
during translation a runtime check may need to be performed.

• When developing coding guidelines for a specific language all constructs that have undefined behaviour
should be documented. The items on this list might be classified by the extent to which the behaviour is
likely to have some critical impact on the external behaviour of a program (the criticality may vary
between different implementations, for example, whether conversion between object and function
pointers has well defined behaviour).

6.55.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Language designers should minimize the amount of undefined behaviour to the extent possible and
practical.

• Language designers should enumerate all the cases of undefined behaviour.
• Language designers should provide mechanisms that permit the disabling or diagnosing of constructs that

may produce undefined behaviour.

WG 23/N 0352 Baseline Edition 2 TR 24772

102 © ISO/IEC 2011 – All rights reserved

6.56 Implementation-defined Behaviour [FAB]

6.56.1 Description of application vulnerability

Some constructs in programming languages are not fully defined (see Unspecified Behaviour [BQF]) and thus
leave compiler implementations to decide how the construct will operate. The behaviour of a program, whose
source code contains one or more instances of constructs having implementation-defined behaviour, can change
when the source code is recompiled or relinked.

6.56.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 5-2-9, 5-3-3, 7-3-2, and 9-5-1
CERT C guidelines: MSC15-C
ISO/IEC TR 15942:2000: 5.9
Ada Quaility and Style Guide: 7.1.5 and 7.1.6
See: Unspecified Behaviour [BQF] and Undefined Behaviour [EWF].

6.56.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translation, link-time, or program
execution) implementations are permitted to choose from a set of behaviours. The only difference from
unspecified behaviour is that implementations are required to document how they behave.

A developer may use a construct in a way that depends on a particular implementation-defined behaviour
occurring. The behaviour of a program containing such a usage is dependent on the translator used to build it
always selecting the 'expected' behaviour.

Some implementations provide a mechanism for changing an implementation's implementation-defined
behaviour (for example, use of pragmas in source code). Use of such a change mechanism creates the potential
for additional human error in that a developer may be unaware that a change of behaviour was requested earlier
in the source code and may write code that depends on the implementation-defined behaviour that occurred
prior to that explicit change of behaviour.

Many language constructs may have implementation-defined behaviour and unconditionally recommending
against any use of these constructs may be completely impractical. For instance, in many languages the number
of significant characters in an identifier is implementation-defined. Developers need to choose a minimum
number of characters and require that only translators supporting at least that number, N, of characters be used.

The appearance of implementation-defined behaviour in a language specification is recognition by the language
designers that in some cases implementation flexibility provides a worthwhile benefit for language translators;
this usage is not a defect in the language.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 103

6.56.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this variation can result in differences in external program behaviour.

• Language implementations may not be required to provide a mechanism for controlling implementation-
defined behaviour.

6.55.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Document the set of implementation-defined features an application depends upon, so that upon a
change of translator, development tools, or target configuration it can be ensured that those
dependencies are still met.

• Ensure that a specific use of a construct having implementation-defined behaviour produces an external
behaviour that is the same for all of the possible behaviours permitted by the language specification.

• Only use a language implementation whose implementation-defined behaviours are within a known
subset of implementation-defined behaviours. The known subset should be chosen so that the 'same
external behaviour' condition described above is met.

• Create highly visible documentation (perhaps at the start of a source file) that the default
implementation-defined behaviour is changed within the current file.

• When developing coding guidelines for a specific language all constructs that have implementation-
defined behaviour shall be documented and for each construct, the situations where the set of possible
behaviours can vary shall be enumerated.

• When applying this guideline on a project the functionality provided by and for changing its
implementation-defined behaviour shall be documented.

• Verify code behaviour using at least two different compilers with two different technologies.

6.56.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Portability guidelines for a specific language should provide a list of common implementation-defined
behaviours.

• Language specifiers should enumerate all the cases of implementation-defined behaviour.
• Language designers should provide language directives that optionally disable obscure language features.

6.57 Deprecated Language Features [MEM]

6.57.1 Description of application vulnerability

All code should conform to the current standard for the respective language. In reality though, a language
standard may change during the creation of a software system or suitable compilers and development
environments may not be available for the new standard for some period of time after the standard is published.

WG 23/N 0352 Baseline Edition 2 TR 24772

104 © ISO/IEC 2011 – All rights reserved

To smooth the process of evolution, features that are no longer needed or which serve as the root cause of or
contributing factor for safety or security problems are often deprecated to temporarily allow their continued use
but to indicate that those features may be removed in the future. The deprecation of a feature is a strong
indication that it should not be used. Other features, although not formally deprecated, are rarely used and there
exist other more common ways of expressing the same function. Use of these rarely used features can lead to
problems when others are assigned the task of debugging or modifying the code containing those features.

6.57.2 Cross reference

JSF AV Rules: 8 and 11
MISRA C 2004: 1.1, 4.2, and 20.10
MISRA C++ 2008: 1-0-1, 2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2
Ada Quaility and Style Guide: 7.1.1

6.57.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these features indicates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replace the feature and the generation of warnings or error messages by
compilers that the feature shouldn’t be used. Given that software systems can take many years to develop, it is
possible and even likely that a language standard will change causing some of the features used to be suddenly
deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.
However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from
leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed
when the features are removed.

6.57.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages that have standards, though some only have defacto standards.
• All languages that evolve over time and as such could potentially have deprecated features at some point.

6.57.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Adhere to the latest published standard for which a suitable complier and development environment is
available.

• Avoid the use of deprecated features of a language.
• Stay abreast of language discussions in language user groups and standards groups on the Internet.

Discussions and meeting notes will give an indication of problem prone features that should not be used
or should be used with caution.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 105

6.57.6 Implications for standardization

In future standardization activities, the following items should be considered:

• Obscure language features for which there are commonly used alternatives should be considered for
removal from the language standard.

• Obscure language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for
removal from the language standard.

• Language designers should provide language mechanisms that optionally disable deprecated language
features.

7. Application Vulnerabilities

7.1 General

This clause provides descriptions of selected application vulnerabilities which have been found and exploited in a
number of applications and which have well known mitigation techniques, and which result from design decisions
made by coders in the absence of suitable language library routines or other mechanisms. For these
vulnerabilities, each description provides:

• a summary of the vulnerability,
• typical mechanisms of failure, and
• techniques that programmers can use to avoid the vulnerability

7.2 Terminology

These vulnerabilities are application-related rather than language-related. They are written in a language-
independent manner, and there are no corresponding sections in the annexes.

7.3 Unspecified Functionality [BVQ]

7.3.1 Description of application vulnerability

Unspecified functionality is code that may be executed, but whose behaviour does not contribute to the
requirements of the application. While this may be no more than an amusing ‘Easter Egg’, like the flight simulator
in a spreadsheet, it does raise questions about the level of control of the development process.

In a security-critical environment particularly, the developer of an application could include a ‘trap-door’ to allow
illegitimate access to the system on which it is eventually executed, irrespective of whether the application has
obvious security requirements.

7.3.2 Cross reference

JSF AV Rule: 127
MISRA C 2004: 2.2, 2.3, 2.4, and 14.1

WG 23/N 0352 Baseline Edition 2 TR 24772

106 © ISO/IEC 2011 – All rights reserved

XYQ: Dead and Deactivated code.

7.3.3 Mechanism of failure

Unspecified functionality is not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the development organization.
In other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buys a
spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In
effect they only reveal a subset of the program’s behaviour to the users.

In the first case, one would expect a well managed development environment to discover the additional
functionality during validation and verification. In the second case, the user is relying on the supplier not to
release harmful code.

In effect, a program’s requirements are ‘the program should behave in the following manner and do nothing else’.
The ‘and do nothing else’ clause is often not explicitly stated, and can be difficult to demonstrate.

7.3.4 Avoiding the vulnerability or mitigating its effects

End users can avoid the vulnerability or mitigate its ill effects in the following ways:

• Programs and development tools that are to be used in critical applications should come from a
developer who uses a recognized and audited development process for the development of those
programs and tools. For example: ISO 9001 or CMMI®.

• The development process should generate documentation showing traceability from source code to
requirements, in effect answering ‘why is this unit of code in this program?’. Where unspecified
functionality is there for a legitimate reason (such as diagnostics required for developer maintenance or
enhancement), the documentation should also record this. It is not unreasonable for customers of
bespoke critical code to ask to see such traceability as part of their acceptance of the application.

7.4 Distinguished Values in Data Types [KLK]

7.4.1 Description of application vulnerability

Sometimes, in a type representation, certain values are distinguished as not being members of the type, but
rather as providing auxiliary information. Examples include special characters used as string terminators,
distinguished values used to indicate out of type entries in SQL (Structured Query Language) database fields, and
sentinels used to indicate the bounds of queues or other data structures. When the usage pattern of code
containing distinguished values is changed, it may happen that the distinguished value happens to coincide with a
legitimate in-type value. In such a case, the value is no longer distinguishable from an in-type value and the
software will no longer produce the intended results.

7.4.2 Cross reference

CWE:
 20: Improper input validation
 137: Representation errors

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 107

JSF AV Rule: 151

7.4.3 Mechanism of failure

A “distinguished value” or a "magic number" in the representation of a data type might be used to represent out-
of-type information. Some examples include the following:

• The use of a special code, such as “00”, to indicate the termination of a coded character string.
• The use of a special value, such as “999…9”, as the indication that the actual value is either not known or

is invalid.

If the use of the software is later generalized, the once-special value can become indistinguishable from valid
data. Note that the problem may occur simply if the pattern of usage of the software is changed from that
anticipated by the software’s designers. It may also occur if the software is reused in other circumstances.

An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording
their names and national identity numbers or social security numbers in a database. Of course, some visitors
legitimately don’t have or don’t know their social security number, so the receptionists enter numbers to “make
the computer happy.” Receptionists at one building have adopted the convention of using the code “555-55-
5555” to designate children of employees. Receptionists at another building have used the same code to
designate foreign nationals. When the databases are merged, the children are reclassified as foreign nationals or
vice-versa depending on which set of receptionists are using the newly merged database.

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data,
recording data every degree of azimuth from 0 to 359. Packets of data are sent to other components for
processing, updating displays, recording, and so on. Since all degree values are non-negative, a distinguished
value of -1 is used as a signal to stop processing, compute summary data, close files, and so on. Many of the
components are to be reused in a new system with a new radar analysis component. However the new
component represents direction by numbers in the range -180 degrees to 179 degrees. When an azimuth value
of -1 is provided, the downstream components will interpret that as the indication to stop processing. If the
magic value is changed to, say, -999, the software is still at risk of failing when future enhancements (say,
counting accumulated degrees on complete revolutions) bring -999 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to
encode the desired out-of-type information. For example, the length of a character string might be encoded in a
dope vector and validity of data entries might be encoded in distinct Boolean values.

7.4.4 Avoiding the vulnerability or mitigating its effects

End users can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use auxiliary variables (perhaps enclosed in variant records) to encode out-of-type information.
• Use enumeration types to convey category information. Do not rely upon large ranges of integers, with

distinguished values having special meanings.
• Use named constants to make it easier to change distinguished values.

WG 23/N 0352 Baseline Edition 2 TR 24772

108 © ISO/IEC 2011 – All rights reserved

7.5 Adherence to Least Privilege [XYN]

7.5.1 Description of application vulnerability

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

7.5.2 Cross reference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege

CERT C guidelines: POS02-C

7.5.3 Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary.
Depending on the level of access granted, this may allow a user to access confidential information. For example,
programs that run with root privileges have caused innumerable UNIX security disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems, but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possible to limit the amount of damage that an
overlooked vulnerability might be able to cause. Privilege management functions can behave in some less-than-
obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly
pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes
run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is
executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage
these elevated privileges to do further damage. To grant the minimum access level necessary, first identify the
different permissions that an application or user of that application will need to perform their actions, such as file
read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while
denying all else.

7.5.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the software.

• Follow the principle of least privilege when assigning access rights to entities in a software system.

7.6 Privilege Sandbox Issues [XYO]

7.6.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 109

7.6.2 Cross reference

CWE:
266. Incorrect Privilege Assignment
267. Privilege Defined With Unsafe Actions
268. Privilege Chaining
269. Privilege Management Error
270. Privilege Context Switching Error
272. Least Privilege Violation
273. Failure to Check Whether Privileges were Dropped Successfully
274. Failure to Handle Insufficient Privileges
276. Insecure Default Permissions
732: Incorrect Permission Assignment for Critical Resource

CERT C guidelines: POS36-C

7.6.3 Mechanism of failure

The failure to drop system privileges when it is reasonable to do so is not an application vulnerability by itself. It
does, however, serve to significantly increase the severity of other vulnerabilities. According to the principle of
least privilege, access should be allowed only when it is absolutely necessary to the function of a given system,
and only for the minimal necessary amount of time. Any further allowance of privilege widens the window of
time during which a successful exploitation of the system will provide an attacker with that same privilege.

Many situations could lead to a mechanism of failure:

• A product could incorrectly assign a privilege to a particular entity.
• A particular privilege, role, capability, or right could be used to perform unsafe actions that were not

intended, even when it is assigned to the correct entity. (Note that there are two separate sub-categories
here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
accessible to entities with a given privilege.)

• Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to
perform unsafe actions that would not be allowed without that combination.

• The software may not properly manage privileges while it is switching between different contexts that
cross privilege boundaries.

• A product may not properly track, modify, record, or reset privileges.
• In some contexts, a system executing with elevated permissions will hand off a process/file or other

object to another process/user. If the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

• The software may not properly handle the situation in which it has insufficient privileges to perform an
operation.

• A program, upon installation, may set insecure permissions for an object.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

WG 23/N 0352 Baseline Edition 2 TR 24772

110 © ISO/IEC 2011 – All rights reserved

• The principle of least privilege when assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very carefully. Upon
changing security privileges, one should ensure that the change was successful.

• Consider following the principle of separation of privilege. Require multiple conditions to be met before
permitting access to a system resource.

• Trust zones in the software should be explicitly managed. If at all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

• As soon as possible after acquiring elevated privilege to call a privileged function such as chroot(), the
program should drop root privilege and return to the privilege level of the invoking user.

• In newer Windows implementations, make sure that the process token has the SeImpersonatePrivilege.

7.7 Executing or Loading Untrusted Code [XYS]

7.7.1 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an
application to execute malicious commands (and payloads) on behalf of an attacker.

7.7.2 Cross reference

CWE:
114. Process Control
306: Missing Authentication for Critical Function

CERT C guidelines: PRE09-C, ENV02-C, and ENV03-C

7.7.3 Mechanism of failure

Process control vulnerabilities take two forms:

• An attacker can change the command that the program executes so that the attacker explicitly controls
what the command is.

• An attacker can change the environment in which the command executes so that the attacker implicitly
controls what the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is
executed, process control vulnerabilities occur when:

• Data enters the application from a source that is not trusted.
• The data is used as or as part of a string representing a command that is executed by the application.
• By executing the command, the application gives an attacker a privilege or capability that the attacker

would not otherwise have.

7.7.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 111

• Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The application can execute code contained in native libraries, which often contain calls that
are susceptible to other security problems, such as buffer overflows or command injection.

• All native libraries should be validated.
• Determine if the application requires the use of the native library. It can be very difficult to determine

what these libraries actually do, and the potential for malicious code is high.
• To help prevent buffer overflow attacks, validate all input to native calls for content and length.
• If the native library does not come from a trusted source, review the source code of the library. The

library should be built from the reviewed source before using it.

7.7.5 Implications for standardization

In future standardization activities, the following items should be considered:

• Language independent APIs for code signing and data signing should be defined, allowing each
Programming Language to define a binding.

7.8 Memory Locking [XZX]

7.8.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.8.2 Cross reference

CWE:
 591. Sensitive Data Storage in Improperly Locked Memory
CERT C guidelines: MEM06-C

7.8.3 Mechanism of failure

Sensitive data that is not kept cryptographically secure may become visible to an attacker by any of several
mechanisms. Some operating systems may write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual
memory of another application. Application debuggers may be able to stop the target application and examine or
alter memory.

7.8.4 Avoiding the vulnerability or mitigating its effects

In almost all cases, these attacks require elevated or appropriate privilege.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Remove debugging tools from production systems.
• Log and audit all privileged operations.
• Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation

WG 23/N 0352 Baseline Edition 2 TR 24772

112 © ISO/IEC 2011 – All rights reserved

techniques to avoid keeping plaintext versions of this data in memory or on disk.
• If the operating system allows, clear the swap file on shutdown.

Note: Several implementations of the POSIX mlock() and the Microsoft Windows VirtualLock()
functions will prevent the named memory region from being written to a swap or page file. However, such
usage is not portable.

Systems that provide a "hibernate" facility (such as laptops) will write all of physical memory to a file that may be
visible to an attacker on resume.

7.8.5 Implications for standardization

In future standardization activities, the following items should be considered:

• Language independent APIs for memory locking should be defined, allowing each Programming Language
to define a binding.

7.9 Resource Exhaustion [XZP]

7.9.1 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that could
potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or
CPU. This could ultimately lead to a denial of service that could prevent any other applications from accessing
these resources.

7.9.2 Cross reference

CWE:
400. Resource Exhaustion

7.9.3 Mechanism of failure

There are two primary failures associated with resource exhaustion. The most common result of resource
exhaustion is denial of service. In some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashion by causing an application to exhaust the available resources.

Resource exhaustion issues are generally understood but are far more difficult to prevent. Taking advantage of
various entry points, an attacker could craft a wide variety of requests that would cause the site to consume
resources. Database queries that take a long time to process are good DoS (Denial of Service) targets. An
attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to
keep up. This would effectively prevent authorized users from using the site at all.

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume
more resources to service a request than the attacker must do to initiate a request. Prevention of these attacks
requires either that the target system either recognizes the attack and denies that user further access for a given
amount of time or uniformly throttles all requests to make it more difficult to consume resources more quickly

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 113

than they can again be freed. The first of these solutions is an issue in itself though, since it may allow attackers
to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he may be
able to prevent the user from accessing the server in question. The second solution is simply difficult to
effectively institute and even when properly done, it does not provide a full solution. It simply makes the attack
require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open."
This means that in the event of resource consumption, the system fails in such a way that the state of the system
— and possibly the security functionality of the system — are compromised. A prime example of this can be
found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong).
These attacks flooded a switch with random IP(Internet Protocol) and MAC(Media Access Control) address
combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to
which MAC addresses. Once this cache was exhausted, the switch would fail in an insecure way and would begin
to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Implement throttling mechanisms into the system architecture. The best protection is to limit the
amount of resources that an application can cause to be expended. A strong authentication and access
control model will help prevent such attacks from occurring in the first place. The authentication
application should be protected against denial of service attacks as much as possible. Limiting the
database access, perhaps by caching result sets, can help minimize the resources expended. To further
limit the potential for a denial of service attack, consider tracking the rate of requests received from users
and blocking requests that exceed a defined rate threshold.

• Ensure that applications have specific limits of scale placed on them, and ensure that all failures in
resource allocation cause the application to fail safely.

7.10 Unrestricted File Upload [CBF]

7.10.1 Description of application vulnerability

A first step often used to attack is to get an executable on the system to be attacked. Then the attack only needs
to execute this code. Many times this first step is accomplished by unrestricted file upload. In many of these
attacks, the malicious code can obtain the same privilege of access as the application, or even administrator
privilege.

7.10.2 Cross reference

CWE:
434.Unrestricted Upload of File with Dangerous Type

7.10.3 Mechanism of failure

There are several failures associated with an uploaded file:

WG 23/N 0352 Baseline Edition 2 TR 24772

114 © ISO/IEC 2011 – All rights reserved

• Executing arbitrary code.
• Phishing page added to a website.
• Defacing a website.
• Creating a vulnerability for other attacks.
• Browsing the file system.
• Creating a denial of service.
• Uploading a malicious executable to a server, which could be executed with administrator privilege.

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Allow only certain file extensions, commonly known as a white-list.
• Disallow certain file extensions, commonly known as a black-list.
• Use a utility to check the type of the file.
• Check the content-type in the header information of all files that are uploaded. The purpose of the

content-type field is to describe the data contained in the body completely enough that the receiving
agent can pick an appropriate agent or mechanism to present the data to the user, or otherwise deal with
the data in an appropriate manner.

• Use a dedicated location, which does not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically.

• Require a unique file extension (named by the application developer), so only the intended type of the file
is used for further processing. Each upload facility of an application could handle a unique file type.

• Remove all Unicode characters and all control characters5

• Set a limit for the filename length; including the file extension. In an NTFS (New Technology File System)
partition, usually a limit of 255 characters, without path information will suffice.

 from the filename and the extensions.

• Set upper and lower limits on file size. Setting these limits can help in denial of service attacks.

All of the above have some short comings, for example, a GIF (.gif) file may contain a free-form comment field,
and therefore a sanity check of the files contents is not always possible. An attacker can hide code in a file
segment that will still be executed by the application or server. In many cases it will take a combination of the
techniques from the above list to avoid this vulnerability.

7.10.5 Implications for standardization

In future standardization activities, the following items should be considered:

• Language independent APIs for file identification should be defined, allowing each Programming
Language to define a binding.

5 See http://www.ascii.cl/control-characters.htm

http://www.ascii.cl/control-characters.htm�

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 115

7.11 Resource Names [HTS]

7.11.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software executes is
very common. Differences in the conventions used by operating systems can result in significant changes in
behaviour when the same program is executed under different operating systems. For instance, the directory
structure, permissible characters, case sensitivity, and so forth can vary among operating systems and even
among variations of the same operating system. For example, Microsoft prohibits “/?:&*”<>|#%”; but UNIX,
Linux, and OS X operating systems allow any character except for the reserved character ‘/’ to be used in a
filename.

Some operating systems are case sensitive while others are not. On non-case sensitive operating systems,
depending on the software being used, the same filename could be displayed, as “filename”, “Filename” or
“FILENAME” and all would refer to the same file.

Some operating systems, particularly older ones, only rely on the significance of the first n characters of the file
name. n can be unexpectedly small, such as the first 8 characters in the case of Win16 architectures which would
cause “filename1”, “filename2” and “filename3” to all map to the same file.

Variations in the filename, named resource or external identifier being referenced can be the basis for various
kinds of problems. Such mistakes or ambiguity can be unintentional, or intentional, and in either case they can be
potentially exploited, if surreptitious behaviour is a goal.

7.11.2 Cross reference

JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2004: 1.4 and 5.1
CERT C guidelines: MSC09-C and MSC10-C

7.11.3 Mechanism of Failure

The wrong named resource, such as a file, may be used within a program in a form that provides access to a
resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

7

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

.11.4 Avoiding the vulnerability or mitigating its effects

• Where possible, use an API that provides a known common set of conventions for naming and accessing
external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE Std 1003.1-2001).

• Analyze the range of intended target systems, develop a suitable API for dealing with them, and
document the analysis.

• Ensure that programs adapt their behaviour to the platform on which they are executing, so that only the
intended resources are accessed. The means that information on such characteristics as the directory

WG 23/N 0352 Baseline Edition 2 TR 24772

116 © ISO/IEC 2011 – All rights reserved

separator string and methods of accessing parent directories need to be parameterized and not exist as
fixed strings within a program.

• Avoid creating resource names that are longer than the guaranteed unique length of all potential target
platforms.

• Avoid creating resources, which are differentiated only by the case in their names.
• Avoid all Unicode characters and all control characters7

7.11.5 Implications for standardization

 in filenames and the extensions.

In future standardization activities, the following items should be considered:

• Language independent APIs for interfacing with external identifiers should be defined, allowing each
Programming Language to define a binding.

7.12 Injection [RST]

7.12.1 Description of application vulnerability

Injection problems span a wide range of instantiations. The basic form of this weakness involves the software
allowing injection of additional data in input data to alter the control flow of the process. Command injection
problems are a subset of injection problem, in which the process can be tricked into calling external processes of
an attacker’s choice through the injection of command syntax into the input data. Multiple
leading/internal/trailing special elements injected into an application through input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements may cause the process to take
unexpected actions that result in an attack. Software may allow the injection of special elements that are non-
typical but equivalent to typical special elements with control implications. This frequently occurs when the
product has protected itself against special element injection. Software may allow inputs to be fed directly into
an output file that is later processed as code, such as a library file or template. Line or section delimiters injected
into an application can be used to compromise a system.

Many injection attacks involve the disclosure of important information — in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of data integrity
in nearly all cases as the control-plane data injected is always incidental to data recall or writing. Often the
actions performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive data,
loss of confidentiality is a frequent problem with SQL injection vulnerabilities. If poorly implemented SQL
commands are used to check user names and passwords, it may be possible to connect to a system as another
user with no previous knowledge of the password. If authorization information is held in a SQL database, it may
be possible to change this information through the successful exploitation of the SQL injection vulnerability. Just

7 See http://www.ascii.cl/control-characters.htm

http://www.ascii.cl/control-characters.htm�

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 117

as it may be possible to read sensitive information, it is also possible to make changes or even delete this
information with a SQL injection attack.

Injection problems encompass a wide variety of issues — all mitigated in very different ways. The most important
issue to note is that all injection problems share one thing in common — they allow for the injection of control
data into the user controlled data. This means that the execution of the process may be altered by sending code
in through legitimate data channels, using no other mechanism. While buffer overflows and many other flaws
involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Many injection attacks involve the disclosure of important information in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a
remote vulnerability.

7.12.2 Cross reference

CWE:
74. Failure to Sanitize Data into a Different Plane ('Injection')
76. Failure to Resolve Equivalent Special Elements into a Different Plane
78. Failure to Sanitize Data into an OS Command (aka ‘OS Command Injection’)
89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
90. Failure to Sanitize Data into LDAP Queries (aka ‘LDAP Injection’)
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
97. Failure to Sanitize Server-Side Includes (SSI) Within a Web Page
98. Insufficient Control of Filename for Include/Require Statement in PHP Program (aka ‘PHP File Inclusion’)
99. Insufficient Control of Resource Identifiers (aka ‘Resource Injection’)
144. Failure to Sanitize Line Delimiters
145. Failure to Sanitize Section Delimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elements
166. Failure to Handle Missing Special Element
167. Failure to Handle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate

CERT C guidelines: FIO30-C

7.12.3 Mechanism of failure

A software system that accepts and executes input in the form of operating system commands (such as
system(), exec(), open()) could allow an attacker with lesser privileges than the target software to execute
commands with the elevated privileges of the executing process. Command injection is a common problem with
wrapper programs. Often, parts of the command to be run are controllable by the end user. If a malicious user
injects a character (such as a semi-colon) that delimits the end of one command and the beginning of another, he
may then be able to insert an entirely new and unrelated command to do whatever he pleases.

WG 23/N 0352 Baseline Edition 2 TR 24772

118 © ISO/IEC 2011 – All rights reserved

Dynamically generating operating system commands that include user input as parameters can lead to command
injection attacks. An attacker can insert operating system commands or modifiers in the user input that can cause
the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead to data and
system compromise. If no validation of the parameter to the exec command exists, an attacker can execute any
command on the system the application has the privilege to access.

There are two forms of command injection vulnerabilities. An attacker can change the command that the
program executes (the attacker explicitly controls what the command is). Alternatively, an attacker can change
the environment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitly controls the command that is executed can occur when:

• Data enters the application from an untrusted source.
• The data is part of a string that is executed as a command by the application.
• By executing the command, the application gives an attacker a privilege or capability that the attacker

would not otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a function (such as "eval") that
dynamically evaluates and executes the input as code, usually in the same interpreted language that the product
uses. Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large number of
functions, or set a large number of variables.

A PHP file inclusion occurs when a PHP product uses require or include statements, or equivalent
statements, that use attacker-controlled data to identify code or HTML (HyperText Markup Language) to be
directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs when the following two conditions are met:

• An attacker can specify the identifier used to access a system resource. For example, an attacker might be
able to specify part of the name of a file to be opened or a port number to be used.

• By specifying the resource, the attacker gains a capability that would not otherwise be permitted. For
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note:
Resource injection that involves resources stored on the file system goes by the name path manipulation
and is reported in separate category. See Path Traversal [EWR] description for further details of this
vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a system. As data is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section delimiter is the boundary string in a multipart MIME (Multipurpose Internet Mail
Extensions) message. In many cases, doubled line delimiters can serve as a section delimiter.

7.12.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 119

• Assume all input is malicious. Use an appropriate combination of black-lists and white-lists to ensure only
valid, expected and appropriate input is processed by the system.

• Narrowly define the set of safe characters based on the expected values of the parameter in the request.
• Developers should anticipate that delimiters and special elements would be

injected/removed/manipulated in the input vectors of their software system and appropriate
mechanisms should be put in place to handle them.

• Implement SQL strings using prepared statements that bind variables. Prepared statements that do not
bind variables can be vulnerable to attack.

• Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather than
escape meta-characters, it is safest to disallow them entirely since the later use of data that have been
entered in the database may neglect to escape meta-characters before use.

• Follow the principle of least privilege when creating user accounts to a SQL database. Users should only
have the minimum privileges necessary to use their account. If the requirements of the system indicate
that a user can read and modify their own data, then limit their privileges so they cannot read/write
others' data.

• Assign permissions to the software system that prevents the user from accessing/opening privileged files.
• Restructure code so that there is not a need to use the eval() utility.

7.13 Cross-site Scripting [XYT]

7.13.1 Description of application vulnerability

Cross-site scripting (XSS) occurs when dynamically generated web pages display input, such as login information
that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the script on the machine of any user that views the site. If successful, cross-site scripting vulnerabilities
can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for a variety of
nefarious purposes.

7.13.2 Cross reference

CWE:
79. Failure to Preserve Web Page Structure ('Cross-site Scripting')
80. Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page
82. Failure to Sanitize Script in Attributes of IMG Tags in a Web Page
83. Failure to Sanitize Script in Attributes in a Web Page
84. Failure to Resolve Encoded URI Schemes in a Web Page
85. Doubled Character XSS Manipulations
86. Invalid Characters in Identifiers
87. Alternate XSS Syntax

WG 23/N 0352 Baseline Edition 2 TR 24772

120 © ISO/IEC 2011 – All rights reserved

7.13.3 Mechanism of failure

Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaScript, to a different end user. When a web application uses input from a user in the output it
generates without filtering it, an attacker can insert an attack in that input and the web application sends the
attack to other users. The end user trusts the web application, and the attacks exploit that trust to do things that
would not normally be allowed. Attackers frequently use a variety of methods to encode the malicious portion of
the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those
where the injected code is permanently stored on the target servers in a database, message forum, visitor log,
and so forth. Reflected attacks are those where the injected code takes another route to the victim, such as in an
email message, or on some other server. When a user is tricked into clicking a link or submitting a form, the
injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The
browser then executes the code because it came from a 'trusted' server. For a reflected XSS attack to work, the
victim must submit the attack to the server. This is still a very dangerous attack given the number of possible
ways to trick a victim into submitting such a malicious request, including clicking a link on a malicious Web site, in
an email, or in an inter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid them
in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities
can be found using scanners, and some exist in older web application servers. The consequence of an XSS attack is
the same regardless of whether it is stored or reflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to complete account compromise. The most severe XSS attacks involve
disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take over their
account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs,
redirecting the user to some other page or site, and modifying presentation of content.

Cross-site scripting (XSS) vulnerabilities occur when:

• Data enters a Web application through an untrusted source, most frequently a web request. The data is
included in dynamic content that is sent to a web user without being validated for malicious code.

• The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may
also include HTML, Flash or any other type of code that the browser may execute. The variety of attacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or
other session information to the attacker, redirecting the victim to web content controlled by the
attacker, or performing other malicious operations on the user's machine under the guise of the
vulnerable site.

Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted
web site. Typically, a malicious user will craft a client-side script, which — when parsed by a web browser —
performs some activity (such as sending all site cookies to a given e–mail address). If the input is unchecked, this
script will be loaded and run by each user visiting the web site. Since the site requesting to run the script has
access to the cookies in question, the malicious script does also. There are several other possible attacks, such as

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 121

running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy;
cookie theft is however by far the most common. All of these attacks are easily prevented by ensuring that no
script tags — or for good measure, HTML tags at all — are allowed in data to be posted publicly.

Specific instances of XSS are:

• 'Basic' XSS involves a complete lack of cleansing of any special characters, including the most fundamental
XSS elements such as "<", ">", and "&".

• A web developer displays input on an error page (such as a customized 403 Forbidden page). If an
attacker can influence a victim to view/request a web page that causes an error, then the attack may be
successful.

• A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG attributes (such as SRC) that is streamed and
then executed in a victim's browser. Note that when the page is loaded into a user's browser, the exploit
will automatically execute.

• The software does not filter "JavaScript:" or other URI's (Uniform Resource Identifier) from dangerous
attributes within tags, such as onmouseover, onload, onerror, or style.

• The web application fails to filter input for executable script disguised with URI encodings.
• The web application fails to filter input for executable script disguised using doubling of the involved

characters.
• The software does not strip out invalid characters in the middle of tag names, schemes, and other

identifiers, which are still rendered by some web browsers that ignore the characters.
• The software fails to filter alternate script syntax provided by the attacker.

Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated
material to a trusted web site for the consumption of other valid users. The most common example can be found
in bulletin-board web sites that provide web based mailing list-style functionality. The most common attack
performed with cross-site scripting involves the disclosure of information stored in user cookies. In some
circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting is
combined with other flaws.

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Carefully check each input parameter against a rigorous positive specification (white-list) defining the
specific characters and format allowed.

• All input should be sanitized, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL (Uniform Resource Locator) itself, and so
forth.

• A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site.

• Data is frequently encountered from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently reflected may

WG 23/N 0352 Baseline Edition 2 TR 24772

122 © ISO/IEC 2011 – All rights reserved

be used by a future developer. Therefore, validating ALL parts of the HTTP (Hypertext Transfer Protocol)
request is recommended.

7.14 Unquoted Search Path or Element [XZQ]

7.14.1 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary
commands.

7.14.2 Cross reference

CWE:
428. Unquoted Search Path or Element

CERT C guidelines: ENV04-C

7.14.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing
white-spaces in identifiers, an attacker could potentially execute arbitrary commands. This vulnerability covers
"C:\Program Files" and space-in-search-path issues. Theoretically this could apply to other operating
systems besides Windows, especially those that make it easy for spaces to be in filenames or folders names.

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Software should quote the input data that can be potentially executed on a system.
• Use a programming language that enforces the quoting of strings.

7.15 Improperly Verified Signature [XZR]

7.15.1 Description of application vulnerability

The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, the data being received should not be trusted and may be corrupted or made
intentionally incorrect by an adversary.

7.15.2 Cross reference

CWE:
347. Improperly Verified Signature

7.15.3 Mechanism of failure

Data is signed using techniques that assure the integrity of the data. There are two ways that the integrity can be
intentionally compromised. The exchange of the cryptologic keys may have been compromised so that an

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 123

attacker could provide encrypted data that has been altered. Alternatively, the cryptologic verification could be
flawed so that the encryption of the data is flawed which again allows an attacker to alter the data.

7.15.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use data signatures to the extent possible to help ensure trust in data.
• Use built-in verifications for data.

7.15.5 Implications for standardization

In future standardization activities, the following items should be considered:

• Language independent APIs for data signing should be defined, allowing each Programming Language to
define a binding.

7.16 Discrepancy Information Leak [XZL]

7.16.1 Description of application vulnerability

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way that reveals security-relevant information about the state of the product, such as whether a
particular operation was successful or not.

7.16.2 Cross reference

CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Behavioural Inconsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak

7.16.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messages in direct response to
an attacker's request, in a way that allows the attacker to learn about the inner state of the product. The leaks
can be inadvertent (bug) or intentional (design).

A behavioural discrepancy information leak occurs when the product's actions indicate important differences
based on (1) the internal state of the product or (2) differences from other products in the same class. Attacks
such as OS fingerprinting rely heavily on both behavioural and response discrepancies. An internal behavioural
inconsistency information leak is the situation where two separate operations in a product cause the product to
behave differently in a way that is observable to an attacker and reveals security-relevant information about the
internal state of the product, such as whether a particular operation was successful or not. An external
behavioural inconsistency information leak is the situation where the software behaves differently than other

WG 23/N 0352 Baseline Edition 2 TR 24772

124 © ISO/IEC 2011 – All rights reserved

products like it, in a way that is observable to an attacker and reveals security-relevant information about which
product is being used, or its operating state.

A timing discrepancy information leak occurs when two separate operations in a product require different
amounts of time to complete, in a way that is observable to an attacker and reveals security-relevant information
about the state of the product, such as whether a particular operation was successful or not.

7.16.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn.
• Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing

with a compartment outside of the safe area.

7.17 Sensitive Information Uncleared Before Use [XZK]

7.17.1 Description of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original information.

7.17.2 Cross reference

CWE:
226. Sensitive Information Uncleared Before Release

CERT C guidelines: MEM03-C

7.17.3 Mechanism of failure

This typically involves memory in which the new data occupies less memory than the old data, which leaves
portions of the old data still available ("memory disclosure"). However, equivalent errors can occur in other
situations where the length of data is variable but the associated data structure is not. This can overlap with
cryptographic errors and cross-boundary cleansing information leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overhead. Furthermore, dynamic memory managers are free to reallocate this same memory.
As a result, it is possible to accidentally leak sensitive information if it is not cleared before calling a function that
frees dynamic memory. Programmers should not and can’t rely on memory being cleared during allocation.

7.17.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use library functions and or programming language features (such as destructors or finalization
procedures) that provide automatic clearing of freed buffers or the functionality to clear buffers.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 125

7.18 Path Traversal [EWR]

7.18.1 Description of application vulnerability

The software constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence
such as "/path/here." Attackers run the software in a particular directory so that the hard link or symbolic link
used by the software accesses a file that the attacker has under their control. In doing this, the attacker may be
able to escalate their privilege level to that of the running process.

7.18.2 Cross reference

CWE:
22. Path Traversal
24. Path Traversal: - '../filedir'
25. Path Traversal: '/../filedir'
26. Path Traversal: '/dir/../filename’
27. Path Traversal: 'dir/../../filename'
28. Path Traversal: '..\filename'
29. Path Traversal: '\..\filename'
30. Path Traversal: '\dir\..\filename'
31. Path Traversal: 'dir\..\filename'
32. Path Traversal: '...' (Triple Dot)
33. Path Traversal: '....' (Multiple Dot)
34. Path Traversal: '....//'
35. Path Traversal: '.../...//'
37. Path Traversal: ‘/absolute/pathname/here’
38. Path Traversal: ‘ \absolute\pathname\here’
39. Path Traversal: 'C:dirname'
40. Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
61. UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link

CERT C guidelines: FIO02-C

7.18.3 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path traversal. In the first, the
attacker alters the path being used by the software to point to a location that the attacker has control over.
Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path
points to a location that the attacker does have control over.

For instance, a software system that accepts input in the form of: '..\filename', '\..\filename',
'/directory/../filename', 'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename',
'directory\..\..\filename', '...', '....' (multiple dots), '....//', or '.../...//' without appropriate validation can allow an

WG 23/N 0352 Baseline Edition 2 TR 24772

126 © ISO/IEC 2011 – All rights reserved

attacker to traverse the file system to access an arbitrary file. Note that '..' is ignored if the current working
directory is the root directory. Some of these input forms can be used to cause problems for systems that strip
out '..' from input in an attempt to remove relative path traversal.

There are several common ways that an attacker can point a file access to a file the attacker has under their
control. A software system that accepts input in the form of '/absolute/pathname/here' or
'\absolute\pathname\here' without appropriate validation can also allow an attacker to traverse the file system
to unintended locations or access arbitrary files. An attacker can inject a drive letter or Windows volume letter
('C:dirname') into a software system to potentially redirect access to an unintended location or arbitrary file. A
software system that accepts input in the form of a backslash absolute path without appropriate validation can
allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can
inject a Windows UNC (Universal Naming Convention or Uniform Naming Convention) share
('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary
file. A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or
through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended
locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they
originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerability
to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file
used by a privileged program with a hard link to a sensitive file, for example, etc/passwd. When the process
opens the file, the attacker can assume the privileges of that process.

A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through user
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that
they originally did not have permissions to access.

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an
attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a
sensitive file (such as etc/passwd). When the process opens the file, the attacker can assume the privileges of
that process or possibly prevent a program from accurately processing data in a software system.

7.18.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file system.
• Use an appropriate combination of black-lists and white-lists to ensure only valid and expected input is

processed by the system.
• A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required for some exploits.

An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose
the attacker injects a ‘.' inside a filename (say, "sensi.tiveFile") and the sanitizing mechanism removes the
character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe,
then the file may be compromised.

• Files can often be identified by other attributes in addition to the file name, for example, by comparing
file ownership or creation time. Information regarding a file that has been created and closed can be

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 127

stored and then used later to validate the identity of the file when it is reopened. Comparing multiple
attributes of the file improves the likelihood that the file is the expected one.

• Follow the principle of least privilege when assigning access rights to files.
• Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.
• Ensure good compartmentalization in the system to provide protected areas that can be trusted.
• When two or more users, or a group of users, have write permission to a directory, the potential for

sharing and deception is far greater than it is for shared access to a few files. The vulnerabilities that
result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared
directories.

• Securely creating temporary files in a shared directory is error prone and dependent on the version of the
runtime library used, the operating system, and the file system. Code that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

• The mitigation should be centered on converting relative paths into absolute paths and then verifying
that the resulting absolute path makes sense with respect to the configuration and rights or permissions.
This may include checking white-lists and black-lists, authorized super user status, access control lists, or
other fully trusted status.

7.19 Missing Required Cryptographic Step [XZS]

7.19.1 Description of application vulnerability

Cryptographic implementations should follow the algorithms that define them exactly, otherwise encryption can
be faulty.

7.19.2 Cross reference

CWE:
325. Missing Required Cryptographic Step
327: Use of a Broken or Risky Cryptographic Algorithm

7.19.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption.
This could be the result of many factors such as a programmer missing a required cryptographic step or using
weak randomization algorithms.

7.19.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Implement cryptographic algorithms precisely.
• Use system functions and libraries rather than writing the function.

WG 23/N 0352 Baseline Edition 2 TR 24772

128 © ISO/IEC 2011 – All rights reserved

7.20 Insufficiently Protected Credentials [XYM]

7.20.1 Description of application vulnerability

This weakness occurs when the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.20 .2 Cross reference

CWE:
256. Plaintext Storage of a Password
257. Storing Passwords in a Recoverable Format

7.20.3 Mechanism of failure

Storing a password in plaintext may result in a system compromise. Password management issues occur when a
password is stored in plaintext in an application's properties or configuration file. A programmer can attempt to
remedy the password management problem by obscuring the password with an encoding function, such as
Base64 encoding, but this effort does not adequately protect the password. Storing a plaintext password in a
configuration file allows anyone who can read the file access to the password-protected resource. Developers
sometimes believe that they cannot defend the application from someone who has access to the configuration,
but this attitude makes an attacker's job easier. Good password management guidelines require that a password
never be stored in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator can recover the password directly or use a brute force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that passwords will be used maliciously. In
fact, it should be noted that recoverable encrypted passwords provide no significant benefit over plain-text
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.20.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid storing passwords in easily accessible locations.
• Never store a password in plaintext.
• Ensure that strong, non-reversible encryption is used to protect stored passwords.
• Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

7.21 Missing or Inconsistent Access Control [XZN]

7.21.1 Description of application vulnerability

The software does not perform access control checks in a consistent manner across all potential execution paths.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 129

7.21.2 Cross reference

CWE:
285. Missing or Inconsistent Access Control
352: Cross-Site Request Forgery (CSRF)
807: Reliance on Untrusted Inputs in a Security Decision

CERT C guidelines: FIO06-C

7.21.3 Mechanism of failure

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to
access. If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gain access to and possibly corrupt these resources.

7.21.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• For web applications, make sure that the access control mechanism is enforced correctly at the server
side on every page. Users should not be able to access any information simply by requesting direct access
to that page, if they do not have authorization. Ensure that all pages containing sensitive information are
not cached, and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access that page.

7.22 Authentication Logic Error [XZO]

7.22.1 Description of application vulnerability

The software does not properly ensure that the user has proven their identity.

7.22.2 Cross reference

CWE:
287. Improper Authentication
288. Authentication Bypass by Alternate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Capture-replay
301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assumed-Immutable Data
303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness

WG 23/N 0352 Baseline Edition 2 TR 24772

130 © ISO/IEC 2011 – All rights reserved

7.22.3 Mechanism of failure

There are many ways that an attacker can potentially bypass the validation of a user. Some of the ways are
means of impersonating a legitimate user while others are means of bypassing the authentication mechanisms
that are in place. In either case, a user who should not have access to the software system gains access.

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the
product has an alternate path or channel that does not require authentication. Note that this is often seen in web
applications that assume that access to a particular CGI (Common Gateway Interface) program can only be
obtained through a "front" screen, but this problem is not just in web applications.

Authentication bypass by alternate name occurs when the software performs authentication based on the name
of the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by capture-replay occurs when it is possible for a malicious user to sniff network traffic and
bypass authentication by replaying it to the server in question to the same effect as the original message (or with
minor changes). Messages sent with a capture-relay attack allow access to resources that are not otherwise
accessible without proper authentication. Capture-replay attacks are common and can be difficult to defeat
without cryptography. They are a subset of network injection attacks that rely on listening in on previously sent
valid commands, then changing them slightly if necessary and resending the same commands to the server. Since
any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kind
of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schemes to trick the target into revealing the secret shared
between it and another valid user. In a basic mutual-authentication scheme, a secret is known to both a valid
user and the server; this allows them to authenticate. In order that they may verify this shared secret without
sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme in which they each pick a value, then
request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a
valid user and requests the hash of a random value from the server. When the server returns this value and
requests its own value to be hashed, the attacker opens another connection to the server. This time, the hash
requested by the attacker is the value that the server requested in the first connection. When the server returns
this hashed value, it is used in the first connection, authenticating the attacker successfully as the impersonated
valid user.

Authentication bypass by assumed-immutable data occurs when the authentication scheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker, for
example, if a web application relies on a cookie "Authenticated=1".

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define
them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of
an algorithm can weaken the authorization technique.

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 131

implemented mechanism can be bypassed as the result of a separate weakness that is primary to the
authentication error.

7.22.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Funnel all access through a single choke point to simplify how users can access a resource. For every
access, perform a check to determine if the user has permissions to access the resource. Avoid making
decisions based on names of resources (for example, files) if those resources can have alternate names.

• Canonicalize the name to match that of the file system's representation of the name. This can sometimes
be achieved with an available API (for example, in Win32 the GetFullPathName function).

• Utilize some sequence or time stamping functionality along with a checksum that takes this into account
to ensure that messages can be parsed only once.

• Use different keys for the initiator and responder or of a different type of challenge for the initiator and
responder.

7.23 Hard-coded Password [XYP]

7.23.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily remedied. It is never a
good idea to hardcode a password. Not only does hard coding a password allow all of the project's developers to
view the password, it also makes fixing the problem extremely difficult. Once the code is in production, the
password cannot be changed without patching the software. If the account protected by the password is
compromised, the owners of the system will be forced to choose between security and availability.

7.23.2 Cross reference

CWE:
259. Hard-Coded Password
798: Use of Hard-coded Credentials

7.23.3 Mechanism of failure

The use of a hard-coded password has many negative implications – the most significant of these being a failure
of authentication measures under certain circumstances. On many systems, a default administration account
exists which is set to a simple default password that is hard-coded into the program or device. This hard-coded
password is the same for each device or system of this type and often is not changed or disabled by end users. If
a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which
is likely freely available and public on the Internet) and logging in with complete access. In systems that
authenticate with a back-end service, hard-coded passwords within closed source or drop-in solution systems
require that the back-end service use a password that can be easily discovered. Client-side systems with hard-
coded passwords present even more of a threat, since the extraction of a password from a binary is exceedingly
simple. If hard-coded passwords are used, it is almost certain that unauthorized users will gain access through
the account in question.

WG 23/N 0352 Baseline Edition 2 TR 24772

132 © ISO/IEC 2011 – All rights reserved

7.23.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Rather than hard code a default username and password for first time logins, utilize a "first login" mode
that requires the user to enter a unique strong password.

• For front-end to back-end connections, there are three solutions that may be used.
1. Use of generated passwords that are changed automatically and must be entered at given time

intervals by a system administrator. These passwords will be held in memory and only be valid
for the time intervals.

2. The passwords used should be limited at the back end to only performing actions for the front
end, as opposed to having full access.

3. The messages sent should be tagged and checksummed with time sensitive values so as to
prevent replay style attacks.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 133

Annex A
(informative)

Vulnerability Taxonomy and List

A.1 General

This Technical Report is a catalog that will continue to evolve. For that reason, a scheme that is distinct from sub-
clause numbering has been adopted to identify the vulnerability descriptions. Each description has been assigned
an arbitrarily generated, unique three-letter code. These codes should be used in preference to sub-clause
numbers when referencing descriptions because they will not change as additional descriptions are added to
future editions of this Technical Report. However, it is recognized that readers may need assistance in locating
descriptions of interest.

This annex provides a taxonomical hierarchy of vulnerabilities, which users may find to be helpful in locating
descriptions of interest. A.2 is a taxonomy of the programming language vulnerabilities described in Clause 6 and
A.3 is a taxonomy of the application vulnerabilities described in Clause 7. A.4 lists the vulnerabilities in the
alphabetical order of their three-letter codes and provides a cross-reference to the relevant sub-clause.

A.2 Outline of Programming Language Vulnerabilities

A.2.1. Types
A.2.1.1. Representation

A.2.1.1.1. [IHN] Type System
A.2.1.1.2. [STR] Bit Representations

A.2.1.2. Floating-point
A.2.1.2.1. [PLF] Floating-point Arithmetic

A.2.1.3. Enumerated Types
A.2.1.3.1. [CCB] Enumerator Issues

A.2.1.4. Integers
A.2.1.4.1. [FLC] Numeric Conversion Errors

A.2.1.5. Characters and strings
A.2.1.5.1 [CJM] String Termination

A.2.1.6. Arrays
A.2.1.6.1. [HCB] Buffer Boundary Violation (Buffer Overflow)
A.2.1.6.2. [XYZ] Unchecked Array Indexing
A.2.1.6.3. [XYW] Unchecked Array Copying

A.2.1.7. Pointers
A.2.1.7.1. [HFC] Pointer Casting and Pointer Type Changes
A.2.1.7.2. [RVG] Pointer Arithmetic
A.2.1.7.3. [XYH] Null Pointer Dereference
A.2.1.7.4. [XYK] Dangling Reference to Heap

A.2.2. Type Conversions/Limits
A.2.2.1. [FIF] Arithmetic Wrap-around Error
A.2.2.1 [PIK] Using Shift Operations for Multiplication and Division
A.2.2.2. [XZI] Sign Extension Error

A.2.3. Declarations and Definitions
A.2.3.1. [NAI] Choice of Clear Names
A.2.3.2. [WXQ] Dead store

WG 23/N 0352 Baseline Edition 2 TR 24772

134 © ISO/IEC 2011 – All rights reserved

A.2.3.3. [YZS] Unused Variable
A.2.3.4. [YOW] Identifier Name Reuse
A.2.3.5. [BJL] Namespace Issues
A.2.3.6. [LAV] Initialization of Variables

A.2.4. Operators/Expressions
A.2.4.1. [JCW] Operator Precedence/Order of Evaluation
A.2.4.2. [SAM] Side-effects and Order of Evaluation
A.2.4.3. [KOA] Likely Incorrect Expression
A.2.4.4. [XYQ] Dead and Deactivated Code

A.2.5. Control Flow
A.2.5.1. Conditional Statements

A.2.5.1.1. [CLL] Switch Statements and Static Analysis
A.2.5.1.2. [EOJ] Demarcation of Control Flow

A.2.5.2. Loops
A.2.5.2.1. [TEX] Loop Control Variables
A.2.5.2.2. [XZH] Off-by-one Error

A.2.5.3. Subroutines (Functions, Procedures, Subprograms)
A.2.5.3.1. [EWD] Structured Programming
A.2.5.3.2. [CSJ] Passing Parameters and Return Values
A.2.5.3.3. [DCM] Dangling References to Stack Frames
A.2.5.3.4. [OTR] Subprogram Signature Mismatch
A.2.5.3.5. [GDL] Recursion
A.2.5.3.6. [OYB] Ignored Error Status and Unhandled Exceptions

A.2.5.4. Termination Strategy
A.2.5.4.1. [REU] Termination Strategy

A.2.6. Memory Models
A.2.6.1. [AMV] Type-breaking Reinterpretation of Data
A.2.6.2. [XYL] Memory Leak

A.2.7. Templates/Generics
A.2.7.1. [SYM] Templates and Generics
A.2.7.2. [RIP] Inheritance

A.2.8. Libraries
A.2.8.1 [LRM] Extra Intrinsics
A.2.8.2. [TRJ] Argument Passing to Library Functions
A.2.8.3. [DJS] Inter-language Calling
A.2.8.4. [NYY] Dynamically-linked Code and Self-modifying Code
A.2.8.5. [NSQ] Library Signature
A.2.8.6. [HJW] Unanticipated Exceptions from Library Routines

A.2.9. Macros
A.2.9.1. [NMP] Pre-processor Directives

A.2.10. Compile/Run Time
A.2.10.1 [MXB] Provision of Inherently Unsafe Operations
A.2.10.2 [SKL] Suppression of Language-Defined Run-Time Checking

A.2.11. Language Specification Issues
A.2.11.1. [BRS] Obscure Language Features
A.2.11.2. [BQF] Unspecified Behaviour
A.2.11.3. [EWF] Undefined Behaviour
A.2.11.4. [FAB] Implementation-defined Behaviour
A.2.11.5. [MEM] Deprecated Language Features

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 135

A.3 Outline of Application Vulnerabilities

A.3.1. Design Issues
A.3.1.1. [BVQ] Unspecified Functionality
A.3.1.2. [KLK] Distinguished Values in Data Types

A.3.2. Environment
A.3.2.1. [XYN] Adherence to Least Privilege
A.3.2.2. [XYO] Privilege Sandbox Issues
A.3.2.3. [XYS] Executing or Loading Untrusted Code

A.3.3. Resource Management
A.3.3.1. Memory Management

A.3.3.1.1. [XZX] Memory Locking
A.3.3.1.2. [XZP] Resource Exhaustion

A.3.3.2. Input
A.3.3.2.1 . [CBF] Unrestricted file upload
A.3.3.2.2. [HTS] Resource names
A.3.3.2.3. [RST] Injection
A.3.3.2.4. [XYT] Cross-site Scripting
A.3.3.2.5. [XZQ] Unquoted Search Path or Element
A.3.3.2.6. [XZR] Improperly Verified Signature
A.3.3.2.7. [XZL] Discrepancy Information Leak

A.3.3.3. Output
A.3.3.3.1. [XZK] Sensitive Information Uncleared Before Use

A.3.3.4. Files
A.3.3.4.1. [EWR] Path Traversal

A.3.4. Flaws in Security Functions
A.3.4.1. [XZS] Missing Required Cryptographic Step
A.3.4.2. Authentication

A.3.4.2.1. [XYM] Insufficiently Protected Credentials
A.3.4.2.2. [XZN] Missing or Inconsistent Access Control
A.3.4.2.3. [XZO] Authentication Logic Error
A.3.4.2.4. [XYP] Hard-coded Password

A.4 Vulnerability List

Code Vulnerability Name Sub-clause Page
[AMV] Type-breaking Reinterpretation of Data 6.40 81
 [BJL] Namespace Issues 6.23 52
 [BQF] Unspecified Behaviour 6.54 101
 [BRS] Obscure Language Features 6.53 100
 [BVQ] Unspecified Functionality 7.3 108
 [CBF] Unrestricted File Upload 7.10 116
 [CCB] Enumerator Issues 6.6 26
 [CJM] String Termination 6.8 30
 [CLL] Switch Statements and Static Analysis 6.29 63
 [CSJ] Passing Parameters and Return Values 6.34 69
 [DCM] Dangling References to Stack Frames 6.35 72
 [DJS] Inter-language Calling 6.46 90
 [EOJ] Demarcation of Control Flow 6.30 64

WG 23/N 0352 Baseline Edition 2 TR 24772

136 © ISO/IEC 2011 – All rights reserved

 [EWD] Structured Programming 6.33 68
 [EWF] Undefined Behaviour 6.55 103
 [EWR] Path Traversal 7.18 128
 [FAB] Implementation-defined Behaviour 6.56 104
 [FIF] Arithmetic Wrap-around Error 6.16 42
 [FLC] Numeric Conversion Errors 6.7 28
 [GDL] Recursion 6.37 75
 [HCB] Buffer Boundary Violation (Buffer Overflow) 6.9 31
 [HFC] Pointer Casting and Pointer Type Changes 6.12 36
 [HJW] Unanticipated Exceptions from Library Routines 6.49 94
 [HTS] Resource Names 7.11 117
 [IHN] Type System 6.3 19
 [JCW] Operator Precedence/Order of Evaluation 6.25 56
 [KLK] Distinguished Values in Data Types 7.4 109
 [KOA] Likely Incorrect Expression 6.27 59
 [LAV] Initialization of Variables 6.24 53
 [LRM] Extra Intrinsics 6.44 88
 [MEM] Deprecated Language Features 6.57 106
 [MXB] Suppression of Language-defined Run-time Checking 6.51 97
 [NAI] Choice of Clear Names 6.19 45
 [NMP] Pre-processor Directives 6.50 96
 [NSQ] Library Signature 6.48 93
 [NYY] Dynamically-linked Code and Self-modifying Code 6.47 92
 [OTR] Subprogram Signature Mismatch 6.36 74
 [OYB] Ignored Error Status and Unhandled Exceptions 6.38 77
 [PIK] Using Shift Operations for Multiplication and Division 6.17 43
 [PLF] Floating-point Arithmetic 6.5 24
 [REU] Termination Strategy 6.39 79
 [RIP] Inheritance 6.43 86
 [RST] Injection 7.12 119
 [RVG] Pointer Arithmetic 6.13 38
 [SAM] Side-effects and Order of Evaluation 6.26 57
 [SKL] Provision of Inherently Unsafe Operations 6.52 98
 [STR] Bit Representations 6.4 22
 [SYM] Templates and Generics 6.42 84
 [TEX] Loop Control Variables 6.31 65
 [TRJ] Argument Passing to Library Functions 6.45 89
 [WXQ] Dead Store 6.20 47
 [XYH] Null Pointer Dereference 6.14 38
 [XYK] Dangling Reference to Heap 6.15 39
 [XYL] Memory Leak 6.41 83
 [XYM] Insufficiently Protected Credentials 7.20 131
 [XYN] Adherence to Least Privilege 7.5 110
 [XYO] Privilege Sandbox Issues 7.6 111
 [XYP] Hard-coded Password 7.23 134
 [XYQ] Dead and Deactivated Code 6.28 60
 [XYS] Executing or Loading Untrusted Code 7.7 113
 [XYT] Cross-site Scripting 7.13 122

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 137

 [XYW] Unchecked Array Copying 6.11 35
 [XYZ] Unchecked Array Indexing 6.10 33
 [XZH] Off-by-one Error 6.32 66
 [XZI] Sign Extension Error 6.18 44
 [XZK] Sensitive Information Uncleared Before Use 7.17 127
 [XZL] Discrepancy Information Leak 7.16 126
 [XZN] Missing or Inconsistent Access Control 7.21 132
 [XZO] Authentication Logic Error 7.22 132
 [XZP] Resource Exhaustion 7.9 115
 [XZQ] Unquoted Search Path or Element 7.14 125
 [XZR] Improperly Verified Signature 7.15 125
 [XZS] Missing Required Cryptographic Step 7.19 130
 [XZX] Memory Locking 7.8 114
 [YOW] Identifier Name Reuse 6.22 50
 [YZS] Unused Variable 6.21 49

WG 23/N 0352 Baseline Edition 2 TR 24772

138 © ISO/IEC 2011 – All rights reserved

Annex B
(informative)

Language Specific Vulnerability Template

Each language-specific annex should have the following heading information and initial sections:

Annex <language>
(Informative)

Vulnerability descriptions for language <language>

<language>.1 Identification of standards

[This sub-clause should list the relevant language standards and other documents that describe the language
treated in the annex. It need not be simply a list of standards. It should do whatever is required to describe the
language that is the baseline.]

<language>.2 General terminology and concepts

[This sub-clause should provide an overview of general terminology and concepts that are utilized throughout the
annex.]

Every vulnerability description of Clause 6 of the main document should be addressed in the annex in the same
order even if there is simply a notation that it is not relevant to the language in question. Each vulnerability
description should have the following format:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

<language>.<x>.0 Status, history, and bibliography

[Revision history. This clause will eventually be removed.]

<language>.<x>.1 Applicability to language

[This section describes what the language does or does not do in order to deal with the vulnerability.]

<language>.<x>.2 Guidance to language users

[This section describes what the programmer or user should do regarding the vulnerability.]

In those cases where a vulnerability is simply not applicable to the language, the following format should be used
instead:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

This vulnerability is not applicable to <language>.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 139

Following the final vulnerability description, there should be a single sub-clause as follows:

<language>.<x> Implications for standardization

[This section provides the opportunity to discuss changes anticipated for future versions of the language
specification.]

WG 23/N 0352 Baseline Edition 2 TR 24772

140 © ISO/IEC 2011 – All rights reserved

Annex C
(informative)

Vulnerability descriptions for the language C

C.1 Identification of standards and associated documents

ISO/IEC 9899:1999 — Programming Languages—C
ISO/IEC TR 24731-1:2007 — Extensions to the C library — Part 1: Bounds-checking interfaces
ISO/IEC TR 24731-2:2010 — Extensions to the C library — Part 2: Dynamic Allocation Functions
ISO/IEC 9899:1999/Cor. 1:2001 — Programming languages —C
ISO/IEC 9899:1999/Cor. 2:2004 — Programming languages —C
ISO/IEC 9899:1999/Cor. 3:2007 — Programming languages —C
GNU Project. GCC Bugs “Non-bugs” http://gcc.gnu.org/bugs.html#nonbugs_c (2009).

C.2 General terminology and concepts

access: An execution-time action, to read or modify the value of an object. Where only one of two actions is
meant, read or modify. Modify includes the case where the new value being stored is the same as the previous
value. Expressions that are not evaluated do not access objects.

alignment: The requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

argument:
actual argument: The expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation.

behaviour: An external appearance or action.

implementation-defined behaviour: The unspecified behaviour where each implementation documents how the
choice is made. An example of implementation-defined behaviour is the propagation of the high-order bit when a
signed integer is shifted right.

locale-specific behaviour: The behaviour that depends on local conventions of nationality, culture, and language
that each implementation documents. An example, locale-specific behaviour is whether the islower()
function returns true for characters other than the 26 lower case Latin letters.

undefined behaviour: The use of a non-portable or erroneous program construct or of erroneous data, for which
the C standard imposes no requirements. Undefined behaviour ranges from ignoring the situation completely
with unpredictable results, to behaving during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a
translation or execution (with the issuance of a diagnostic message). An example of, undefined behaviour is the
behaviour on integer overflow.

http://gcc.gnu.org/bugs.html�

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 141

unspecified behaviour: The use of an unspecified value, or other behaviour where the C Standard provides two or
more possibilities and imposes no further requirements on which is chosen in any instance. For example,
unspecified behaviour is the order in which the arguments to a function are evaluated.

bit: The unit of data storage in the execution environment large enough to hold an object that may have one of
two values. It need not be possible to express the address of each individual bit of an object.

byte: The addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment. It is possible to express the address of each individual byte of an object uniquely. A byte
is composed of a contiguous sequence of bits, the number of which is implementation-defined. The least
significant bit is called the low-order bit; the most significant bit is called the high-order bit.

character: An abstract member of a set of elements used for the organization, control, or representation of
data.

single-byte character: The bit representation that fits in a byte.

multibyte character: The sequence of one or more bytes representing a member of the extended character set
of either the source or the execution environment. The extended character set is a superset of the basic
character set.

wide character: The bit representation that will fit in an object capable of representing any character in the
current locale. The C Standard uses the type name wchar_t for this object.

correctly rounded result: The representation in the result format that is nearest in value, subject to the current
rounding mode, to what the result would be given unlimited range and precision.

diagnostic message: The message belonging to an implementation-defined subset of the implementation’s
message output. The C Standard requires diagnostic messages for all constraint violations.

implementation: A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of functions in, a particular
execution environment.

implementation limit: The restriction imposed upon programs by the implementation.

memory location: Either an object of scalar8

struct {

 type, or a maximal sequence of adjacent bit-fields all having nonzero
width. A bit-field- and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields-fi, if one is declared inside a nested structure declaration and the other is not, or if the two are
separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It
is not safe to concurrently update two bit-field-fi in the same structure if all members declared between them are
also bit-fields, no matter what the sizes of those intervening bit-fields happen to be. For example a structure
declared as

8 Integer types, Floating types and Pointer types are collectively called scalar types in the C Standard.

WG 23/N 0352 Baseline Edition 2 TR 24772

142 © ISO/IEC 2011 – All rights reserved

char a;
int b:5, c:11, :0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The member a, and bit-fields d and e.ee are separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c together
constitute the fourth memory location. The bit-fields b and c can’t be concurrently modified, but b and a, can be
concurrently modified.

object: The region of data storage in the execution environment, the contents of which can represent values.
When referenced, an object may be interpreted as having a particular type.

parameter:

formal parameter: The object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition.

recommended practice: A specification that is strongly recommended as being in keeping with the intent of the
C Standard, but that may be impractical for some implementations.

runtime-constraint: A requirement on a program when calling a library function.

value: The precise meaning of the contents of an object when interpreted as having a speci fic type.

implementation-defined value: An unspecified value where each implementation documents how the choice for
the value is selected.

indeterminate value: Is either an unspecified value or a trap representation.

unspecified value: The valid value of the relevant type where the C Standard imposes no requirements on which
value is chosen in any instance. An unspecified value cannot be a trap representation.

trap representation: An object representation that need not represent a value of the object type.

block-structured language: A language that has a syntax for enclosing structures between bracketed keywords,
such as an if statement bracketed by if and endif, as in FORTRAN, or a code section bracketed by BEGIN
and END, as in PL/1.

comb-structured language: A language that has an ordered set of keywords to define separate sections within
a block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in
Ada, a block is a 4-pronged comb with keywords declare, begin, exception, end, and the if statement in
Ada is a 4-pronged comb with keywords if, then, else, end if.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 143

C.3 Type System [IHN]

C.3.1 Applicability to language

C is a statically typed language. In some ways C is both strongly and weakly typed as it requires all variables to be
typed, but sometimes allows implicit or automatic conversion between types. For example, C will implicitly
convert a long int to an int and potentially discard many significant digits. Note that integer sizes are
implementation defined so that in some implementations, the conversion from a long int to an int cannot
discard any digits since they are the same size. In some implementations, all integer types could be implemented
as the same size.

C allows implicit conversions as in the following example:

 short a = 1023;
 int b;
 b = a;

If an implicit conversion could result in a loss of precision such as in a conversion from a 32 bit int to a 16 bit
short int:

 int a = 100000;
 short b;
 b = a;

most compilers will issue a warning message.

C has a set of rules to determine how conversion between data types will occur. For instance, every integer type
has an integer conversion rank that determines how conversions are performed. The ranking is based on the
concept that each integer type contains at least as many bits as the types ranked below it.

The integer conversion rank is used in the usual arithmetic conversions to determine what conversions need to
take place to support an operation on mixed integer types.

Other conversion rules exist for other data type conversions. So even though there are rules in place and the
rules are rather straightforward, the variety and complexity of the rules can cause unexpected results and
potential vulnerabilities. For example, though there is a prescribed order in which conversions will take place,
determining how the conversions will affect the final result can be difficult as in the following example:

 long foo (short a, int b, int c, long d, long e, long f) {
 return (((b + f) * d – a + e) / c);
 }

The implicit conversions performed in the return statement can be nontrivial to discern, but can greatly impact
whether any of the intermediate values wrap around during the computation.

C.3.2 Guidance to language users

• Consideration of the rules for typing and conversions will assist in avoiding vulnerabilities.

WG 23/N 0352 Baseline Edition 2 TR 24772

144 © ISO/IEC 2011 – All rights reserved

• Make casts explicit to give the programmer a clearer vision and expectations of conversions.

C.4 Bit Representations [STR]

C.4.1 Applicability to language

C supports a variety of sizes for integers such as short int, int, long int and long long int. Each
may either be signed or unsigned. C also supports a variety of bitwise operators that make bit manipulations easy
such as left and right shifts and bitwise operators. These bit manipulations can cause unexpected results or
vulnerabilities through miscalculated shifts or platform dependent variations.

Bit manipulations are necessary for some applications and may be one of the reasons that a particular application
was written in C. Although many bit manipulations can be rather simple in C, such as masking off the bottom
three bits in an integer, more complex manipulations can cause unexpected results. For instance, right shifting a
signed integer is implementation defined in C, while shifting by an amount greater than or equal to the size of the
data type is undefined behaviour. For instance, on a host where an int is of size 32 bits,

 unsigned int foo(const int k) {
 unsigned int i = 1;
 return i << k;
 }

is undefined for values of k greater than or equal to 32.

The storage representation for interfacing with external constructs can cause unexpected results. Byte orders
may be in little-endian or big-endian format and unknowingly switching between the two can unexpectedly alter
values.

C.4.2 Guidance to language users

• Only use bitwise operators on unsigned integer values as the results of some bitwise operations on signed
integers are implementation defined.

• Use commonly available functions such as htonl(), htons(), ntohl() and ntohs()to convert
from host byte order to network byte order and vice versa. This would be needed to interface between
an i80x86 architecture where the Least Significant Byte is first with the network byte order, as used on
the Internet, where the Most Significant Byte is first. Note: functions such as these are not part of the C
standard and can vary somewhat among different platforms.

• In cases where there is a possibility that the shift is greater than the size of the variable, perform a check
as the following example shows, or a modulo reduction before the shift:

unsigned int i;
unsigned int k;
unsigned int shifted_i;
…

 if (k < sizeof(unsigned int)*CHAR_BIT)
 shifted_i = i << k;
else

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 145

 // handle error condition
 …

C.5 Floating-point Arithmetic [PLF]

C.5.1 Applicability to language

C permits the floating-point data types float, double and long double. Due to the approximate nature of floating-
point representations, the use of float and double data types in situations where equality is needed or where
rounding could accumulate over multiple iterations could lead to unexpected results and potential vulnerabilities
in some situations.

As with most data types, C is flexible in how float, double and long double can be used. For instance, C
allows the use of floating-point types to be used as loop counters and in equality statements. Even though a loop
may be expected to only iterate a fixed number of times, depending on the values contained in the floating-point
type and on the loop counter and termination condition, the loop could execute forever. For instance iterating a
time sequence using 10 nanoseconds as the increment:

 float f;
 for (f=0.0; f!=1.0; f+=0.00000001)
 …

may or may not terminate after 10,000,000 iterations. The representations used for f and the accumulated
effect of many iterations may cause f to not be identical to 1.0 causing the loop to continue to iterate forever.

Similarly, the Boolean test

 float f=1.336f;
float g=2.672f;

 if (f == (g/2))
 …
may or may not evaluate to true. Given that f and g are constant values, it is expected that consistent results will
be achieved on the same platform. However, it is questionable whether the logic performs as expected when a
float that is twice that of another is tested for equality when divided by 2 as above. This can depend on the
values selected due to the quirks of floating-point arithmetic.

C.5.2 Guidance to language users

• Do not use a floating-point expression in a Boolean test for equality. In C, implicit casts may make an
expression floating-point even though the programmer did not expect it.

• Check for an acceptable closeness in value instead of a test for equality when using floats and doubles to
avoid rounding and truncation problems.

• Do not convert a floating-point number to an integer unless the conversion is a specified algorithmic
requirement or is required for a hardware interface.

WG 23/N 0352 Baseline Edition 2 TR 24772

146 © ISO/IEC 2011 – All rights reserved

C.6 Enumerator Issues [CCB]

C.6.1 Applicability to language

The enum type in C comprises a set of named integer constant values as in the example:

 enum abc {A,B,C,D,E,F,G,H} var_abc;

The values of the contents of abc would be A=0, B=1, C=2, etc. C allows values to be assigned to the
enumerated type as follows:

 enum abc {A,B,C=6,D,E,F=7,G,H} var_abc;

This would result in:

 A=0, B=1, C=6, D=7, E=8, F=7, G=8, H=9

yielding both gaps in the sequence of values and repeated values.

If a poorly constructed enum type is used in loops, problems can arise. Consider the enumerated type var_abc
defined above used in a loop:

 int x[8];
 …

for (i=A; i<=H; i++)
{
 t = x[i];
…
}

Because the enumerated type abc has been renumbered and because some numbers have been skipped, the
array will go out of bounds and there is potential for unintentional gaps in the use of x.

C.6.2 Guidance to language users

• Use enumerated types in the default form starting at 0 and incrementing by 1 for each member if
possible. The use of an enumerated type is not a problem if it is well understood what values are
assigned to the members.

• Use an enumerated type to select from a limited set of choices to make possible the use of tools to detect
omissions of possible values such as in switch statements.

• Use the following format if the need is to start from a value other than 0 and have the rest of the values
be sequential:

 enum abc {A=5,B,C,D,E,F,G,H} var_abc;

• Use the following format if gaps are needed or repeated values are desired and so as to be explicit as to
the values in the enum, then:

 enum abc {
A=0,

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 147

B=1,
C=6,
D=7,
E=8,
F=7,
G=8,
H=9

} var_abc;

C.7 Numeric Conversion Errors [FLC]

C.7.1 Applicability to language

C permits implicit conversions. That is, C will automatically perform a conversion without an explicit cast. For
instance, C allows

 int i;
 float f=1.25f;
 i = f;
This implicit conversion will discard the fractional part of f and set i to 1. If the value of f is greater than
INT_MAX, then the assignment of f to i would be undefined.

The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaller than int
are promoted when an operation is performed on them. If all values of Boolean, character or integer type can be
represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an
unsigned int.

Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions;
operands of the unary +, -, and ~ operators, and operands of the shift operators. The following code fragment
shows the application of integer promotions:

 char c1, c2;
 c1 = c1 + c2;
Integer promotions require the promotion of each variable (c1 and c2) to int size. The two int values are
added and the sum is truncated to fit into the char type.

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values.
For example:

 signed char cresult, c1, c2, c3;
 c1 = 100;
 c2 = 3;
 c3 = 4;
 cresult = c1 * c2 / c3;
In this example, the value of c1 is multiplied by c2. The product of these values is then divided by the value of c3
(according to operator precedence rules). Assuming that signed char is represented as an 8-bit value, the product
of c1 and c2 (300) cannot be represented. Because of integer promotions, however, c1, c2, and c3 are each

WG 23/N 0352 Baseline Edition 2 TR 24772

148 © ISO/IEC 2011 – All rights reserved

converted to int, and the overall expression is successfully evaluated. The resulting value is truncated and stored
in cresult. Because the final result (75) is in the range of the signed char type, the conversion from int back
to signed char does not result in lost data. It is possible that the conversion could result in a loss of data
should the data be larger than the storage location.

A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For
example, the following code can result in truncation:

 signed long int sl = LONG_MAX;
 signed char sc = (signed char)sl;
The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic
conversions. The intent of the rules is to ensure that the conversions result in the same numerical values, and that
these values minimize surprises in the rest of the computation.

C.7.2 Guidance to language users

• Check the value of a larger type before converting it to a smaller type to see if the value in the larger type
is within the range of the smaller type. Any conversion from a type with larger precision to a smaller
precision type could potentially result in a loss of data. In some instances, this loss of precision is desired.
Such cases should be explicitly acknowledged in comments. For example, the following code could be
used to check whether a conversion from an unsigned integer to an unsigned character will result in a loss
of precision:

 unsigned int i;
 unsigned char c;
 …
 if (i <= UCHAR_MAX) { // check against the maximum value for an

object of type unsigned char
 c = (unsigned char) i;
 }
 else
 {
 // handle error condition
 }
 …

• Close attention should be given to all warning messages issued by the compiler regarding multiple casts.
Making a cast in C explicit will both remove the warning and acknowledge that the change in precision is
on purpose.

C.8 String Termination [CJM]

C.8.1 Applicability to language

A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a
byte with all bits set to 0). Therefore strings in C cannot contain the null character except as the terminating
character. Inserting a null character in a string either through a bug or through malicious action can truncate a

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 149

string unexpectedly. Alternatively, not putting a null character terminator in a string can cause actions such as
string copies to continue well beyond the end of the expected string. Overflowing a string buffer through the
intentional lack of a null terminating character can be used to expose information or to execute malicious code.

C.8.2 Guidance to language users

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C
library – Part 1: Bounds-checking interfaces9

C.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

 or the ISO TR24731-2 — Part II: Dynamic allocation functions.
Both of these Technical Reports define alternative string handling library functions to the existing
Standard C Library. The functions verify that receiving buffers are large enough for the resulting strings
being placed in them and ensure that resulting strings are null terminated. One implementation of these
functions has been released as the Safe C Library.

C.9.1 Applicability to language

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic
results in an access to storage that occurs outside the bounds of the object accessed.

In C, the subscript operator [] is defined such that E1[E2] is identical to (*((E1)+(E2))), so that in either
representation, the value in location (E1+E2) is returned. C does not perform bounds checking on arrays, so
the following code:

 int foo(const int i) {
 int x[] = {0,0,0,0,0,0,0,0,0,0};
 return x[i];
 }
will return whatever is in location x[i] even if, i were equal to -10 or 10 (assuming either subscript was still
within the address space of the program). This could be sensitive information or even a return address, which if
altered by changing the value of x[-10]or x[10], could change the program flow.

The following code is more appropriate and would not violate the boundaries of the array x:

int foo(const int i) {
int x[X_SIZE] = {0};
if (i < 0 || i >= X_SIZE) {
 return ERROR_CODE;
}
else {

return x[i];
}

}

9 Currently this is an optionally normative annex in the WG 14 working draft.

WG 23/N 0352 Baseline Edition 2 TR 24772

150 © ISO/IEC 2011 – All rights reserved

A buffer boundary violation may also occur when copying, initializing, writing or reading a buffer if attention to
the index or addresses used are not taken. For example, in the following move operation there is a buffer
boundary violation:

char buffer_src[]={“abcdefg”};
char buffer_dest[5]={0};
strcpy(buffer_dest, buffer_src);

the buffer_src is longer than the buffer_dest, and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

 char buffer_src[]={“abcdefg”];
 char buffer_dest[5]={0};
 strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1);

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the
source buffer, the destination buffer will now hold “abcd”, the 5th element of the array would hold the null
character.

C.9.2 Guidance to language users

• Validate all input values.
• Check any array index before use if there is a possibility the value could be outside the bounds of the

array.
• Use length restrictive functions such as strncpy()instead of strcpy().
• Use stack guarding add-ons to detect overflows of stack buffers.
• Do not use the deprecated functions or other language features such as gets().
• Be aware that the use of all of these measures may still not be able to stop all buffer overflows from

happening. However, the use of them can make it much rarer for a buffer overflow to occur and much
harder to exploit it.

• Use alternative functions as specified in ISO/IEC TR 24731-1:2007 or TR 24731-2:2010. These
Technical Reports provides alternative functions for the C Library (as defined in ISO/IEC 9899:1999)
that promotes safer, more secure programming. The functions verify that output buffers are large
enough for the intended result and return a failure indicator if they are not. Optionally, failing
functions call a“"runtime-constraint handler"” to report the error. Data is never written past the
end of an array. All string results are null terminated. In addition, the functions in ISO/IEC TR
24731-1:2007 are re-entrant: they never return pointers to static objects owned by the function.
ISO/IEC TR 24731-1:2007 also contains functions that address insecurities with the C input-output
facilities.

C.10 Unchecked Array Indexing [XYZ]

C.10.1 Applicability to language

C does not perform bounds checking on arrays, so though arrays may be accessed outside of their bounds, the
value returned is undefined and in some cases may result in a program termination. For example, in C the
following code is valid, though, for example, if i has the value 10, the result is undefined:

 int foo(const int i) {

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 151

int t;
int x[] = {0,0,0,0,0};

 t = x[i];
return t;

 }
The variable t will likely be assigned whatever is in the location pointed to by x[10] (assuming that x[10] is
still within the address space of the program).

C.10.2 Guidance to language users

• Perform range checking before accessing an array since C does not perform bounds checking
automatically. In the interest of speed and efficiency, range checking only needs to be done when it
cannot be statically shown that an access outside of the array cannot occur.

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C
library–- Part 1: Bounds-checking interfaces. These are alternative string handling library functions to the
existing Standard C Library. The functions verify that receiving buffers are large enough for the resulting
strings being placed in them and ensure that resulting strings are null terminated. One implementation
of these functions has been released as the Safe C Library.

C.11 Unchecked Array Copying [XYW]

C.11.1 Applicability to language

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

In the interest of ease and efficiency, C library functions such as memcpy(void * restrict s1,

const void * restrict s2, size_t n) and memmove(void *s1, const void *s2,
size_t n) are used to copy the contents from one area to another. Memcpy() and memmove() simply copy
memory and no checks are made as to whether the destination area is large enough to accommodate the n units
of data being copied. It is assumed that the calling routine has ensured that adequate space has been provided in
the destination. Problems can arise when the destination buffer is too small to receive the amount of data being
copied or if the indices being used for either the source or destination are not the intended indices.

C.11.2 Guidance to language users

• Perform range checking before calling a memory copying function such as memcpy() and memmove().
These functions do not perform bounds checking automatically. In the interest of speed and efficiency,
range checking only needs to be done when it cannot be statically shown that an access outside of the
array cannot occur.

WG 23/N 0352 Baseline Edition 2 TR 24772

152 © ISO/IEC 2011 – All rights reserved

C.12 Pointer Casting and Pointer Type Changes [HFC]

C.12.1 Applicability to language

C allows casting the value of a pointer to and from another data type. These conversions can cause unexpected
changes to pointer values.

Pointers in C refer to a specific type, such as integer. If sizeof(int) is 4 bytes, and ptr is a pointer to
integers that contains the value 0x5000, then ptr++ would make ptr equal to 0x5004. However, if ptr were a
pointer to char, then ptr++ would make ptr equal to 0x5001. It is the difference due to data sizes coupled with
conversions between pointer data types that cause unexpected results and potential vulnerabilities. Due to
arithmetic operations, pointers may not maintain correct memory alignment or may operate upon the wrong
memory addresses.

C.12.2 Guidance to language users

• Maintain the same type to avoid errors introduced through conversions.
• Heed compiler warnings that are issued for pointer conversion instances. The decision may be made to

avoid all conversions so any warnings must be addressed. Note that casting into and out of “void *”
pointers will most likely not generate a compiler warning as this is valid in C.

C.13 Pointer Arithmetic [RVG]

C.13.1 Applicability to language

When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the
size of the type of the pointed-to object. For instance, when adding a value to the byte address of a 4-byte
integer, the value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer
P points to the i-th element of an array object, then (P) + N will point to the i+n-th element of the array.
Failing to understand how pointer arithmetic works can lead to miscalculations that result in serious errors, such
as buffer overflows.

In C, arrays have a strong relationship to pointers. The following example will illustrate arithmetic in C involving a
pointer and how the operation is done relative to the size of the pointer's target. Consider the following code
snippet:

 int buf[5];
 int *buf_ptr = buf;
where the address of buf is 0x1234, after the assignment buf_ptr points to buf[0]. Adding 1 to buf_ptr
will result in buf_ptr being equal to 0x1238 on a host where an int is 4 bytes; buf_ptr will then point to
buf[1]. Not realizing that address operations will be in terms of the size of the object being pointed to can lead
to address miscalculations and undefined behaviour.

C.13.2 Guidance to language users

• Consider an outright ban on pointer arithmetic due to the error prone nature of pointer arithmetic.
• Verify that all pointers are assigned a valid memory address for use.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 153

C.14 Null Pointer Dereference [XYH]

C.14.1 Applicability to language

C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and
realloc(). Each will return the address to the allocated memory. Due to a variety of situations, the memory
allocation may not occur as expected and a null pointer will be returned. Other operations or faults in logic can
result in a memory pointer being set to null. Using the null pointer as though it pointed to a valid memory
location can cause a segmentation fault and other unanticipated situations.

Space for 10000 integers can be dynamically allocated in C in the following way:

int *ptr = malloc(10000*sizeof(int)); // allocate space for 10000 ints

malloc() will return the address of the memory allocation or a null pointer if insufficient memory is available
for the allocation. It is good practice after the attempted allocation to check whether the memory has been
allocated via an if test against NULL:

if (ptr != NULL) // check to see that the memory could be allocated

Memory allocations usually succeed, so neglecting this test and using the memory will usually work. That is why
neglecting the null test will frequently go unnoticed. An attacker can intentionally create a situation where the
memory allocation will fail leading to a segmentation fault.

Faults in logic can cause a code path that will use a memory pointer that was not dynamically allocated or after
memory has been deallocated and the pointer was set to null as good practice would indicate.

C.14.2 Guidance to language users

• Check whether a pointer is null before dereferencing it. As this can be overly extreme in many cases
(such as in a for loop that performs operations on each element of a large segment of memory),
judicious checking of the value of the pointer at key strategic points in the code is recommended.

C.15 Dangling Reference to Heap [XYK]

C.15.1 Applicability to language

C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and
realloc(). C allows a considerable amount of freedom in accessing the dynamic memory. Pointers to the
dynamic memory can be created to perform operations on the memory. Once the memory is no longer needed,
it can be released through the use of free(). However, freeing the memory does not prevent the use of the
pointers to the memory and issues can arise if operations are performed after memory has been freed.

Consider the following segment of code:

 int foo() {
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/
 if (ptr != NULL) /* check to see that the memory could be allocated */

WG 23/N 0352 Baseline Edition 2 TR 24772

154 © ISO/IEC 2011 – All rights reserved

 {
 … /* perform some operations on the dynamic memory */
 free (ptr); /* memory is no longer needed, so free it */
 … /* program continues performing other operations */
 ptr[0] = 10;/* ERROR – memory is being used after it has been released
*/
 …
 }
 …
 }
The use of memory in C after it has been freed is undefined. Depending on the execution path taken in the
program, freed memory may still be free or may have been allocated via another malloc() or other dynamic
memory allocation. If the memory that is used is still free, use of the memory may be unnoticed. However, if the
memory has been reallocated, altering of the data contained in the memory can result in data corruption.
Determining that a dangling memory reference is the cause of a problem and locating it can be difficult.

Setting and using another pointer to the same section of dynamically allocated memory can also lead to
undefined behaviour. Consider the following section of code:

 int foo() {
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */
 if (ptr != NULL) /* check to see that the memory could be allocated */
 {

 int ptr2 = &ptr[10]; /* set ptr2 to point to the 10th element of the
allocated memory */

… /* perform some operations on the dynamic memory */
 free (ptr); /* memory is no longer needed, so free it */
 ptr = NULL; /* set ptr to NULL to prevent ptr from being used again */
 … /* program continues performing other operations */
 ptr2[0] = 10; /* ERROR – memory is being used after it has been released
via ptr2 */
 …
 }
 return (0);
 }
Dynamic memory was allocated via a malloc() and then later in the code, ptr2 was used to point to an
address in the dynamically allocated memory. After the memory was freed using free(ptr) and the good
practice of setting ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling
reference still existed using ptr2.

C.15.2 Guidance to language users

• Set a freed pointer to null immediately after a free() call, as illustrated in the following code:

free (ptr);
ptr = NULL;

• Do not create and use additional pointers to dynamically allocated memory.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 155

• Only reference dynamically allocated memory using the pointer that was used to allocate the memory.

C.16 Arithmetic Wrap-around Error [FIF]

C.16.1 Applicability to language

Given the limited size of any computer data type, continuously adding one to the data type eventually will cause
the value to go from a the maximum possible value to a small value. C permits this to happen without any
detection or notification mechanism.

C is often used for bit manipulation. Part of this is due to the capabilities in C to mask bits and shift them.
Another part is due to the relative closeness C has to assembly instructions. Manipulating bits on a signed value
can inadvertently change the sign bit resulting in a number potentially going from a large positive value to a large
negative value.

For example, consider the following code for a short int containing 16 bits:

 int foo(short int i) {
 i++;
 return i;
 }
Calling foo with the value of 32767 would cause undefined behaviour, such as wrapping to -32768. Manipulating
a value in this way can result in unexpected results such as overflowing a buffer.

In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined. The
following code, where a int is 16 bits, would be undefined when j is greater than or equal to 16 or negative:

 int foo(int i, const int j) {
 return i>>j;
 }

C.16.2 Guidance to language users

• Be aware that any of the following operators have the potential to wrap in C:

 a + b a – b a * b a++ a-- a += b
 a -= b a *= b a << b a >> b -a

• Use defensive programming techniques to check whether an operation will overflow or underflow the
receiving data type. These techniques can be omitted if it can be shown at compile time that overflow or
underflow is not possible.

• Only conduct bit manipulations on unsigned data types. The number of bits to be shifted by a shift
operator should lie between 1 and (n-1), where n is the size of the data type.

C.17 Using Shift Operations for Multiplication and Division [PIK]

C17.1 Applicability to language

The issues for C are well defined in the main body of this document in [PIK]. Also see, C.16.

WG 23/N 0352 Baseline Edition 2 TR 24772

156 © ISO/IEC 2011 – All rights reserved

C17.2 Guidance to language users

The guidance for C users is well defined in the main body of this document in [PIK]. Also see, C16.

C.18 Sign Extension Error [XZI]

Does not apply to C, since instead of conversion routines, C uses direct casts and implicit conversions. This allows
the compiler to pick the correct signedness.

C.19 Choice of Clear Names [NAI]

C.19.1 Applicability to language

C is somewhat susceptible to errors resulting from the use of similarly appearing names. C does require the
declaration of variables before they are used. However, C allow scoping so that a variable that is not declared
locally may be resolved to some outer block and a human reviewer may not notice that resolution. Variable
name length is implementation specific and so one implementation may resolve names to one length whereas
another implementation may resolve names to another length resulting in unintended behaviour.

As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed
by human review) can result in unintended behaviour.

C.19.2 Guidance to language users

• Use names that are clear and non-confusing.
• Use consistency in choosing names.
• Keep names short and concise in order to make the code easier to understand.
• Choose names that are rich in meaning.
• Keep in mind that code will be reused and combined in ways that the original developers never imagined.
• Make names distinguishable within the first few characters due to scoping in C. This will also assist in

averting problems with compilers resolving to a shorter name than was intended.
• Do not differentiate names through only a mixture of case or the presence/absence of an underscore

character.
• Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘I’ (lower

case ‘L’), ‘l’ (capital ‘I’) and ‘1’, ‘S’ and ‘5’, ‘Z’ and ‘2’, and ‘n’ and ‘h’.
• Coding guidelines should be developed to define a common coding style and to avoid the above

dangerous practices.

C.20 Dead Store [WXQ]

 Does not apply to C.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 157

C.21 Unused Variable [YZS]

C.21.1 Applicability to language

Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the
code, but the declaration may remain. Most compilers will report this as a warning and the warning can be easily
resolved by removing the unused variable.

C.21.2 Guidance to language users

• Resolve all compiler warnings for unused variables. This is trivial in C as one simply needs to remove the
declaration of the variable. Having an unused variable in code indicates that either warnings were turned
off during compilation or were ignored by the developer.

C.22 Identifier Name Reuse [YOW]

C.22.1 Applicability to language

C allows scoping so that a variable that is not declared locally may be resolved to some outer block and that
resolution may cause the variable to operate on an entity other than the one intended.

Because the variable name var1 was reused in the following example, the printed value of var1 may be
unexpected.

int var1; /* declaration in outer scope */
var1 = 10;
{

int var2;
int var1; /* declaration in nested (inner) scope */
var2 = 5;
var1 = 1; /* var1 in inner scope is 1 */

}
print (“var1=%d\n”, var1); /* will print “var1=10” as var1 refers */

/* to var1 in the outer scope */
Removing the declaration of var2 will result in a diagnostic message being generated making the programmer
aware of an undeclared variable. However, removing the declaration of var1 in the inner block will not result in
a diagnostic as var1 will be resolved to the declaration in the outer block and a programmer maintaining the
code could very easily miss this subtlety. The removing of inner block var1 will result in the printing of
“var1=1” instead of “var1=10”.

C.22.2 Guidance to language users

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A language-specific project coding convention
can be used to ensure that such errors are detectable with static analysis.

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and has a type that permits it to occur in at least one context where the first entity can

WG 23/N 0352 Baseline Edition 2 TR 24772

158 © ISO/IEC 2011 – All rights reserved

occur.
• Ensure that all identifiers differ within the number of characters considered to be significant by the

implementations that are likely to be used, and document all assumptions.

C.23 Namespace Issues [BJL]

 Does not apply to C.

C.24 Initialization of Variables [LAV]

C.24.1 Applicability to language

Local, automatic variables can assume unexpected values if they are used before they are initialized. The C
Standard specifies, "If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate". In the common case, on architectures that make use of a program stack, this value defaults to
whichever values are currently stored in stack memory. While uninitialized memory often contains zeros, this is
not guaranteed. Consequently, uninitialized memory can cause a program to behave in an unpredictable or
unplanned manner and may provide an avenue for attack.

Assuming that an uninitialized variable is 0 can lead to unpredictable program behaviour when the variable is
initialized to a value other than 0.

Many implementations will issue a diagnostic message indicating that a variable was not initialized.

C.24.2 Guidance to language users

• Heed compiler warning messages about uninitialized variables. These warnings should be resolved as
recommended to achieve a clean compile at high warning levels.

• Do not use memory allocated by functions such as malloc() before the memory is initialized as the
memory contents are indeterminate.

C.25 Operator Precedence/Order of Evaluation [JCW]

C.25.1 Applicability to language

The order of evaluation of the operands in C is clearly defined, as is the order of evaluation.

Mixed logical operators are allowed without parentheses.

C.25.2 Guidance to language users

• Use parentheses any time mixed logical operators are used.

C.26 Side-effects and Order of Evaluation [SAM]

C.26.1 Applicability to language

C allows expressions to have side effects. If two or more side effects modify the same expression as in:

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 159

int v[10];
int i;
/* … */
i = v[i++];

the behaviour is undefined and this can lead to unexpected results. Either the “i++” is performed first or the
assignment “i=v[i]” is performed first. Because the order of evaluation can have drastic effects on the
functionality of the code, this can greatly impact portability.

There are several situations in C where the order of evaluation of subexpressions or the order in which side
effects take place is unspecified including:

• The order in which the arguments to a function are evaluated (C99, Section 6.5.2.2,"Function calls").
• The order of evaluation of the operands in an assignment statement (C99, Section 6.5.16,"Assignment

operators").
• The order in which any side effects occur among the initialization list expressions is unspecified. In

particular, the evaluation order need not be the same as the order of subobject initialization (C99, Section
6.7.8, “Initialization").

Because these are unspecified behaviours, testing may give the false impression that the code is working and
portable, when it could just be that the values provided cause evaluations to be performed in a particular order
that causes side effects to occur as expected.

C.26.2 Guidance to language users

• Expressions should be written so that the same effects will occur under any order of evaluation that the C
standard permits since side effects can be dependent on an implementation specific order of evaluation.

C.27 Likely Incorrect Expression [KOA]

C.27.1 Applicability to language

C has several instances of operators which are similar in structure, but vastly different in meaning. This is so
common that the C example of confusing the Boolean operator “==” with the assignment “=” is frequently cited
as an example among programming languages. Using an expression that is technically correct, but which may just
be a null statement can lead to unexpected results.

C is also provides a lot of freedom in constructing statements. This freedom, if misused, can result in unexpected
results and potential vulnerabilities.

The flexibility of C can obscure the intent of a programmer. Consider:

int x,y;
/* … */
if (x = y)
 {
 /* … */
 }

WG 23/N 0352 Baseline Edition 2 TR 24772

160 © ISO/IEC 2011 – All rights reserved

A fair amount of analysis may need to be done to determine whether the programmer intended to do an
assignment as part of the if statement (perfectly valid in C) or whether the programmer made the common
mistake of using an “=” instead of a “==”. In order to prevent this confusion, it is suggested that any assignments
in contexts that are easily misunderstood be moved outside of the Boolean expression. This would change the
example code to:

int x,y;
/* … */
x = y;

 if (x == 0)
 {
 /* … */
 }
This would clearly state what the programmer meant and that the assignment of y to x was intended.

Programmers can easily get in the habit of inserting the “;” statement terminator at the end of statements.
However, inadvertently doing this can drastically alter the meaning of code, even though the code is valid as in
the following example:

 int a,b;
 /* … */
 if (a == b); // the semi-colon will make this a null statement
 {
 /* … */
 }
Because of the misplaced semi-colon, the code block following the if will always be executed. In this case, it is
extremely likely that the programmer did not intend to put the semi-colon there.

C.27.2 Guidance to language users

• Simplify statements with interspersed comments to aid in accurately programming functionality and help
future maintainers understand the intent and nuances of the code. The flexibility of C permits a
programmer to create extremely complex expressions.

• Assignments embedded within other statements can be potentially problematic. Each of the following
would be clearer and have less potential for problems if the embedded assignments were conducted
outside of the expressions:

 int a,b,c,d;
 /* … */
 if ((a == b) || (c = (d-1))) /* the assignment to c may not occur */
 /* if a is equal to b */

or:

 int a,b,c;
 /* … */
 foo (a=b, c);
Each is a valid C statement, but each may have unintended results.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 161

• Null statements should have a source line of their own. This, combined with enforcement by static
analysis, would make clearer the intention that the statement was meant to be a null statement.

C.28 Dead and Deactivated Code [XYQ]

C.28.1 Applicability to language

As with any programming language that contains branching statements, C programs can potentially contain dead
code. It is of concern primarily since dead code may reveal a logic flaw or an unintentional mistake on the part of
the programmer. Sometimes statements can be inserted in C programs as defensive programming such as adding
a default case to a switch statement even though the expectation is that the default can never be reached – until
through some twist of logic or through modifications to the code the notifying error message reveals the
surprising event. These types of defensive statements may be able to be shown to be computationally impossible
and thus are dead code. Those are not the focus. The focus is on those statements which are not defensive and
which are unreachable. It is impossible to identify all such cases and therefore only those which are blatant and
that indicate deeper issues of flawed logic may be able to be identified and removed.

C uses some operators that can be confused with other operators. For instance, the common mistake of using an
assignment operator in a Boolean test as in:

 int a,b;
 /* … */

if (a = b)
 …
can cause portions of code to become dead code since unless b can contain the value 0, the else portion of the
if statement cannot be reached.

C.28.2 Guidance to language users

• Eliminate dead code to the extent possible from C programs.
• Use compilers and analysis tools to assist in identifying unreachable code.
• Use “//” comment syntax instead of “/*…*/” comment syntax to avoid the inadvertent commenting

out sections of code.
• Delete deactivated code from programs due to the possibility of accidentally activating it.

C.29 Switch Statements and Static Analysis [CLL]

C.29.1 Applicability to language

Because of the way in which the switch-case statement in C is structured, it can be relatively easy to
unintentionally omit the break statement between cases causing unintended execution of statements for some
cases.

C contains a switch statement of the form:

 char abc;
 /* … */
 switch (abc)

WG 23/N 0352 Baseline Edition 2 TR 24772

162 © ISO/IEC 2011 – All rights reserved

 {
 case 1:

sval = “a”;
 break;
 case 2:
 sval = “b”;
 break;
 case 3:
 sval = “c”;
 break;
 default:
 printf (“Invalid selection\n”);
If there isn’t a default case and the switched expression doesn’t match any of the cases, then control simply shifts
to the next statement after the switch statement block. Unintentionally omitting a break statement between
two cases will cause subsequent cases to be executed until a break or the end of the switch block is reached.
This could cause unexpected results.

C.29.2 Guidance to language users

• Only a direct fall through should be allowed from one case to another. That is, every nonempty case
statement should be terminated with a break statement as illustrated in the following example:

int i;
/* … */
switch (i)

 {
 case 1:
 case 2:
 i++; /* fall through from case 1 to 2 is permitted */
 break;
 case 3:
 j++;

case 4: /* fall through from case 3 to 4 is not permitted */
/* as it is not a direct fall through due to the */
/* j++ statement */

 }
• All switch statements should have a default value if only to indicate that there could exist a case that

was unanticipated and thought impossible by the developers. The only exception is for switches on an
enumerated type where all possible values can be exhausted. Even in the case of enumerated types, it is
suggested that a default be inserted in anticipation of possible code changes to the enumerated type.

C.30 Demarcation of Control Flow [EOJ]

C.30.1 Applicability to language

C is a block-structured language, while languages such as Ada and Pascal are comb-structured languages.
Therefore, it may not be readily apparent which statements are part of a loop construct or an if statement.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 163

Consider the following section of code:

 int foo(int a, const int *b) {
 int i=0;

 /* … */

a = 0;
 for (i=0; i<10; i++);
 {
 a = a + b[i];
 }
 }
At first it may appear that a will be a sum of the numbers b[0] to b[9]. However, even though the code is
structured so that the “a = a + b[i]” code is structured to appear within the for loop, the “;” at the end of
the for statement causes the loop to be on a null statement (the “;”) and the “a = a + b[i];” statement
to only be executed once. In this case, this mistake may be readily apparent during development or testing.
More subtle cases may not be as readily apparent leading to unexpected results.

If statements in C are also susceptible to control flow problems since there isn’t a requirement in C for there to
be an else statement for every if statement. An else statement in C always belong to the most recent if
statement without an else. However, the situation could occur where it is not readily apparent to which if
statement an else due to the way the code is indented or aligned.

C.30.2 Guidance to language users

• Enclose the bodies of if, else, while, for, etc. in braces. This will reduce confusion and potential
problems when modifying the software. For example:

int a,b,i;

/* … */

if (i = 10)

 {
 a = 5; /* this is correct */
 b = 10;
 }
 else
 a = 10; /* this is incorrect -- the assignments to b */
 /* were added later and were expected to */
 b = 5; /* be part of the if and else and indented */
 /* as such, but did not become part of the else */

• Use a final else statement or a comment stating why the final else isn’t necessary in all if and else
if statements.

WG 23/N 0352 Baseline Edition 2 TR 24772

164 © ISO/IEC 2011 – All rights reserved

C.31 Loop Control Variables [TEX]

C.31.1 Applicability to language

C allows the modification of loop control variables within a loop. Though this is usually not considered good
programming practice as it can cause unexpected problems, the flexibility of C expects the programmer to use
this capability responsibly.

Since the modification of a loop control variable within a loop is infrequently encountered, reviewers of C code
may not expect it and hence miss noticing the modification. Modifying the loop control variable can cause
unexpected results if not carefully done. In C, the following is valid:

int a,i;
for (i=1; i<10; i++)

 {
 …
 if (a > 7)
 i = 10;
 …
}

which would cause the for loop to exit once a is greater than 7 regardless of the number of loops that have
occurred.

C.31.2 Guidance to language users

• Do not modify a loop control variable within a loop. Even though the capability exists in C, it is still
considered to be a poor programming practice.

C.32 Off-by-one Error [XZH]

C.32.1 Applicability to language

Arrays are a common place for off by one errors to manifest. In C, arrays are indexed starting at 0, causing the
common mistake of looping from 0 to the size of the array as in:

 int foo() {
int a[10];
int i;
for (i=0, i<=10, i++)
…
return (0);
}

Strings in C are also another common source of errors in C due to the need to allocate space for and account for
the string sentinel value. A common mistake is to expect to store an n length string in an n length array instead of
length n+1 to account for the sentinel ‘\0’. Interfacing with other languages that do not use sentinel values in
strings can also lead to an off by one error.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 165

C does not flag accesses outside of array bounds, so an off by one error may not be as detectable in C as in some
other languages. Several good and freely available tools for C can be used to help detect accesses beyond the
bounds of arrays that are caused by an off by one error. However, such tools will not help in the case where only
a portion of the array is used and the access is still within the bounds of the array.

Looping one more or one less is usually detectable by good testing. Due to the structure of the C language, this
may be the main way to avoid this vulnerability. Unfortunately some cases may still slip through the development
and test phase and manifest themselves during operational use.

C.32.2 Guidance to language users

• Use careful programming, testing of border conditions and static analysis tools to detect off by one errors
in C.

C.33 Structured Programming [EWD]

C.33.1 Applicability to language

It is as easy to write structured programs in C as it is not to. C contains the goto statement, which can create
unstructured code. Also, C has continue, break, and return that can create a complicated control flow,
when used in an undisciplined manner. Spaghetti code can be more difficult for C static analyzers to analyze and
is sometimes used on purpose to intentionally obfuscate the functionality of software. Code that has been
modified multiple times by an assortment of programmers to add or remove functionality or to fix problems can
be prone to become unstructured.

Because unstructured code in C can cause problems for analyzers (both automated and human) of code,
problems with the code may not be detected as readily or at all as would be the case if the software was written
in a structured manner.

C.33.2 Guidance to language users

• Write clear and concise structured code to make code as understandable as possible.
• Restrict the use of goto, continue, break and return to encourage more structured programming.
• Encourage the use of a single exit point from a function. At times, this guidance can have the opposite

effect, such as in the case of an if check of parameters at the start of a function that requires the
remainder of the function to be encased in the if statement in order to reach the single exit point. If, for
example, the use of multiple exit points can arguably make a piece of code clearer, then they should be
used. However, the code should be able to withstand a critique that a restructuring of the code would
have made the need for multiple exit points unnecessary.

C.34 Passing Parameters and Return Values [CSJ]

C.34.1 Applicability to language

C uses call by value parameter passing. The parameter is evaluated and its value is assigned to the formal
parameter of the function that is being called. A formal parameter behaves like a local variable and can be

WG 23/N 0352 Baseline Edition 2 TR 24772

166 © ISO/IEC 2011 – All rights reserved

modified in the function without affecting the actual argument. An object can be modified in a function by
passing the address to the object to the function, for example

void swap(int *x, int *y)
{
 int t = *x;
 *x = *y;
 *y = t;
 }

Where x and y are integer pointer formal parameters, and *x and *y in the swap() function body dereference
the pointers to access the integers.
C macros use a call by name parameter passing; a call to the macro replaces the macro by the body of the macro.
This is call macro expansion. Macro expansion is applied to the program source text and amounts to the
substitution of the formal parameters with the actual parameter expressions. Formal parameters are often
parenthesized to avoid syntax issues after the expansion. Call by name parameter passing reevaluates the actual
parameter expression each time the formal parameter is read.

C.34.2 Guidance to language users

• Use caution for reevaluation of function calls in parameters with macros.
• Use caution when passing the address of an object. The object passed could be an alias10

C.35 Dangling References to Stack Frames [DCM]

.

C.35.1 Applicability to language

C allows the address of a variable to be stored in a variable. Should this variable’s address be, for example, the
address of a local variable that was part of a stack frame, then using the address after the local variable has been
deallocated can yield unexpected behaviour as the memory will have been made available for further allocation
and may indeed been allocated for some other use. Any use of perishable memory after it has been deallocated
can lead to unexpected results.

C.35.2 Guidance to language users

• Do not assign the address of an object to any entity which persists after the object has ceased to exist.
This is done in order to avoid the possibility of a dangling reference. Once the object ceases to exist, then
so will the stored address of the object preventing accidental dangling references.

• Long lived pointers that contain block-local addresses should be assigned the null pointer value
before executing a return from the block.

10 An alias is a variable or formal parameter that refers to the same location as another variable or formal parameter.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 167

C.36 Subprogram Signature Mismatch [OTR]

C.36.1 Applicability to language

Functions in C may be called with more or less than the number of parameters the receiving function expects.
However, most C compilers will generate a warning or an error about this situation. If the number of arguments
does not equal the number of parameters, the behaviour is undefined. This can lead to unexpected results when
the count or types of the parameters differs from the calling to the receiving function. If too few arguments are
sent to a function, then the function could still pop the expected number of arguments from the stack leading to
unexpected results.

C allows a variable number of arguments in function calls. A good example of an implementation of this is the
printf() function. This is specified in the function call by terminating the list of parameters with an ellipsis (,
...). After the comma, no information about the number or types of the parameters is supplied. This can be a
useful feature for situations such as printf(), but the use of this feature outside of special situations can be
the basis for vulnerabilities.

Functions may or may not be defined with a function definition. The function definition may or may not contain a
parameter type list. If a function that accepts a variable number of arguments is defined without a parameter

type list that ends with the ellipsis notation, the behaviour is undefined.

If the calling and receiving functions differ in the type of parameters, C will, if possible, do an implicit conversion
such as the call to sqrt() that expects a double:

 double sqrt(double)

the call:

root2 = sqrt(2);

coerces the integer 2 into the double value 2.0.

C.36.2 Guidance to language users

• Use a function prototype to declare a function with its expected parameters to allow the compiler to
check for a matching count and types of the parameters. The prototype contains just the name of the
function and its parameters without the body of code that would normally follow.

• Do not use the variable argument feature except in rare instances. The variable argument feature such as
is used in printf()is difficult to use in a type safe manner.

C.37 Recursion [GDL]

C.37.1 Applicability to language

C permits recursive calls both directly and indirectly through any chain of other functions. However, recursive
functions must be implemented carefully in C,C does not have protective mechanisms that could avert serious
problems such as an overly large consumption of resources or an overrun of buffers. Since C is frequently cited

WG 23/N 0352 Baseline Edition 2 TR 24772

168 © ISO/IEC 2011 – All rights reserved

for its high performance efficiency, the use of recursion in C can be counter to this as recursion can be inefficient
both in execution time and memory usage. Some of the modern compilers perform tail-call optimization to make
recursion efficient and resource-friendly.

As with many languages, the high consumption of resources for recursive calls can apply to C. It is difficult to
predict the complete range of values that a recursive function can execute that will lead to a manageable
consumption of resources. Part of this difficulty is that the range of values can change depending on the current
load of the host. Manipulation of the input values to a recursive function can result in an intentional exhaustion
of system resources leading to a denial of service.

C.37.2 Guidance to language users

• Only use recursion in rare instances. Although recursion can shorten programs considerably, there is a
high performance penalty which is contrary to the usual high efficiency of C.

• Only use recursion if it can be proven that adequate resources exist to support the maximum level of
recursion possible.

C.38 Ignored Error Status and Unhandled Exceptions [OYB]

C.38.1 Applicability to language

The C standard does not include exception handling, therefore only error status will be covered.

C provides the include file <errno.h> that defines the macros EDOM, EILSEQ and ERANGE, which expand to
integer constant expressions with type int, distinct positive values and which are suitable for use in #if
preprocessing directives. C also provides the integer errno that can be set to a nonzero value by any library
function (if the use of errno is not documented in the description of the function in the C Standard, errno
could be used whether or not there is an error). Though these values are defined, inconsistencies in responding
to error conditions can lead to vulnerabilities.

C.38.2 Guidance to language users

• Check the returned error status upon return from a function. The C standard library functions provide an
error status as the return value and sometimes in an additional global error value.

• Set errno to zero before a library function call in situations where a program intends to check errno
before a subsequent library function call.

• Use errno_t to make it readily apparent that a function is returning an error code. Often a function
that returns an errno error code is declared as returning a value of type int. Although syntactically
correct, it is not apparent that the return code is an errno error code. TR 24731-1 introduced the new
type errno_t in <errno.h> that is defined to be type int.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 169

C.39 Termination Strategy [REU]

C.39.1 Applicability to language

Choosing when and where to exit is a design issue, but choosing how to perform the exit may result in the host
being left in an unexpected state. C provides several ways of terminating a program including exit(),
_Exit(), and abort(). A return from the initial call to the main function is equivalent to calling the
exit() function with the value returned by the main function as its argument (this is if the return type of the
main function is a type compatible with int, otherwise the termination status returned to the host environment
is unspecified) or simply reaching the “}” that terminates the main function returns a value of 0.

All of the termination strategies in C have undefined, unspecified, and/or implementation defined behaviour
associated with them. For example, if more than one call to the exit() function is executed by a program, the
behaviour is undefined. The amount of clean-up that occurs upon termination such as the removal of temporary
files or the flushing of buffers varies and may be implementation defined.

A call to exit() or _Exit() will terminate a program normally. Abnormal program termination will occur
when abort() is used to exit a program (unless the signal SIGABRT is caught and the signal handler does not
return). Unlike a call to exit(), when either _Exit() or abort() are used to terminate a program, it is
implementation defined as to whether open streams with unwritten buffered data are flushed, open streams are
closed, or temporary files are removed. This can leave a system in an unexpected state.

C provides the function atexit() that allows functions to be registered so that at normal program termination,
the registered functions will be executed to perform desired functions. C99 requires the capability to register at
least 32 functions. Implementations expecting more than 32 registered functions may yield unexpected results.

C.39.2 Guidance to language users

• Use a return from the main() program as it is the cleanest way to exit a C program.
• Use exit() to quickly exit from a deeply nested function.
• Use abort() in situations where an abrupt halt is needed. If abort() is necessary, the design should

protect critical data from being exposed after an abrupt halt of the program.
• Become familiar with the undefined, unspecified and/or implementation aspects of each of the

termination strategies.

C.40 Type-breaking Reinterpretation of Data [AMV]

C.40.1 Applicability to language

The primary way in C that a reinterpretation of data is accomplished is through a union which may be used to
interpret the same piece of memory in multiple ways. If the use of the union members is not managed carefully,
then unexpected and erroneous results may occur.

C allows the use of pointers to memory so that an integer pointer could be used to manipulate character data.
This could lead to a mistake in the logic that is used to interpret the data leading to unexpected and erroneous
results.

WG 23/N 0352 Baseline Edition 2 TR 24772

170 © ISO/IEC 2011 – All rights reserved

C.40.2 Guidance to language users

• Avoid the use of unions as it is relatively easy for there to exist an unexpected program flow that leads to
a misinterpretation of the union data.

C.41 Memory Leak [XYL]

C.41.1 Applicability to language

C can allow memory leaks as many programs use dynamically allocated memory. C relies on manual memory
management rather than a built in garbage collector primarily since automated memory management can be
unpredictable, impact performance and is limited in its ability to detect unused memory such as memory that is
still referenced by a pointer, but is never used.

Memory is dynamically allocated in C using the library calls malloc(), calloc(), and realloc(). When
the program no longer needs the dynamically allocated memory, it can be released using the library call free().
Should there be a flaw in the logic of the program, memory continues to be allocated but is not freed when it is
no longer needed. A common situation is where memory is allocated while in a function, the memory is not freed
before the exit from the function and the lifetime of the pointer to the memory has ended upon exit from the
function.

C.41.2 Guidance to language users

• Use debugging tools such as leak detectors to help identify unreachable memory.
• Allocate and free memory in the same module and at the same level of abstraction to make it easier to

determine when and if an allocated block of memory has been freed.
• Use realloc() only to resize dynamically allocated arrays.
• Use garbage collectors that are available to replace the usual C library calls for dynamic memory

allocation which allocate memory to allow memory to be recycled when it is no longer reachable. The use
of garbage collectors may not be acceptable for some applications as the delay introduced when the
allocator reclaims memory may be noticeable or even objectionable leading to performance degradation.

C.42 Templates and Generics [SYM]

Does not apply to C.

C.43 Inheritance [RIP]

Does not apply to C.

C.44 Extra Intrinsics [LRM]

Does not apply to C.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 171

C.45 Argument Passing to Library Functions [TRJ]

C.45.1 Applicability to language

Parameter passing in C is either pass by reference or pass by value. There isn’t a guarantee that the values being
passed will be verified by either the calling or receiving functions. So values outside of the assumed range may be
received by a function resulting in a potential vulnerability.

A parameter may be received by a function that was assumed to be within a particular range and then an
operation or series of operations is performed using the value of the parameter resulting in unanticipated results
and even a potential vulnerability.

C.45. Guidance to language users

• Do not make assumptions about the values of parameters.
• Do not assume that the calling or receiving function will be range checking a parameter. It is always

safest to not make any assumptions about parameters used in C libraries. Because performance is
sometimes cited as a reason to use C, parameter checking in both the calling and receiving functions is
considered a waste of time. Since the calling routine may have better knowledge of the values a
parameter can hold, it may be considered the better place for checks to be made as there are times when
a parameter doesn’t need to be checked since other factors may limit its possible values. However, since
the receiving routine understands how the parameter will be used and it is good practice to check all
inputs, it makes sense for the receiving routine to check the value of parameters. Therefore, in C it is
difficult to create a blanket statement as to where the parameter checks should be made and as a result,
parameter checks are recommended in both the calling and receiving routines unless knowledge about
the calling or receiving routines dictates that this isn’t needed.

C.46 Inter-language Calling [DJS]

The C Standard defines the calling conventions, data layout, error handing and return conventions needed to use
C from another language. Ada and Fortran have developed a guideline to call C using the Standard.

C.47 Dynamically-linked Code and Self-modifying Code [NYY]

C.47.1 Applicability to language

Most loaders allow dynamically linked libraries also known as shared libraries. Code is designed and tested using
a suite of shared libraries which are loaded at execution time. The process of linking and loading is outside the
scope of the C standard.

C can allow self-modifying code. In C there isn’t a distinction between data space and code space, executable
commands can be altered as desired during the execution of the program. Although self-modifying code may be
easy to do in C, it can be difficult to understand, test and fix leading to potential vulnerabilities in the code.

Self-modifying code can be done intentionally in C to obfuscate the effect of a program or in some special
situations to increase performance. Because of the ease with which executable code can be modified in C,

WG 23/N 0352 Baseline Edition 2 TR 24772

172 © ISO/IEC 2011 – All rights reserved

accidental (or maliciously intentional) modification of C code can occur if pointers are misdirected to modify code
space instead of data space or code is executed in data space. Accidental modification usually leads to a program
crash. Intentional modification can also lead to a program crash, but used in conjunction with other
vulnerabilities can lead to more serious problems that affect the entire host.

C.47.2 Guidance to language users

• Use signatures to verify that the shared libraries used are identical to the libraries with which the code
was tested.

• Do not use self-modifying code except in rare instances. In those rare instances, self-modifying code in C
can and should be constrained to a particular section of the code and well commented.

C.48 Library Signature [NSQ]

C.48.1 Applicability to language

Integrating C and another language into a single executable relies on knowledge of how to interface the function
calls, argument lists and data structures so that symbols match in the object code during linking. Byte alignments
can be a source of data corruption.

For instance, when calling Fortran from C, several issues arise. Neither C nor Fortran check for mismatch
argument types or even the number of arguments. C passes arguments by value and Fortran passes arguments
by reference, so addresses must be passed to Fortran rather than values in the argument list. Multidimensional
arrays in C are stored in row major order, whereas Fortran stores them in column major order. Strings in C are
terminated by a null character, whereas Fortran uses the declared length of a string. These are just some of the
issues that arise when calling Fortran programs from C. Each language has its differences with C, so different
issues arise with each interface.

Writing a library wrapper is the traditional way of interfacing with code from another language. However, this
can be quite tedious and error prone.

C.48.2 Guidance to language users

• Use a tool, if possible, to automatically create the interface wrappers.
• Minimize the use of those issues known to be error prone when interfacing from C, such as passing

character strings, passing multi-dimensional arrays to a column major language, interfacing with other
parameter formats such as call by reference or name and receiving return codes.

C.49 Unanticipated Exceptions from Library Routines [HJW]

C.49.1 Applicability to language

Calling software routines produced outside of the control of the main application developer puts all of the code at
the mercy of the called routines. An unanticipated exception generated from a library routine could have
devastating consequences.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 173

C.49.2 Guidance to language users

• Check the values of parameters to ensure appropriate values are passed to libraries in order to reduce or
eliminate the chance of an unanticipated exception

C.50 Pre-processor Directives [NMP]

C.50.1 Applicability to language

The C pre-processor allows the use of macros that are text-replaced before compilation.

Function-like macros look similar to functions but have different semantics. Because the arguments are text-
replaced, expressions passed to a function-like macro may be evaluated multiple times. This can result in
unintended and undefined behaviour if the arguments have side effects or are pre-processor directives as
described by C99 §6.10 [1]. Additionally, the arguments and body of function-like macros should be fully
parenthesized to avoid unintended and undefined behaviour [2].

The following code example demonstrates undefined behaviour when a function-like macro is called with
arguments that have side-effects (in this case, the increment operator) [2]:

#define CUBE(X) ((X) * (X) * (X))
/* ... */
int i = 2;
int a = 81 / CUBE(++i);

The above example could expand to:

 int a = 81 / ((++i) * (++i) * (++i));

this is undefined behaviour so this macro expansion is difficult to predict.

Another mechanism of failure can occur when the arguments within the body of a function-like macro are not
fully parenthesized. The following example shows the CUBE macro without parenthesized arguments [2]:

#define CUBE(X) (X * X * X)
/* ... */
int a = CUBE(2 + 1);

This example expands to:

int a = (2 + 1 * 2 + 1 * 2 + 1)

which evaluates to 7 instead of the intended 27.

C.50.2 Guidance to language users

This vulnerability can be avoided or mitigated in C in the following ways:

• Replace macro-like functions with inline functions where possible. Although making a function inline only
suggests to the compiler that the calls to the function be as fast as possible, the extent to which this is

WG 23/N 0352 Baseline Edition 2 TR 24772

174 © ISO/IEC 2011 – All rights reserved

done is implementation-defined. Inline functions do offer consistent semantics and allow for better
analysis by static analysis tools.

• Ensure that if a function-like macro must be used, that its arguments and body are parenthesized.
• Do not embed pre-processor directives or side-effects such as an assignment, increment/decrement,

volatile access, or function call in a function-like macro.

C.51 Suppression of Language-defined Run-time Checking [MXB]

Does not apply to C.

C.52 Provision of Inherently Unsafe Operations [SKL]

Does not apply to C.

C.53 Obscure Language Features [BRS]

C.53.1 Applicability to language

C is a relatively small language with a limited syntax set lacking many of the complex features of some other
languages. Many of the complex features in C are not implemented as part of the language syntax, but rather
implemented as library routines. As such, most of the available features in C are used relatively frequently.

Common use across a variety of languages may make some features less obscure. Because of the unstructured
code that is frequently the result of using goto’s, the goto statement is frequently restricted, or even outright
banned, in some C development environments. Even though the goto is encountered infrequently and the use
of it considered obscure, because it is fairly obvious as to its purpose and since its use is common to many other
languages, the functionality of it is easily understood by even the most junior of programmers.

The use of a combination of features adds yet another dimension. Particular combinations of features in C may
be used rarely together or fraught with issues if not used correctly in combination. This can cause unexpected
results and potential vulnerabilities.

C.53.2 Guidance to language users

• Organizations should specify coding standards that restrict or ban the use of features or combinations of
features that have been observed to lead to vulnerabilities in the operational environment for which the
software is intended.

C.54 Unspecified Behaviour [BQF]

C.54.1 Applicability to language

The C standard has documented, in Annex J.1, 54 instances of unspecified behaviour. Examples of unspecified
behaviour are:

• The order in which the operands of an assignment operator are evaluated
• The order in which any side effects occur among the initialization list expressions in an initializer
• The layout of storage for function parameters

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 175

Reliance on a particular behaviour that is unspecified leads to portability problems because the expected
behaviour may be different for any given instance. Many cases of unspecified behaviour have to do with the
order of evaluation of subexpressions and side effects. For example, in the function call

 f1(f2(x), f3(x));

 the functions f2 and f3 may be called in any order possibly yielding different results depending on the order in
which the functions are called.

C.54.2 Guidance to language users

• Do not rely on unspecified behaviour because the behaviour can change at each instance. Thus, any code
that makes assumptions about the behaviour of something that is unspecified should be replaced to make
it less reliant on a particular installation and more portable.

C.55 Undefined Behaviour [EWF]

C.55.1 Applicability to language

The C standard does not impose any requirements on undefined behaviour. Typical undefined behaviours include
doing nothing, producing unexpected results, and terminating the program.

The C standard has documented, in Annex J.2, 191 instances of undefined behaviour that exist in C. One example
of undefined behaviour occurs when the value of the second operand of the / or % operator is zero. This is
generally not detectable through static analysis of the code, but could easily be prevented by a check for a zero
divisor before the operation is performed. Leaving this behaviour as undefined lessens the burden on the
implementation of the division and modulo operators.

Other examples of undefined behaviour are:

• Referring to an object outside of its lifetime
• The conversion to or from an integer type that produces a value outside of the range that can be

represented
• The use of two identifiers that differ only in non-significant characters

Relying on undefined behaviour makes a program unstable and non-portable. While some cases of undefined
behaviour may be consistent across multiple implementations, it is still dangerous to rely on them. Relying on
undefined behaviour can result in errors that are difficult to locate and only present themselves under special
circumstances. For example, accessing memory deallocated by free() or realloc() results in undefined
behaviour, but it may work most of the time.

C.55.2 Guidance to language users

• Eliminate to the extent possible all cases of undefined behaviour from a program

WG 23/N 0352 Baseline Edition 2 TR 24772

176 © ISO/IEC 2011 – All rights reserved

C.56 Implementation-defined Behaviour [FAB]

C.56.1 Applicability to language

The C standard has documented, in Annex J.3, 112 instances of implementation-defined behaviour. Examples of
implementation-defined behaviour are:

• The number of bits in a byte
• The direction of rounding when a floating-point number is converted to a narrower floating-point

number
• The rules for composing valid file names

Relying on implementation-defined behaviour can make a program less portable across implementations.
However, this is less true than for unspecified and undefined behaviour.

The following code shows an example of reliance upon implementation-defined behaviour:

 unsigned int x = 50;
 x += (x << 2) + 1; // x = 5x + 1

Since the bitwise representation of integers is implementation-defined, the computation on x will be incorrect for
implementations where integers are not represented in two’s complement form.

C.56.2 Guidance to language users

• Eliminate to the extent possible any reliance on implementation-defined behaviour from programs in
order to increase portability. Even programs that are specifically intended for a particular
implementation may in the future be ported to another environment or sections reused for future
implementations.

C.57 Deprecated Language Features [MEM]

C.57.1 Applicability to language

C has deprecated one function, the function gets(). The gets() function copies a string from standard input
into a fixed-size array. There is no safe way to use gets() because it performs an unbounded copy of user
input. Thus, every use of gets constitutes a buffer overflow vulnerability.

C has deprecated several language features primarily by tightening the requirements for the feature:

• Implicit int declarations are no longer allowed.
• Functions cannot be implicitly declared. They must be defined before use or have a prototype.
• The use of the function ungetc() at the beginning of a binary file is deprecated.
• The deprecation of aliased array parameters has been removed.
• A return without expression is not permitted in a function that returns a value (and vice versa).

Violating any of these features will generate a diagnostic message.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 177

C.57.2 Guidance to language users

• Do not use the function gets() as there isn't a safe and secure way to use it.
• Although backward compatibility is sometimes offered as an option for compilers so one can avoid

changes to code to be compliant with current language specifications, updating the legacy software to the
current standard is a better option.

C.58 Implications for standardization

Future standardization efforts should consider:

• Moving in the direction over time to being a more strongly typed language. Much of the use of weak
typing is simply convenience to the developer in not having to fully consider the types and uses of
variables. Stronger typing forces good programming discipline and clarity about variables while at the
same time removing many unexpected run time errors due to implicit conversions. This is not to say that
C should be strictly a strongly typed language – some advantages of C are due to the flexibility that
weaker typing provides. It is suggested that when enforcement of strong typing does not detract from
the good flexibility that C offers (for example, adding an integer to a character to step through a sequence
of characters) and is only a convenience for programmers (for example, adding an integer to a floating-
point number), then the standard should specify the stronger typed solution.

• A common warning in Annex I should be added for floating-point expressions being used in a Boolean test
for equality.

• Adopting the two TRs on safer C library functions, Extensions to the C Library (TR 24731-1: Part I: Bounds-
checking interfaces (this TR has been included in the WG 14 Working Paper as an optionally normative
annex) and TR 24731-2: Part II: Dynamic allocation functions, that are currently under consideration by
ISO SC22 WG14).

• Modifying or deprecating many of the C standard library functions that make assumptions about the
occurrence of a string termination character.

• Define a string construct that does not rely on the null termination character.
• Defining an array type that does automatic bounds checking.
• Deprecating less safe functions such as strcpy() and strcat() where a more secure alternative is

available.
• Defining safer and more secure replacement functions such as memncpy() and memncmp() to

complement the memcpy() and memcmp() functions (see in Implications for standardization.XYW).
• Adopting one of the Technical Reports on safer C library functions, Extensions to the C Library (TR 24731-

1: Part I: Bounds-checking interfaces or TR 24731-2: Part II: Dynamic allocation functions, that have been
developed by WG 14.11

• Defining an array type that does automatic bounds checking.

• Defining functions that contain an extra parameter in memcpy() and memmove() for the maximum
number of bytes to copy. In the past, some have suggested that the size of the destination buffer be used
as an additional parameter. Some critics state that this solution is easy to circumvent by simply repeating
the parameter that was used for the number of bytes to copy as the parameter for the size of the

11 TR 24731-1 has been added to the WG 14 working paper as an optionally normative Annex.

WG 23/N 0352 Baseline Edition 2 TR 24772

178 © ISO/IEC 2011 – All rights reserved

destination buffer. This analysis and criticism is correct. What is needed is a failsafe check as to the
maximum number of bytes to copy. There are several reasons for creating new functions with an
additional parameter. This would make it easier for static analysis to eliminate those cases where the
memory copy could not be a problem (such as when the maximum number of bytes is demonstrably less
than the capacity of the receiving buffer). Manual analysis or more involved static analysis could then be
used for the remaining situations where the size of the destination buffer may not be sufficient for the
maximum number of bytes to copy. This extra parameter may also help in determining which copies
could take place among objects that overlap. Such copying is undefined according to the C standard. It is
suggested that safer versions of functions that include a restriction max_n on the number of bytes n to
copy (for example, void *memncpy(void * restrict s1,const void * restrict
s2,size_t n), const size_t max_n) be added to the standard in addition to retaining the
current corresponding functions (for example, memcpy(void * restrict s1,const void *
restrict s2,size_t n))). The additional parameter would be consistent with the copying
function pairs that have already been created such as strcpy()/strncpy() and
strcat()/strncat(). This would allow a safer version of memory copying functions for those
applications that want to use them in to facilitate both safer and more secure code and more efficient
and accurate static code reviews.12

• Restrictions on pointer arithmetic that could eliminate common pitfalls. Pointer arithmetic is error prone
and the flexibility that it offers is useful, but some of the flexibility is simply a shortcut that if restricted
could lessen the chance of a pointer arithmetic based error.

• Modifying the library free(void *ptr) so that it sets ptr to NULL to prevent reuse of ptr.
• Defining a standard way of declaring an attribute to indicate that a variable is intentionally unused.
• A common warning in Annex I should be added for variables with the same name in nested scopes.
• Creating a few standardized precedence orders. Standardizing on a few precedence orders will help to

eliminate the confusing intricacies that exist between languages. This would not affect current languages
as altering precedence orders in existing languages is too onerous. However, this would set a basis for
the future as new languages are created and adopted. Stating that a language uses “ISO precedence
order A” would be useful rather than having to spell out the entire precedence order that differs in a
conceptually minor way from some other languages, but in a major way when programmers attempt to
switch between languages.

• Deprecating the goto statement. The use of the goto construct is often spotlighted as the antithesis of
good structured programming. Though its deprecation will not instantly make all C code structured,
deprecating the goto and leaving in place the restricted goto variations (for example, break and
continue) and possibly adding other restricted goto’s could assist in encouraging safer and more
secure C programming in general.

• Defining a “fallthru” construct that will explicitly bind multiple switch cases together and eliminate the
need for the break statement. The default would be for a case to break instead of falling through to the
next case. Granted this is a major shift in concept, but if it could be accomplished, less unintentional
errors would occur.

• Defining an identifier type for loop control that cannot be modified by anything other than the loop
control construct would be a relatively minor addition to C that could make C code safer and encourage
better structured programming.

12 This has been addressed by WG 14 in an optionally normative annex in the current working paper

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 179

• Defining a standardized interface package for interfacing C with many of the top programming languages
and a reciprocal package should be developed of the other top languages to interface with C.

• Joining with other languages in developing a standardized set of mechanisms for detecting and treating
error conditions so that all languages to the extent possible could use them. Note that this does not
mean that all languages should use the same mechanisms as there should be a variety (label parameters,
auxiliary status variables), but each of the mechanisms should be standardized.

• Since fault handling and exiting of a program is common to all languages, it is suggested that common
terminology such as the meaning of fail safe, fail hard, fail soft, etc. along with a core API set such as
exit, abort, etc. be standardized and coordinated with other languages.

• Deprecating unions. The primary reason for the use of unions to save memory has been diminished
considerably as memory has become cheaper and more available. Unions are not statically type safe and
are historically known to be a common source of errors, leading to many C programming guidelines
specifically prohibiting the use of unions.

• Creating a recognizable naming standard for routines such that one version of a library does parameter
checking to the extent possible and another version does no parameter checking. The first version would
be considered safer and more secure and the second could be used in certain situations where
performance is critical and the checking is assumed to be done in the calling routine. A naming standard
could be made such that the library that does parameter checking could be named as usual, say
“library_xyz” and an equivalent version that does not do checking could have a “_p” appended, such as
“library_xyz_p”. Without a naming standard such as this, a considerable number of wasted cycles will be
conducted doing a double check of parameters or even worse, no checking will be done in both the calling
and receiving routines as each is assuming the other is doing the checking.

• Making the declarations of undefined behaviour more definitive13

• Creating an Annex that lists deprecated features.

. The collection of undefined behaviour
in Annex J.2 is well done with cross references to sections in the standard. Most of the entries are well
defined, but the few that use words such as “proper” or “inappropriately” should be better defined.

13 This is actually being addressed in Annex L of the C Working Paper, see WG 14/N1494.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1494.pdf�

WG 23/N 0352 Baseline Edition 2 TR 24772

180 © ISO/IEC 2011 – All rights reserved

Annex Ruby
(informative)

Vulnerability descriptions for the language Ruby

Ruby.1 Identification of standards and associated documents

IPA Ruby Standardization WG Draft – August 25, 2010

Ruby.2 General Terminology and Concepts

block: A procedure which is passed to a method invocation.

class: An object which defines the behaviour of a set of other objects called its instances.

class variable: A variable whose value is shared by all the instances of a class.

constant: A variable which is defined in a class or a module and is accessible both inside and outside the class or
module. The value of a constant is ordinarily expected to remain unchanged during the execution of a program,
but IPA Ruby Standardization Draft does not force it.

exception: An object which represents an exceptional event.

global variable: A variable which is accessible everywhere in a program.

implementation-defined: Possibly differing between implementations, but defined for every implementation.

instance method: A method which can be invoked on all the instances of a class.

instance variable: A variable that exists in a set of variable bindings which every object has.

local variable: A variable which is accessible only in a certain scope introduced by a program construct such as a
method definition, a block, a class definition, a module definition, a singleton class definition, or the top level of a
program.

method: A procedure which, when invoked on an object, performs a set of computations on the object.

method visibility: An attribute of a method which determines the conditions under which a method invocation is
allowed.

module: An object which provides features to be included into a class or another module.

object: A computational entity which has states and behaviour. The behaviour of an object is a set of methods
which can be invoked on the object.

singleton class: An object which can modify the behaviour of its associated object.

singleton method: An instance method of a singleton class.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 181

unspecified behaviour: Possibly differing between implementations, and not necessarily defined for any particular
implementation.

variable: A computational entity that refers to an object, which is called the value of the variable.

variable binding: An association between a variable and an object which is referred to by the variable.

Ruby.3 Type System [IHN]

Ruby.3.1 Applicability to language

Ruby employs a dynamic type system usually referred to as “duck typing”. In this system the class or type of an
object is less important than the interface, or methods, it defines. Two different classes may respond to the same
methods, which mean instances of each class will handle the same method call. Usually an object is not implicitly
changed into another type.

Automatic conversion occurs for some built-in types in certain situations. For example with the addition of a float
and an integer, the integer will be converted automatically to a float. Note the result of an operation is indicated
by a Ruby comment starting with =>.

 a = 2
 b = 2.0
 a + b #=> 4.0

Another instance of automatic conversion is when an integer becomes too large to fit within a machine word. On
a 32-bit machine Ruby Fixnums have the range -230 to 230-1. When an integer becomes such that it no longer fits
within said range it is converted to a Bignum. Bignums are arbitrary length integers bounded only by memory
limitations.

Explicit conversion methods exist in Ruby to convert between types. The integer class contains the methods to_s
and to_f which return the integer represented as a string object and float object, respectively.

 10.to_s #=> “10”
 10.to_f #=> 10.0

Strings likewise support conversion to integer and float objects.

 “5”.to_i #=> 5
 “5”.to_f #=> 5.0

Duck typing grants programmers of Ruby great flexibility. Strict typing is not imposed by the language, but if a
programmer chooses, he or she can write programs such that methods mandate the class of the objects on which
they operate. This is discouraged in Ruby. If an object is called with a method it does not know, an exception will
be raised.

WG 23/N 0352 Baseline Edition 2 TR 24772

182 © ISO/IEC 2011 – All rights reserved

Ruby.3.2 Guidance to language users

• Knowledge of the types or objects used is a must. Compatible types are ones which can be intermingled
and convert automatically when necessary. Incompatible types must be converted to a compatible type
before use.

• Do not check for specific classes of objects unless there is good justification.

Ruby.4 Bit Representations [STR]

Ruby.4.1 Applicability to language

Ruby abstracts internal storage of integers. Users do not need to concern themselves about the size (in bits) of an
integer. Since integers grow as needed the user does not need to worry about overflow. Ruby provides a
mechanism to inspect specific bits of an integer through the [] method. For example to read the 10th bit of a
number:

 number = 42
 number[10] #=> 0
 number = 1024
 number[10] #=> 1

Note that the bits returned are not required to correspond to the internal representation of the number, just that
it returns a consistent representation of the number in that implementation.

Ruby supports a variety of bitwise operators. These include ~ (not), & (and), | (or), ^ (exclusive or), << (shift left),
and >> (shift right). Each of these operators works with integers of any size.

Ruby offers a pack method for the Array class (Array#pack) which produces a binary sequence dictated by the
user supplied template. In this way members of an array can be converted to different bit representations. For
instance an option for numbers is to store them in one of three ways: native-endian, big-endian, and little-endian.
In this way bit sequences can be constructed for a particular interaction or purpose. There is a similar unpack
method which will extract data given a template and bit sequence.

Ruby.4.2 Guidance to language users

• For values created within Ruby the user need not concern themselves with the internal representation of
data. In most situations using specific binary representations makes code harder to read and understand.

• Network packets that go on the wire are one case where bit representation is important. In situations like
this be sure to use the Array#pack to produce network endian data.

• Binary files are another situation where bit representation matters. The file format description should
indicate big-endian or little-endian preference.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 183

Ruby.5 Floating-point Arithmetic [PLF]

Ruby.5.1 Applicability to language

Ruby supports the use of floating-point arithmetic with the Float class. The precision of floats in Ruby is
implementation defined, however if the underlying system supports IEC 60559, the representation of floats shall
be the 64-bit double format as specified in IEC 60559, 3.2.2.

Floating-point numbers are usually approximations of real numbers and as such some precision is lost. This is
problematic when performing repeated operations. For example adding small values to numbers sometimes
results in accumulation errors. Testing numbers for equality is sometimes unreliable as well. For this reason
floating-point numbers should not be used to terminate loops.

Ruby.5.2 Guidance to language users

• Do not use a floating-point value in Boolean test for equality. Instead use code which determines if the
number resides within an acceptable range.

Ruby.6 Enumerator Issues [CCB]

Ruby.6.1 Applicability to language

Ruby provides symbols for enumeration. Sometimes all which is required is to have unique representation, there
is no value associated with the enumeration. In Ruby, symbols are lightweight objects which need not be defined
ahead of time. For example,

 travel(:north)

is a valid use of the symbol :north. (Ruby’s literal syntax for symbols is a colon followed by a word.) There is no
danger of accidentally getting to the “value” of an enumeration. So this:

 travel(:north + :south)

is not allowed. Symbols do not support addition, or any method which alters the symbol.

Sometimes it is helpful to have values associated with enumerations. In Ruby this can be accomplished by using a
hash. For example,

 traffic_light = {
 :green => “go”
 :yellow => “caution”
 :red => “stop”}
 traffic_light[:yellow]

In this way values can be associated with the symbols. Members of a hash are accessed using the same bracket
syntax as members of arrays. Note only integers can be used in array indexing, thus non-standard use of a symbol
as an array index will raise an exception.

WG 23/N 0352 Baseline Edition 2 TR 24772

184 © ISO/IEC 2011 – All rights reserved

Ruby.6.2 Guidance to language users

• Use symbols for enumerators.
• Do not define named constants to represent enumerators.

Ruby.7 Numeric Conversion Errors [FLC]

Ruby.7.1 Applicability to language

Integers in the Ruby language are of unbounded length (the actual limit is dependent on the machine’s memory).
When an integer exceeds the word size for the machine there is no rollover and no errors occur. Instead Ruby
converts the integer from one type to another. When possible, integers in Ruby are stored in a Fixnum object.
Fixnum is a class which has limited integer range, yet is able to store the number efficiently in one machine
word. Typically on a 32-bit machine the range is usually -230 to 230-1. These ranges are implementation defined

Once calculations exceed this range, integers are stored in a Bignum object. Bignum class allows any length
(memory providing) integer. This all takes place without the user’s explicit instruction.

Ruby converts integers to floating point with the user’s explicit intent. Loss of precision can occur converting from
a large magnitude integer to a floating point number. This does not generate an error.

Ruby.7.2 Guidance to language users

• Have no concern for rollover errors or the magnitude of integers.
• Enforce ranges on size dependent on the application.

Ruby.8 String Termination [CJM]

This vulnerability is not applicable to Ruby since strings are not terminated by a special character.

Ruby.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

This vulnerability is not applicable to Ruby since array indexing is checked.

Ruby.10 Unchecked Array Indexing [XYZ]

This vulnerability is not applicable to Ruby since array indexing is checked.

Ruby.11 Unchecked Array Copying [XYW]

This vulnerability is not applicable to Ruby since arrays grow.

Ruby.12 Pointer Casting and Pointer Type Changes [HFC]

This vulnerability is not applicable to Ruby since users cannot manipulate pointers.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 185

Ruby.13 Pointer Arithmetic [RVG]

This vulnerability is not applicable to Ruby since users cannot manipulate pointers.

Ruby.14 Null Pointer Dereference [XYH]

This vulnerability is not applicable to Ruby since users can not create or dereference null pointers.

Ruby.15 Dangling Reference to Heap [XYK]

This vulnerability is not applicable to Ruby since users cannot explicitly allocate and explicitly deallocate memory.

Ruby.16 Arithmetic Wrap-around Error [FIF]

This vulnerability is not applicable to Ruby since integers are unbounded.

Ruby.17 Using Shift Operations for Multiplication and Division [PIK]

This vulnerability is not applicable to Ruby since logic shifts on integers will not modify the sign bit or lose
significant bits if the size of the value grows.

Ruby.18 Sign Extension Error [XZI]

This vulnerability is not applicable to Ruby since users cannot explicitly convert a signed integer to a larger integer
without modifying the value.

Ruby.19 Choice of Clear Names [NAI]

Ruby.19.1 Applicability to language

Ruby is susceptible to errors resulting from similar looking names. Ruby provides scoping of local variables.
However, this can be confusing. Local variables cannot be accessed from another method, but local variables can
be accessed from a block. Ruby features variable prefixes for non-local variables. The dollar sign signifies a global
variable. A single “@” symbol signifies a variable scoped to the current object. A double at symbol signifies a class
wide variable, accessible from any instance of said class.

Ruby.19.2 Guidance to language users

• Use names that are clear and visually unambiguous.
• Be consistent in choosing names.
• Use names which are rich in meaning.
• Code will be reused in ways the original developers have not imagined.

WG 23/N 0352 Baseline Edition 2 TR 24772

186 © ISO/IEC 2011 – All rights reserved

Ruby.20 Dead Store [WXQ]

Ruby.20.1 Applicability to language

Ruby is susceptible to errors of accidental assignments resulting from typos of variable names. Since variables do
not need to declared before use such an assignment may go unnoticed. Such behaviour is indicative of
programmer error.

Ruby.20.2 Guidance to language users

• Check that each assignment is made to the intended variable identifier.
• Use static analysis tools, as they become available, to mechanically identify dead stores in the program.

Ruby.21 Unused Variable [YZS]

Ruby.21.1 Applicability to language

Ruby is susceptible to this vulnerability because variables are "declared" for method invocations. Method
arguments are variable bindings whose life is the duration of method invocation. An argument may exist whose
value is never used, this is an unused variable.

Ruby.21.2 Guidance to language users

• Enable detection of unused variables in the processor.

Ruby.22 Identifier Name Reuse [YOW]

Ruby.22.1 Applicability to language

Ruby employs various levels of scope which allow users to name variables in different scopes with the same
name. This can cause confusion in situations where the user is unaware of the scoping rules, especially in the use
of blocks.

Modules provide a way to group methods and variables without the need for a class. To use these module and
method names must be completely specified. For example:

 Base64::encode(text)

However modules can be included, thus putting the contents of the module within the current scope. So:

 include Base64
 encode(text)

can cause clashes with names already in scope. When this occurs the current scope takes precedence, but the
user may not realize this resulting in unknown errors.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 187

Ruby.22.2 Guidance to language users

• Ensure that a definition does not occur in a scope where a different definition is accessible.

• Know what a module defines before including. If any definitions conflict, do not include the module,
instead use the fully qualified name to refer to any definitions in the module.

Ruby.23 Namespace Issues [BJL]

Ruby.23.1 Applicability to language

This is indeed an issue for Ruby. The interpreter will resolve names to the most recent definition as the one to
use, possibly redefining a variable. Scoping provides some means of protection, but there are some cases where
confusion arises. A method definition cannot access local variables defined outside of its scope, yet a block can
access these variables. For example:

 x = 50
 def power(y)
 puts x**y
 end
 power(2) #=> NameError: undefined local variable or method ‘x’

But the following can access the x variable as defined:

 x = 50
 def execute_block(y)
 yield y
 end
 execute_block(2) {|y| x**y} #=> 2500

Ruby.23.2 Guidance to language users

• Avoid unnecessary includes.
• Do not access variables outside of a block without justification.

Ruby.24 Initialization of Variables [LAV]

This vulnerability is not applicable to Ruby since variables cannot be read before they are assigned.

Ruby.25 Operator Precedence/Order of Evaluation [JCW]

Ruby.25.1 Applicability to language

Ruby provides a rich set of operators containing over fifty operators and twenty levels of precedence. Confusion
arises especially with operators which mean something similar, but are for different purposes. For example,

 x = flag_a or flag_b

WG 23/N 0352 Baseline Edition 2 TR 24772

188 © ISO/IEC 2011 – All rights reserved

The above assigns the value of flag_a to x. If flag_a evaluates to false, then the value of the entire
expression is flag_b. The intent of the programmer was most likely assign true to x if either flag_a or
flag_b are true:

 x = flag_a || flag_b

Ruby.25.2 Guidance to language users

• Use parenthesis around operators which are known to cause confusion and errors.
• Break complex expressions into simpler ones, storing sub-expressions in variables as needed.

Ruby.26 Side-effects and Order of Evaluation [SAM]

Ruby.26.1 Applicability to language

Ruby by definition strives on side-effects. Method invocations can change the state of the receiver (object whose
method is invoked). This occurs not just for input and output for which side-effects are unavoidable, but also for
routine operations such as mutating strings, modifying arrays, or defining methods. Ruby has adopted a naming
convention which indicates destructive methods (those which modify the receiver) instead of creating a new
object which is a modified copy. For example,

 array = [1, 2, 3] #=> [1, 2, 3]
 array.slice(1..2) #=> [2, 3]
 array #=> [1, 2, 3]
 array.slice!(1..2) #=> [2, 3]
 array #=> [1]

The method name with the exclamation signifies the object itself will be modified, whereas the other method
does not modify it. Sometimes though the method is understood by the user to modify the object or cause side-
effects. For example,

 array = [1, 2, 3]
 array.concat([4, 5, 6])
 array #=> [1, 2, 3, 4, 5, 6]

These behaviours are documented and with little effort the user will be able recognize which methods cause side-
effects and what those effects are.

The order of evaluation in Ruby is left to right. Order of evaluation and order of precedence are different.
Precedence allows the familiar order of operations for expressions. For example,

 a + b * c

a is evaluated, followed by b and c, then the value of b and the value of c are multiplied and added to the value
of a. This is a subtle point which matters only if a, b, or c cause side effects. The following illustrates this:

def a; print “A”; 1; end
def b; print “B”; 2; end

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 189

def c; print “C”; 3; end
a + b * c #=> 7, and “ABC” is printed to standard output

Ruby.26.2 Guidance to language users

• Read method documentation to be aware of side-effects.
• Do not depend on side-effects of a term in the expression itself.

Ruby.27 Likely Incorrect Expression [KOA]

Ruby.27.1 Applicability to language

Ruby has operators which are typographically similar, yet which have different meanings. The assignment
operator and comparison operators are examples of these. Both are expressions and can be used in conditional
expressions.

 if a = 3 then #…
 if a == 3 then #…

The first example assigns the value 3 to the variable a. 3 evaluates to true and the conditional is executed. The
second checks that the variable a is equal to the value 3 and executes the conditional if true.

Another instance is the use of assignments in Boolean expressions. For instance,

 a = x or b = y

This expression assigns the value x to a. If x is false then the value of y will be assigned to b. This should be
avoided as the second assignment will not always occur. This could possibly be the intention of the programmer,
but a more clear way to write the code which accomplishes that is:

 a = x
 b = y if a

There is no confusion here as the second assignment clearly has an if-modifier. This is common and well
understood in the Ruby language.

Ruby.27.2 Guidance to language users

• Avoid assignments in conditions.
• Do not perform assignments within Boolean expressions.

Ruby.28 Dead and Deactivated Code [XYQ]

Ruby.28.1 Applicability to language

Dead and deactivated, as in any programming language with code branching, can be a problem in Ruby. The
existence of code which can never be reached is not a problem itself. Its existence indicates the possibility of a
coding error. Code coverage tools can help analyze which portions of code can and cannot be reached.

WG 23/N 0352 Baseline Edition 2 TR 24772

190 © ISO/IEC 2011 – All rights reserved

In particular the developer should ensure each branch can evaluate to true or false. If a condition only ever
evaluates to true, then only one branch will be taken. This situation creates dead code.

Ruby.28.2 Guidance to language users

• Use analysis tools to identify unreachable code.

Ruby.29 Switch Statements and Static Analysis [CLL]

Ruby.28.1 Applicability to language

Ruby provides a case statement. This construct is similar to C’s switch statement with a few important
differences. Cases do not “flow through” from one to the next. Only one case will be executed. An else case can
be provided, but is not required. If no cases match then the value of the case statement is nil.

Ruby.28.2 Guidance to language users

• Include an else clause, unless the intention of cases not covered is to return the value nil.
• Multiple expressions (separated by commas) may be served by the same when clause.

Ruby.30 Demarcation of Control Flow [EOJ]

This vulnerability is not applicable to Ruby since control constructs require an explicit termination symbol.

Ruby.31 Loop Control Variables [TEX]

Ruby.31.1 Applicability to language

Ruby allows the modification of loop control variables from within the body of the loop. This is usually not
performed, as the exact results are not always clear.

Ruby.31.2 Guidance to language users

• Do not modify loop control variables inside the loop body

Ruby.32 Off-by-one Error [XZH]

Ruby.32.1 Applicability to language

Like any programming language which supplies equality operators and array indexing, Ruby is vulnerable to off-
by-one-errors. These errors occur when the developer creates an incorrect test for a number range or does not
index arrays starting at zero.

Some looping constructs of the language alleviate the problem, but not all of them. For example this code

 for i in 1..5
 print i
 end #=> 12345

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 191

In addition to this is the usual confusion associated between <, <=, >, and >= in a test

Also unique to Ruby is the confusion of these particular loop constructs:

 5.times {|x| p x}

and

 1.upto(5) {|x| p x}

Each loop executes the code block five times. However the values passed to the block differ. With 5.times the
loop starts with the value 0 and the last value passed to the block is 4. However in the case of 1.upto(5), it
starts by passing 1, and ends by passing 5.

Ruby.32.2 Guidance to language users

• Use careful programming practice when programming border cases.
• Use static analysis tools to detect off-by-one errors as they become available.
• Instead of writing a loop to iterate all the elements of a container use the each method supplied by the

object’s class.

Ruby.33 Structured Programming [EWD]

Ruby.33.1 Applicability to language

Ruby makes structured programming easy for the user. Its object-oriented nature encourages at least a minimum
amount of structure. However, it is still possible to write unstructured code. One feature which allows this is the
break statement. The statement ends the execution of the current innermost loop. Excessive use of this may be
confusing to others as it is not standard practice.

Ruby.33.2 Guidance to language users

While there are some cases where it might be necessary to use relatively unstructured programming methods,
they should generally be avoided. The following ways help avoid the above named failures of structured
programming:

• Instead of using multiple return statements, have a single return statement which returns a variable
that has been assigned the desired return value.

• In most cases a break statement can be avoided by using another looping construct. These are
abundant in Ruby.

• Use classes and modules to partition functionality.

WG 23/N 0352 Baseline Edition 2 TR 24772

192 © ISO/IEC 2011 – All rights reserved

Ruby.34 Passing Parameters and Return Values [CSJ]

Ruby.34.1 Applicability to language

Ruby uses call by reference. Each variable is a named reference to an object. Return values in Ruby are merely the
object of the last expression, or a return statement. Note that Ruby allows multiple return values by way of array.
The following is valid:

return angle, velocity #=> [angle, velocity]

or less verbosely:

[angle, velocity] #as the last line of the method

While pass by reference is a low over-head way of passing parameters, sometimes confusion can arise for
programmers. If an object is modified by a method, then the possibility exists that the original object was
modified. This may not the intended consequence. For example,

def pig_latin(word)
 word = word[1..-1] << word[0] if !word[/^[aeiouy]/]
 word << “ay”
end

The above method modifies the original object if it is that string starts with a vowel. The effect is the value outside
the scope of the method is modified. The following revised method avoids this by calling the dup method on the
object word:

def pig_latin_revised(word)
 word = word[/^[aeiouy]/] ? word.dup : word[1..-1] << word[0]
 word << “ay”
end

Ruby.34.2 Guidance to language users

• Methods which modify their parameters should have the exclamation mark suffix. This is a standard
Ruby idiom alerting users to the behaviour of the method.

• Make local copies of parameters inside methods if they are not intended to be modified.

Ruby.35 Dangling References to Stack Frames [DCM]

This vulnerability is not applicable to Ruby since users cannot create dangling references.

Ruby.36 Subprogram Signature Mismatch [OTR]

Ruby.36.1 Applicability to language

Subprogram signatures in Ruby only consist of an arity count and name. A mismatch in the number of parameters
will thus be caught before a call is executed. The type of each parameter is not enforced by the interpreter. This is

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 193

considered strength of Ruby, in that an object that responds to the same methods can imitate an object of
another type. If an object does not respond to a method an error will be thrown. Also if the implementer chooses
they can query the object to test its available methods and choose how to proceed.

Ruby.36.2 Guidance to language users

• The Ruby interpreter will provide error messages for instances of methods called with an inappropriate
number of arguments.

Ruby.37 Recursion [GDL]

Ruby.37.1 Applicability to language

Recursion can exhaust the finite stack space within a program. When this happens in Ruby, a “SystemStackError:
stack level too deep” error occurs, which can be caught.

For methods which have the possibility of exhausting the stack, they should be implemented in an imperative
style instead of the more mathematical, perhaps elegant, recursive manner.

There is no set amount of recursion an interpreter must support. Recursive methods which run successfully inside
one conforming Ruby implementation may or may not successfully run inside a different implementation.

Ruby.37.2 Guidance to language users

• When possible, design algorithms in an imperative manner.
• Test recursive methods extensively in the intended interpreter for stack overflow errors.

Ruby.38 Ignored Error Status and Unhandled Exceptions [OYB]

Ruby.38.1 Applicability to language

Ruby provides the class Exception which is used to communicate between raise methods (methods which throw
an exception) and rescue statements. Exception objects carry information about the exception including its type,
possibly a descriptive string, and optional trace back.

Given this information the programmer can deal with exception appropriately within rescue statements. In some
cases this might be program termination, while in other cases an error may be par for the course.

Ruby.38.2 Guidance to language users

• Extend Ruby’s exception handling for your specific application.
• Use the language’s built-in mechanisms (rescue, retry) for dealing with errors.

WG 23/N 0352 Baseline Edition 2 TR 24772

194 © ISO/IEC 2011 – All rights reserved

Ruby.39 Termination Strategy [REU]

Ruby.39.1 Applicability to language

Ruby standard does not explicitly state a termination strategy. The behaviour is unspecified. Differing
implementations therefore can have different strategies.

Ruby.39.2 Guidance to language users

• Consult implementation documentation concerning termination strategy.
• Do not assume each implementation behaves handles termination in the same manner.

Ruby.40 Type-breaking Reinterpretation of Data [AMV]

This vulnerability is not applicable to Ruby since every data has a single interpretation.

Ruby.41 Memory Leak [XYL]

This vulnerability is no applicable to Ruby since users cannot explicitly allocate memory.

Ruby.42 Templates and Generics [SYM]

This vulnerability is not applicable to Ruby since it does not include templates or generics.

Ruby.43 Inheritance [RIP]

Ruby.43.1 Applicability to language

Ruby allows classes to inherit from one parent class. In addition to this modules can be included in a class. The
class inherits the module’s instance methods, class variables, and constants. Including modules can silently
redefine methods or variables. Caution should be exercised when including modules for this reason. At most a
class will have one direct superclass.

Ruby.43.2 Guidance to language users

• Provide documentation of encapsulated data, and how each method affects that data.
• Inherit only from trusted sources, and, whenever possible check the version of the superclass during

initialization.
• Provide a method that provides versioning information for each class.

Ruby.44 Extra Intrinsics [LRM]

This vulnerability is not applicable to Ruby since the most recent definition of a method is selected for use.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 195

Ruby.45 Argument Passing to Library Functions [TRJ]

Ruby.45.1 Applicability to language

The original Ruby interpreter is written in the C language. Because of this many libraries for Ruby have been
written to interface with the Ruby and C. The library designer should make the library validate any input before its
use.

Ruby.45.2 Guidance to language users

• Develop wrappers around library functions that check the parameters before calling the function.
• Use only libraries known to have been consistent and validated interface requirements.

Ruby.46 Inter-language Calling [DJS]

Ruby.46.1 Applicability to language

Ruby is susceptible to this vulnerability when used in a multi-lingual environment.

There is not a standard definition for interactions with other languages. The Ruby language does not mandate
calling or return conventions for example. Two conforming Ruby processors may differ enough that binary
libraries designed for one may not work in the other.

Ruby.46.2 Guidance to language users

• Implementations may provide a framework for inter-language calling. Be familiar with the data layout
and calling mechanism of said framework.

• Use knowledge of all languages used to form names acceptable in all languages involved.
• Ensure the language in which error checking occurs is the one that handles the error.

Ruby.47 Dynamically-linked Code and Self-modifying Code [NYY]

Ruby.47.1 Applicability to language

Dynamically-linked code might be a different version at runtime than what was tested during development. This
may lead to unpredictable results. Self-modifying code can be written in Ruby.

Ruby.47.2 Guidance to language users

• Verify dynamically linked code being used is the same as that which was tested.
• Do not write self-modifying code.

Ruby.48 Library Signature [NSQ]

Ruby.48.1 Applicability to language

Ruby implementations which interface with libraries must have correct signatures for functions. Creating correct
signatures for a large library is cumbersome and should be avoided by using tools.

WG 23/N 0352 Baseline Edition 2 TR 24772

196 © ISO/IEC 2011 – All rights reserved

Ruby.48.2 Guidance to language users

• Use tools to create signatures.
• Avoid using libraries without proper signatures.

Ruby.49 Unanticipated Exceptions from Library Routines [HJW]

Ruby.49.1 Applicability to language

Ruby interfaces with libraries which could encounter unanticipated exceptions. In some situations, largely
dependent on the interpreter implementation, exceptions can cause unpredictable and possibly fatal results.

Ruby.49.2 Guidance to language users

• Use library routines which specify all possible exceptions.
• Use libraries which generate Ruby exceptions that can be rescued.

Ruby.50 Pre-processor Directives [NMP]

This vulnerability is not applicable to Ruby since it lacks a pre-processor.

Ruby.51 Suppression of Language-defined Run-time Checking [MXB]

This vulnerability does not apply to Ruby since suppression of language defined run-time checks is not allowed.
They are an integral part of the Ruby language.

Ruby.52 Provision of Inherently Unsafe Operations [SKL]

This vulnerability does not apply to Ruby. It provides a means for "type-casting" which is safe by honoring classes
with the same interface as the same type. If differences are exposed an exception will be raised by the processor.

Ruby.53 Obscure Language Features [BRS]

This vulnerability is not applicable to Ruby.

Ruby.54 Unspecified Behaviour [BQF]

Ruby.54.1 Applicability of language

Unspecified behaviour occurs where the proposed Ruby standard does not mandate a particular behaviour.

Unspecified behaviour in Ruby is abundant. In the proposed standard there are 136 instances of the phrase
“unspecified behaviour.” Examples of

unspecified behaviour are:

• A for-expression terminated by a break-expression, next-expression, or redo-expression.
• Calling Numeric#coerce(numeric) with the value NaN.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 197

• Calling Integer#&(other) if other is not an instance of the class Integer. This also applies to
Integer#|, Integer#^, Integer#<<, and Integer#>>

• Calling String#*(num) if other is not an instance of the class Integer

Ruby.54.2 Guidance to language users

• Do not rely on unspecified behaviour because the behaviour can change at each instance.
• Code that makes assumptions about the unspecified behaviour should be replaced to make it less reliant

on a particular installation and more portable.
• Document instances of use of unspecified behaviour.

Ruby.55 Undefined Behaviour [EWF]

Ruby.55.1 Applicability to language

Undefined behaviour in Ruby is cover by sections [BQF] and [FAB].

Ruby.55.2 Guidance to language users

• Avoid using features of the language which are not specified to an exact behaviour.

Ruby.56 Implementation-defined Behaviour [FAB]

Ruby.56.1 Applicability to language

The proposed Ruby standard defines implementation-defined behaviour as: possibly differing between
implementations, but defined for every implementation.

The proposed Ruby standard has documented 98 instances of implementation defined behaviour. Examples of
implementation defined behaviour are:

• Whether a singleton class can have class variables or not.
• The direct superclass of Object.
• The visibility of Module#class_variable_get.
• Kernel.p(* args) return value.

Ruby.56.2 Guidance to language users

• The abundant nature of implementation-defined behaviour makes it difficult to avoid. As much as
possible users should avoid implementation defined behaviour.

• Determine which implementation-defined implementations are shared between implementations. These
are safer to use than behaviour which is different for every.

Ruby.57 Deprecated Language Features [MEM]

This vulnerability is not applicable to Ruby since one edition of the standard exists.

WG 23/N 0352 Baseline Edition 2 TR 24772

198 © ISO/IEC 2011 – All rights reserved

Bibliography

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2004

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International Standardized
Profiles — Part 1: General principles and documentation framework

[3] ISO 10241, International terminology standards — Preparation and layout

[4] ISO/IEC 9899:1999, Programming languages — C

[5] ISO/IEC 9899:1999/Cor.1:2001, Technical Corrigendum 1

[6] ISO/IEC 9899:1999/Cor.1:2004, Technical Corrigendum 2

[7] ISO/IEC 9899:1999/Cor.1:2007, Technical Corrigendum 3

[8] ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1: Base
lannguge

[9] ISO/IEC 8652:1995, Information technology — Programming languages — Ada

[10] ISO/IEC 14882:2003, Programming languages — C++

[11] R. Seacord, The CERT C Secure Coding Standard. Boston,MA: Addison-Westley, 2008.

[12] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle Based
Software, 2004 (second edition)14

[13] ISO/IEC TR24731–1, Information technology — Programming languages, their environments and system
software interfaces — Extensions to the C library — Part 1: Bounds-checking interfaces

.

[14] ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the
 Ada programming language in high integrity systems

[15] Joint Strike Fighter Air Vehicle: C++ Coding Standards for the System Development and Demonstration
Program. Lockheed Martin Corporation. December 2005.

[16] Motor Industry Software Reliability Association. Guidelines for the Use of the C++ Language in critical
systems, June 2008

[17] ISO/IEC TR 24718: 2005, Information technology — Programming languages — Guide for the use of the
Ada Ravenscar Profile in high integrity systems

14 The first edition should not be used or quoted in this work.

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 199

[18] L. Hatton, Safer C: developing software for high-integrity and safety-critical systems. McGraw-Hill 1995

[19] ISO/IEC 15291:1999, Information technology — Programming languages — Ada Semantic Interface
Specification (ASIS)

[20] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by the
European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.

[21] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).

[22] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.

[23] J Barnes, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.

[25] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04

[26] ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, July 19, 1996
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[27] Hogaboom, Richard, A Generic API Bit Manipulation in C, Embedded Systems Programming, Vol 12, No 7,
July 1999 http://www.embedded.com/1999/9907/9907feat2.htm

[28] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John
Wiley & Sons, 1998

[29] Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National
Center for Space Study (CNES) Inquiry Board, July 1996.

[30] Seacord, R. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding for news and errata.

[31] John David N. Dionisio. Type Checking. http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf

[32] MISRA Limited. "MISRA C: 2004 Guidelines for the Use of the C Language in Critical Systems."
Warwickshire, UK: MIRA Limited, October 2004 (ISBN 095241564X).

[33] The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/)

[34] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM
Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.

[35] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-2008. Institute of Electrical and Electronics Engineers, New York, 2008.

[36] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-
10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[37] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005
http://www.nsc.liu.se/wg25/book

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf�
http://www.embedded.com/1999/9907/9907feat2.htm�
http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report�
http://www.cert.org/books/secure-coding�
http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf�
http://www.misra.org.uk/�
http://cwe.mitre.org/�
http://www.nsc.liu.se/wg25/book�

WG 23/N 0352 Baseline Edition 2 TR 24772

200 © ISO/IEC 2011 – All rights reserved

[38] GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf

[39] Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page
11, http://www.siam.org/siamnews/general/patriot.htm

[40] CERT. CERT C++ Secure Coding
Standard. https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637 (2009).

[41] Holzmann, Garard J., Computer, vol. 39, no. 6, pp 95-97, Jun., 2006, The Power of 10: Rules for Developing
Safety-Critical Code

[42] P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT
Software Engineering Notes, v.28 n.4, July 2003

[43] Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: Software
Productivity Consortium, 1992. Available from: http://www.adaic.org/docs/95style/95style.pdf

[44] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of
Object Technology , 127-134.

[45] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Constraint Violation Detection in Safety-
Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 -
116.

http://archive.gao.gov/t2pbat6/145960.pdf�
http://www.siam.org/siamnews/general/patriot.htm�
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637%20�
http://www.adaic.org/docs/95style/95style.pdf�

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 201

Index

Ada, 21, 68, 72, 82, 84
AMV – Type-breaking Reinterpretation of Data, 81
API

Application Programming Interface, 23
APL, 56
Apple

OS X, 118
application vulnerabilities, 17
Application Vulnerabilities

Adherence to Least Privilege [XYN], 110
Authentication Logic Error [XZO], 132
Cross-site Scripting [XYT], 122
Discrepancy Information Leak [XZL], 126
Distinguished Values in Data Types [KLK], 109
Executing or Loading Untrusted Code [XYS], 113
Hard-coded Password [XYP], 134
Improperly Verified Signature [XZR], 125
Injection [RST], 119
Insufficiently Protected Credentials [XYM], 131
Memory Locking [XZX], 114
Missing or Inconsistent Access Control [XZN], 132
Missing Required Cryptographic Step [XZS], 130
Path Traversal [EWR], 128
Privilege Sandbox Issues [XYO], 111
Resource Exhaustion [XZP], 115
Resource Names [HTS], 117
Sensitive Information Uncleared Before Use [XZK], 127
Unquoted Search Path or Element [XZQ], 125
Unrestricted File Upload [CBF], 116
Unspecified Functionality [BVQ], 108

application vulnerability, 13
Ariane 5, 29

bitwise operators, 56
BJL – Namespace Issues, 52
black-list, 117, 121
BQF – Unspecified Behaviour, 101
break, 69
BRS – Obscure Language Features, 100
buffer boundary violation, 31
buffer overflow, 31, 34
buffer underwrite, 31
BVQ – Unspecified Functionality, 108

C, 30, 56, 58, 59, 66, 67, 69, 72, 82
C++, 56, 59, 66, 67, 72, 82, 84, 85, 95
call by copy, 70
call by name, 70
call by reference, 70
call by result, 70
call by value, 70
call by value-result, 70
CBF – Unrestricted File Upload, 116
CCB – Enumerator Issues, 26
CJM – String Termination, 30
CLL – Switch Statements and Static Analysis, 63
continue, 69
cryptologic, 80, 125
CSJ – Passing Parameters and Return Values, 69

dangling reference, 40
DCM – Dangling References to Stack Frames, 72
Deactivated code, 61
Dead code, 61
Diffie-Hellman-style, 133
digital signature, 93
DJS – Inter-language Calling, 90
DoS

Denial of Service, 115
dynamically linked, 92

encryption, 126, 130
endian

big, 23
little, 23

endianness, 22
Enumerations, 26
EOJ – Demarcation of Control Flow, 64
EWD – Structured Programming, 68
EWF – Undefined Behaviour, 103
EWR – Path Traversal, 128
exception handler, 95

FAB – Implementation-defined Behaviour, 104
FIF – Arithmetic Wrap-around Error, 42
FLC – Numeric Conversion Errors, 28
Fortran, 81, 82

WG 23/N 0352 Baseline Edition 2 TR 24772

202 © ISO/IEC 2011 – All rights reserved

GDL – Recursion, 75
generics, 84
GIF, 117
goto, 69

HCB – Buffer Boundary Violation (Buffer Overflow), 31
HFC – Pointer Casting and Pointer Type Changes, 36
HJW – Unanticipated Exceptions from Library Routines, 94
HTML

Hyper Text Markup Language, 121
HTS – Resource Names, 117
HTTP

Hypertext Transfer Protocol, 124

IEEE 754, 24
IHN –Type System, 19
inheritance, 86
IP address, 116

Java, 26, 58, 60, 84
JavaScript, 122, 123, 124
JCW – Operator Precedence/Order of Evaluation, 56

KLK – Distinguished Values in Data Types, 109
KOA – Likely Incorrect Expression, 59

language vulnerabilities, 17
Language Vulnerabilities

Argument Passing to Library Functions [TRJ], 89
Arithmetic Wrap-around Error [FIF], 42
Bit Representations [STR], 22
Buffer Boundary Violation (Buffer Overflow) [HCB], 31
Choice of Clear Names [NAI], 45
Dangling Reference to Heap [XYK], 39
Dangling References to Stack Frames [DCM], 72
Dead and Deactivated Code [XYQ], 60
Dead Store [WXQ], 47
Demarcation of Control Flow [EOJ], 64
Deprecated Language Features [MEM], 106
Dynamically-linked Code and Self-modifying Code

[NYY], 92
Enumerator Issues [CCB], 26
Extra Intrinsics [LRM], 88
Floating-point Arithmetic [PLF], 24
Identifier Name Reuse [YOW], 50
Ignored Error Status and Unhandled Exceptions [OYB],

77

Implementation-defined Behaviour [FAB], 104
Inheritance [RIP], 86
Initialization of Variables [LAV], 53
Inter-language Calling [DJS], 90
Library Signature [NSQ], 93
Likely Incorrect Expression [KOA], 59
Loop Control Variables [TEX], 65
Memory Leak [XYL], 83
Namespace Issues [BJL], 52
Null Pointer Dereference [XYH], 38
Numeric Conversion Errors [FLC], 28
Obscure Language Features [BRS], 100
Off-by-one Error [XZH], 66
Operator Precedence/Order of Evaluation [JCW], 56
Passing Parameters and Return Values [CSJ], 69
Pointer Arithmetic [RVG], 38
Pointer Casting and Pointer Type Changes [HFC], 36
Pre-processor Directives [NMP], 96
Provision of Inherently Unsafe Operations [SKL], 98
Recursion [GDL], 75
Side-effects and Order of Evaluation [SAM], 57
Sign Extension Error [XZI], 44
String Termination [CJM], 30
Structured Programming [EWD], 68
Subprogram Signature Mismatch [OTR], 74
Suppression of Language-defined Run-time Checking

[MXB], 97
Switch Statements and Static Analysis [CLL], 63
Templates and Generics [SYM], 84
Termination Strategy [REU], 79
Type System [IHN], 19
Type-breaking Reinterpretation of Data [AMV], 81
Unanticipated Exceptions from Library Routines [HJW],

94
Unchecked Array Copying [XYW], 35
Unchecked Array Indexing [XYZ], 33
Undefined Behaviour [EWF], 103
Unspecified Behaviour [BFQ], 101
Unused Variable [YZS], 49
Using Shift Operations for Multiplication and Division

[PIK], 43
language vulnerability, 12
LAV – Initialization of Variables, 53
Linux, 118
longjmp, 69
LRM – Extra Intrinsics, 88

MAC address, 116

Baseline Edition-2 TR 24772 WG 23/N 0352

© ISO/IEC 2011 – All rights reserved 203

macof, 116
MEM – Deprecated Language Features, 106
memory disclosure, 127
Microsoft

Win16, 118
Windows XP, 118

MIME
Multipurpose Internet Mail Extensions, 121

MISRA C++, 95
mlock(), 114
MXB – Suppression of Language-defined Run-time

Checking, 97

NAI – Choice of Clear Names, 45
name type equivalence, 20
NMP – Pre-Processor Directives, 96
NSQ – Library Signature, 93
NTFS

New Technology File System, 117
NULL, 39, 67
NULL pointer, 39
null-pointer, 38
NYY – Dynamically-linked Code and Self-modifying Code,

92

OTR – Subprogram Signature Mismatch, 74
OYB – Ignored Error Status and Unhandled Exceptions, 77

Pascal, 91
PIK – Using Shift Operations for Multiplication and

Division, 43
PLF – Floating-point Arithmetic, 24
pragmas, 84, 105
predictable execution, 13, 16

real numbers, 24
resource exhaustion, 115
REU – Termination Strategy, 79
RIP – Inheritance, 86
rsize_t, 30
RST – Injection, 119
RVG – Pointer Arithmetic, 38

safety hazard, 13
safety-critical software, 13
SAM – Side-effects and Order of Evaluation, 57
security vulnerability, 13
SeImpersonatePrivilege, 112

setjmp, 69
size_t, 30
SKL – Provision of Inherently Unsage Operations, 98
software quality, 13
software vulnerabilities, 17
SQL

Structured Query Language, 109
STR – Bit Representations, 22
strcpy, 31
strncpy, 31
structure type equivalence, 20
switch, 63
SYM – Templates and Generics, 84
symlink, 129

templates, 84, 86
TEX – Loop Control Variables, 65
TRJ – Argument Passing to Library Functions, 89
type casts, 28
type coercion, 28
type safe, 20
type secure, 20
type system, 20

UNC

Uniform Naming Convention, 129
Universal Naming Convention, 129

Unchecked_Conversion, 82
UNIX, 92, 110, 118, 129
unspecified functionality, 108
Unspecified functionality, 108
URI

Uniform Resource Identifier, 124
URL

Uniform Resource Locator, 124

VirtualLock(), 114

white-list, 117, 121, 124
WXQ – Dead Store, 47

XSS

Cross-site scripting, 122
XYH – Null Pointer Deference, 38
XYK – Dangling Reference to Heap, 39
XYL – Memory Leak, 83
XYM – Insufficiently Protected Credentials, 131
XYN –Adherence to Least Privilege, 110

WG 23/N 0352 Baseline Edition 2 TR 24772

204 © ISO/IEC 2011 – All rights reserved

XYO – Privilege Sandbox Issues, 111
XYP – Hard-coded Password, 134
XYQ – Dead and Deactivated Code, 60
XYS – Executing or Loading Untrusted Code, 113
XYT – Cross-site Scripting, 122
XYW – Unchecked Array Copying, 35
XYZ – Unchecked Array Indexing, 33
XZH – Off-by-one Error, 66
XZI – Sign Extension Error, 44
XZK – Senitive Information Uncleared Before Use, 127
XZL – Discrepancy Information Leak, 126

XZN – Missing or Inconsistent Access Control, 132
XZO – Authentication Logic Error, 132
XZP – Resource Exhaustion, 115
XZQ – Unquoted Search Path or Element, 125
XZR – Improperly Verified Signature, 125
XZS – Missing Required Cryptographic Step, 130
XZX – Memory Locking, 114

YOW – Identifier Name Reuse, 50
YZS – Unused Variable, 49

	Foreword
	Introduction
	1. Scope
	2. Normative references
	3. Terms and definitions, symbols and conventions
	3.1 Terms and definitions
	3.2 Symbols and conventions
	3.2.1 Symbols
	3.2.2 Conventions

	4. Basic Concepts
	4.1 Purpose of this Technical Report
	4.2 Intended Audience
	4.3 How to Use This Document

	5 Vulnerability issues
	5.1 Predictable execution
	5.2 Sources of unpredictability in language specification
	5.2.1 Incomplete or evolving specification
	5.2.2 Undefined behaviour
	5.2.3 Unspecified behaviour
	5.2.4 Implementation-defined behaviour
	5.2.5 Difficult features
	5.2.6 Inadequate language support
	5.3 Sources of unpredictability in language usage
	5.3.1 Porting and interoperation
	5.3.2 Compiler selection and usage

	6. Programming Language Vulnerabilities
	6.1 General
	6.2 Terminology
	6.3 Type System [IHN]
	6.3.1 Description of application vulnerability
	6.3.2 Cross reference
	6.3.3 Mechanism of failure
	6.3.4 Applicable language characteristics
	6.3.5 Avoiding the vulnerability or mitigating its effects
	6.3.6 Implications for standardization

	6.4 Bit Representations [STR]
	6.4.1 Description of application vulnerability
	6.4.2 Cross reference
	6.4.3 Mechanism of failure
	6.4.4 Applicable language characteristics
	6.4.5 Avoiding the vulnerability or mitigating its effects
	6.4.6 Implications for standardization

	6.5 Floating-point Arithmetic [PLF]
	6.5.1 Description of application vulnerability
	6.5.2 Cross reference
	6.5.3 Mechanism of failure
	6.5.4 Applicable language characteristics
	6.5.5 Avoiding the vulnerability or mitigating its effects
	6.5.6 Implications for standardization

	6.6 Enumerator Issues [CCB]
	6.6.1 Description of application vulnerability
	6.6.2 Cross reference
	6.6.3 Mechanism of failure
	6.6.4 Applicable language Characteristics
	6.6.5 Avoiding the vulnerability or mitigating its effects
	6.6.6 Implications for standardization

	6.7 Numeric Conversion Errors [FLC]
	6.7.1 Description of application vulnerability
	6.7.2 Cross reference
	6.7.3 Mechanism of failure
	6.7.4 Applicable language characteristics
	6.7.5 Avoiding the vulnerability or mitigating its effects
	6.7.6 Implications for standardization

	6.8 String Termination [CJM]
	6.8.1 Description of application vulnerability
	6.8.2 Cross reference
	6.8.3 Mechanism of failure
	6.8.4 Applicable language characteristics
	6.8.5 Avoiding the vulnerability or mitigating its effects
	6.8.6 Implications for standardization

	6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]
	6.9.1 Description of application vulnerability
	6.9.2 Cross reference
	6.9.3 Mechanism of failure
	6.9.4 Applicable language characteristics
	6.9.5 Avoiding the vulnerability or mitigating its effects
	6.9.6 Implications for standardization

	6.10 Unchecked Array Indexing [XYZ]
	6.10.1 Description of application vulnerability
	6.10.2 Cross reference
	6.10.3 Mechanism of failure
	6.10.4 Applicable language characteristics
	6.10.5 Avoiding the vulnerability or mitigating its effects
	6.10.6 Implications for standardization

	6.11 Unchecked Array Copying [XYW]
	6.11.1 Description of application vulnerability
	6.11.2 Cross reference
	6.11.3 Mechanism of failure
	6.11.4 Applicable language characteristics
	6.11.5 Avoiding the vulnerability or mitigating its effects
	6.11.6 Implications for standardization

	6.12 Pointer Casting and Pointer Type Changes [HFC]
	6.12.1 Description of application vulnerability
	6.12.2 Cross reference
	6.12.3 Mechanism of failure
	6.12.4 Applicable language characteristics
	6.12.5 Avoiding the vulnerability or mitigating its effects
	6.12.6 Implications for standardization

	6.13 Pointer Arithmetic [RVG]
	6.13.1 Description of application vulnerability
	6.13.2 Cross reference
	6.13.3 Mechanism of failure
	6.13.4 Applicable language characteristics
	6.13.5 Avoiding the vulnerability or mitigating its effects
	6.13.6 Implications for standardization

	6.14 Null Pointer Dereference [XYH]
	6.14.1 Description of application vulnerability
	6.14.2 Cross reference
	6.14.3 Mechanism of failure
	6.14.4 Applicable language characteristics
	6.14.5 Avoiding the vulnerability or mitigating its effects
	6.14.6 Implications for standardization

	6.15 Dangling Reference to Heap [XYK]
	6.15.1 Description of application vulnerability
	6.15.2 Cross reference
	6.15.3 Mechanism of failure
	6.15.4 Applicable language characteristics
	6.15.5 Avoiding the vulnerability or mitigating its effects
	6.15.6 Implications for standardization

	6.16 Arithmetic Wrap-around Error [FIF]
	6.16.1 Description of application vulnerability
	6.16.2 Cross reference
	6.16.3 Mechanism of failure
	6.16.4 Applicable language characteristics
	6.16.5 Avoiding the vulnerability or mitigating its effects
	6.16.6 Implications for standardization

	6.17 Using Shift Operations for Multiplication and Division [PIK]
	6.17.1 Description of application vulnerability
	6.17.2 Cross reference
	6.17.3 Mechanism of failure
	6.17.4 Applicable language characteristics
	6.17.5 Avoiding the vulnerability or mitigating its effects
	6.17.6 Implications for standardization

	6.18 Sign Extension Error [XZI]
	6.18.1 Description of application vulnerability
	6.18.2 Cross reference
	6.18.3 Mechanism of failure
	6.18.4 Applicable language characteristics
	6.18.5 Avoiding the vulnerability or mitigating its effects
	6.18.6 Implications for standardization

	6.19 Choice of Clear Names [NAI]
	6.19.1 Description of application vulnerability
	6.19.2 Cross reference
	6.19.3 Mechanism of Failure
	6.19.4 Applicable language characteristics
	6.19.5 Avoiding the vulnerability or mitigating its effects
	6.19.6 Implications for standardization

	6.20 Dead Store [WXQ]
	6.20.1 Description of application vulnerability
	6.20.2 Cross reference
	6.20.3 Mechanism of failure
	6.20.4 Applicable language characteristics
	6.20.5 Avoiding the vulnerability or mitigating its effects
	6.20.6 Implications for standardization

	6.21 Unused Variable [YZS]
	6.21.1 Description of application vulnerability
	6.21.2 Cross reference
	6.21.3 Mechanism of failure
	6.21.4 Applicable language characteristics
	6.21.5 Avoiding the vulnerability or mitigating its effects
	6.21.6 Implications for standardization

	6.22 Identifier Name Reuse [YOW]
	6.22.1 Description of application vulnerability
	6.22.2 Cross reference
	6.22.3 Mechanism of failure
	6.22.4 Applicable language characteristics
	6.22.5 Avoiding the vulnerability or mitigating its effects
	6.22.6 Implications for standardization

	6.23 Namespace Issues [BJL]
	6.23.1 Description of Application Vulnerability
	6.23.2 Cross references
	6.23.3 Mechanism of Failure
	6.23.4 Applicable Language Characteristics
	6.23.5 Avoiding the Vulnerability or Mitigating its Effects
	6.23.6 Implications for Standardization

	6.24 Initialization of Variables [LAV]
	6.24.1 Description of application vulnerability
	6.24.2 Cross reference
	6.24.3 Mechanism of failure
	6.24.4 Applicable language characteristics
	6.24.5 Avoiding the vulnerability or mitigating its effects
	6.24.6 Implications for standardization

	6.25 Operator Precedence/Order of Evaluation [JCW]
	6.25.1 Description of application vulnerability
	6.25.2 Cross reference
	6.25.3 Mechanism of failure
	6.25.4 Applicable language characteristics
	6.25.5 Avoiding the vulnerability or mitigating its effects
	6.25.6 Implications for standardization

	6.26 Side-effects and Order of Evaluation [SAM]
	6.26.1 Description of application vulnerability
	6.26.2 Cross reference
	6.26.3 Mechanism of failure
	6.26.4 Applicable language characteristics
	6.26.5 Avoiding the vulnerability or mitigating its effects
	6.26.6 Implications for standardization

	6.27 Likely Incorrect Expression [KOA]
	6.27.1 Description of application vulnerability
	6.27.2 Cross reference
	6.27.3 Mechanism of failure
	6.27.4 Applicable language characteristics
	6.27.5 Avoiding the vulnerability or mitigating its effects
	6.27.6 Implications for standardization

	6.28 Dead and Deactivated Code [XYQ]
	6.28.1 Description of application vulnerability
	6.28.2 Cross reference
	6.28.3 Mechanism of failure
	6.28.4 Applicable language characteristics
	6.28.5 Avoiding the vulnerability or mitigating its effects
	6.28.6 Implications for standardization

	6.29 Switch Statements and Static Analysis [CLL]
	6.29.1 Description of application vulnerability
	6.29.2 Cross reference
	6.29.3 Mechanism of failure
	6.29.4 Applicable language characteristics
	6.29.5 Avoiding the vulnerability or mitigating its effects
	6.29.6 Implications for standardization

	6.30 Demarcation of Control Flow [EOJ]
	6.30.1 Description of application vulnerability
	6.30.2 Cross reference
	6.30.3 Mechanism of failure
	6.30.4 Applicable language characteristics
	6.30.5 Avoiding the vulnerability or mitigating its effects
	6.30.6 Implications for standardization

	6.31 Loop Control Variables [TEX]
	6.31.1 Description of application vulnerability
	6.31.2 Cross reference
	6.31.3 Mechanism of failure
	6.31.4 Applicable language characteristics
	6.31.5 Avoiding the vulnerability or mitigating its effects
	6.31.6 Implications for standardization

	6.32 Off-by-one Error [XZH]
	6.32.1 Description of application vulnerability
	6.32.2 Cross reference
	6.32.3 Mechanism of failure
	6.32.4 Applicable language characteristics
	6.32.5 Avoiding the vulnerability or mitigating its effects
	6.32.6 Implications for standardization

	6.33 Structured Programming [EWD]
	6.33.1 Description of application vulnerability
	6.33.2 Cross reference
	6.33.3 Mechanism of failure
	6.33.4 Applicable language characteristics
	6.33.5 Avoiding the vulnerability or mitigating its effects
	6.33.6 Implications for standardization

	6.34 Passing Parameters and Return Values [CSJ]
	6.34.1 Description of application vulnerability
	6.34.2 Cross reference
	6.34.3 Mechanism of failure
	6.34.4 Applicable language characteristics
	6.34.5 Avoiding the vulnerability or mitigating its effects
	6.34.6 Implications for standardization

	6.35 Dangling References to Stack Frames [DCM]
	6.35.1 Description of application vulnerability
	6.35.2 Cross reference
	6.35.3 Mechanism of failure
	6.35.4 Applicable language characteristics
	6.35.5 Avoiding the vulnerability or mitigating its effects
	6.35.6 Implications for standardization

	6.36 Subprogram Signature Mismatch [OTR]
	6.36.1 Description of application vulnerability
	6.36.2 Cross reference
	6.36.3 Mechanism of failure
	6.36.4 Applicable language characteristics
	6.36.5 Avoiding the vulnerability or mitigating its effects
	6.36.6 Implications for standardization

	6.37 Recursion [GDL]
	6.37.1 Description of application vulnerability
	6.37.2 Cross reference
	6.37.3 Mechanism of failure
	6.37.4 Applicable language characteristics
	6.37.5 Avoiding the vulnerability or mitigating its effects
	6.37.6 Implications for standardization

	6.38 Ignored Error Status and Unhandled Exceptions [OYB]
	6.38.1 Description of application vulnerability
	6.38.2 Cross reference
	6.38.3 Mechanism of failure
	6.38.4 Applicable language characteristics
	6.38.5 Avoiding the vulnerability or mitigating its effects
	6.38.6 Implications for standardization

	6.39 Termination Strategy [REU]
	6.39.1 Description of application vulnerability
	6.39.2 Cross reference
	6.39.3 Mechanism of failure
	6.39.4 Applicable language characteristics
	6.39.5 Avoiding the vulnerability or mitigating its effects
	6.39.6 Implications for standardization

	6.40 Type-breaking Reinterpretation of Data [AMV]
	6.40.1 Description of application vulnerability
	6.40.2 Cross reference
	6.40.3 Mechanism of failure
	6.40.4 Applicable language characteristics
	6.40.5 Avoiding the vulnerability or mitigating its effects
	6.40.6 Implications for standardization

	6.41 Memory Leak [XYL]
	6.41.1 Description of application vulnerability
	6.41.2 Cross reference
	6.41.3 Mechanism of failure
	6.41.4 Applicable language characteristics
	6.41.5 Avoiding the vulnerability or mitigating its effects
	6.41.6 Implications for standardization

	6.42 Templates and Generics [SYM]
	6.42.1 Description of application vulnerability
	6.42.2 Cross reference
	6.42.3 Mechanism of failure
	6.42.4 Applicable language characteristics
	6.42.5 Avoiding the vulnerability or mitigating its effects
	6.42.6 Implications for standardization

	6.43 Inheritance [RIP]
	6.43.1 Description of application vulnerability
	6.43.2 Cross reference
	6.43.3 Mechanism of failure
	6.43.4 Applicable language characteristics
	6.43.5 Avoiding the vulnerability or mitigating its effects
	6.43.6 Implications for standardization

	6.44 Extra Intrinsics [LRM]
	6.44.1 Description of application vulnerability
	6.44.2 Cross reference
	6.44.3 Mechanism of failure
	6.44.4 Applicable language characteristics
	6.44.5 Avoiding the vulnerability or mitigating its effects
	6.44.6 Implications for standardization

	6.45 Argument Passing to Library Functions [TRJ]
	6.45.1 Description of application vulnerability
	6.45.2 Cross reference
	6.45.3 Mechanism of failure
	6.45.4 Applicable language characteristics
	6.45.5 Avoiding the vulnerability or mitigating its effects
	6.45.6 Implications for standardization

	6.46 Inter-language Calling [DJS]
	6.46.1 Description of application vulnerability
	6.46.2 Cross reference
	[None]
	6.46.3 Mechanism of failure
	VAR str: STRING(10);
	struct {
	int length;
	char str [10];
	};
	char str [10]
	signed char
	integer(1)
	PACKED -128..127
	6.46.4 Applicable language characteristics
	6.46.5 Avoiding the vulnerability or mitigating its effects
	Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
	 Use the inter-language methods and syntax specified by the applicable language standard(s). For example, Fortran and Ada specify how to call a C function.
	 Understand the calling conventions of all languages used.
	 For items comprising the inter-language interface:
	o Understand the data layout of all data types used.
	o Understand the return conventions of all languages used.
	o Avoid assuming that the language makes a distinction between upper case and lower case letters in identifiers.
	o Avoid using a special character as the first character in identifiers.
	o Avoid using long identifier names.
	6.46.6 Implications for standardization
	In future standardization activities, the following items should be considered:
	 Standards committees should consider developing standard provisions for inter-language calling with languages most often used with their programming language.

	6.47 Dynamically-linked Code and Self-modifying Code [NYY]
	6.47.1 Description of application vulnerability
	6.47.2 Cross reference
	6.47.3 Mechanism of failure
	6.47.4 Applicable language characteristics
	6.47.5 Avoiding the vulnerability or mitigating its effects
	6.47.6 Implications for standardization

	6.48 Library Signature [NSQ]
	6.48.1 Description of application vulnerability
	6.48.2 Cross reference
	6.48.3 Mechanism of failure
	6.48.4 Applicable language characteristics
	6.48.5 Avoiding the vulnerability or mitigating its effects
	6.48.6 Implications for standardization

	6.49 Unanticipated Exceptions from Library Routines [HJW]
	6.49.1 Description of application vulnerability
	6.49.2 Cross reference
	6.49.3 Mechanism of failure
	6.49.4 Applicable language characteristics
	6.49.5 Avoiding the vulnerability or mitigating its effects
	6.49.6 Implications for standardization

	6.50 Pre-processor Directives [NMP]
	6.50.1 Description of application vulnerability
	6.50.2 Cross reference
	6.50.3 Mechanism of failure
	6.50.4 Applicable language characteristics
	6.50.5 Avoiding the vulnerability or mitigating its effects
	6.50.6 Implications for standardization

	6.51 Suppression of Language-defined Run-time Checking [MXB]
	6.51.1 Description of application vulnerability
	6.51.2 Cross reference
	6.51.3 Mechanism of Failure
	6.51.4 Applicable language characteristics
	6.51.5 Avoiding the vulnerability
	6.51.6 Implications for standardization

	6.52 Provision of Inherently Unsafe Operations [SKL]
	6.52.1 Description of application vulnerability
	6.52.2 Cross reference
	6.52.3 Mechanism of Failure
	6.52.4 Applicable language characteristics
	6.52.5 Avoiding the vulnerability

	6.53 Obscure Language Features [BRS]
	6.53.1 Description of application vulnerability
	6.53.2 Cross reference
	6.53.3 Mechanism of failure
	6.53.4 Applicable language characteristics
	6.53.5 Avoiding the vulnerability or mitigating its effects
	6.53.6 Implications for standardization

	6.54 Unspecified Behaviour [BQF]
	6.54.1 Description of application vulnerability
	6.54.2 Cross reference
	6.54.3 Mechanism of failure
	6.54.4 Applicable language characteristics
	6.54.5 Avoiding the vulnerability or mitigating its effects
	6.54.6 Implications for standardization

	6.55 Undefined Behaviour [EWF]
	6.55.1 Description of application vulnerability
	6.55.2 Cross reference
	6.55.3 Mechanism of failure
	6.55.4 Applicable language characteristics
	6.55.5 Avoiding the vulnerability or mitigating its effects
	6.55.6 Implications for standardization

	6.56 Implementation-defined Behaviour [FAB]
	6.56.1 Description of application vulnerability
	6.56.2 Cross reference
	6.56.3 Mechanism of failure
	6.56.4 Applicable language characteristics
	6.55.5 Avoiding the vulnerability or mitigating its effects
	6.56.6 Implications for standardization

	6.57 Deprecated Language Features [MEM]
	6.57.1 Description of application vulnerability
	6.57.2 Cross reference
	6.57.3 Mechanism of failure
	6.57.4 Applicable language characteristics
	6.57.5 Avoiding the vulnerability or mitigating its effects
	6.57.6 Implications for standardization

	7. Application Vulnerabilities
	7.1 General
	7.2 Terminology
	7.3 Unspecified Functionality [BVQ]
	7.3.1 Description of application vulnerability
	7.3.2 Cross reference
	7.3.3 Mechanism of failure
	7.3.4 Avoiding the vulnerability or mitigating its effects

	7.4 Distinguished Values in Data Types [KLK]
	7.4.1 Description of application vulnerability
	7.4.2 Cross reference
	7.4.3 Mechanism of failure
	7.4.4 Avoiding the vulnerability or mitigating its effects

	7.5 Adherence to Least Privilege [XYN]
	7.5.1 Description of application vulnerability
	7.5.2 Cross reference
	7.5.3 Mechanism of failure
	7.5.4 Avoiding the vulnerability or mitigating its effects

	7.6 Privilege Sandbox Issues [XYO]
	7.6.1 Description of application vulnerability
	7.6.2 Cross reference
	7.6.3 Mechanism of failure
	7.6.4 Avoiding the vulnerability or mitigating its effects

	7.7 Executing or Loading Untrusted Code [XYS]
	7.7.1 Description of application vulnerability
	7.7.2 Cross reference
	7.7.3 Mechanism of failure
	7.7.4 Avoiding the vulnerability or mitigating its effects
	7.7.5 Implications for standardization

	7.8 Memory Locking [XZX]
	7.8.1 Description of application vulnerability
	7.8.2 Cross reference
	7.8.3 Mechanism of failure
	7.8.4 Avoiding the vulnerability or mitigating its effects
	7.8.5 Implications for standardization

	7.9 Resource Exhaustion [XZP]
	7.9.1 Description of application vulnerability
	7.9.2 Cross reference
	7.9.3 Mechanism of failure
	7.9.4 Avoiding the vulnerability or mitigating its effects

	7.10 Unrestricted File Upload [CBF]
	7.10.2 Cross reference
	7.10.3 Mechanism of failure
	7.10.4 Avoiding the vulnerability or mitigating its effects
	7.10.5 Implications for standardization

	7.11 Resource Names [HTS]
	7.11.1 Description of application vulnerability
	7.11.2 Cross reference
	7.11.3 Mechanism of Failure
	5F
	7.11.4 Avoiding the vulnerability or mitigating its effects
	7.11.5 Implications for standardization

	7.12 Injection [RST]
	7.12.1 Description of application vulnerability
	7.12.2 Cross reference
	7.12.3 Mechanism of failure
	7.12.4 Avoiding the vulnerability or mitigating its effects

	7.13 Cross-site Scripting [XYT]
	7.13.1 Description of application vulnerability
	7.13.2 Cross reference
	7.13.3 Mechanism of failure
	7.13.4 Avoiding the vulnerability or mitigating its effects

	7.14 Unquoted Search Path or Element [XZQ]
	7.14.1 Description of application vulnerability
	7.14.2 Cross reference
	7.14.3 Mechanism of failure
	7.14.4 Avoiding the vulnerability or mitigating its effects

	7.15 Improperly Verified Signature [XZR]
	7.15.1 Description of application vulnerability
	7.15.2 Cross reference
	7.15.3 Mechanism of failure
	7.15.4 Avoiding the vulnerability or mitigating its effects
	7.15.5 Implications for standardization

	7.16 Discrepancy Information Leak [XZL]
	7.16.1 Description of application vulnerability
	7.16.2 Cross reference
	7.16.3 Mechanism of failure
	7.16.4 Avoiding the vulnerability or mitigating its effects

	7.17 Sensitive Information Uncleared Before Use [XZK]
	7.17.1 Description of application vulnerability
	7.17.2 Cross reference
	7.17.3 Mechanism of failure
	7.17.4 Avoiding the vulnerability or mitigating its effects

	7.18 Path Traversal [EWR]
	7.18.1 Description of application vulnerability
	7.18.2 Cross reference
	7.18.3 Mechanism of failure
	7.18.4 Avoiding the vulnerability or mitigating its effects

	7.19 Missing Required Cryptographic Step [XZS]
	7.19.1 Description of application vulnerability
	7.19.2 Cross reference
	7.19.3 Mechanism of failure
	7.19.4 Avoiding the vulnerability or mitigating its effects

	7.20 Insufficiently Protected Credentials [XYM]
	7.20.1 Description of application vulnerability
	7.20 .2 Cross reference
	7.20.3 Mechanism of failure
	7.20.4 Avoiding the vulnerability or mitigating its effects

	7.21 Missing or Inconsistent Access Control [XZN]
	7.21.1 Description of application vulnerability
	7.21.2 Cross reference
	7.21.3 Mechanism of failure
	7.21.4 Avoiding the vulnerability or mitigating its effects

	7.22 Authentication Logic Error [XZO]
	7.22.1 Description of application vulnerability
	7.22.2 Cross reference
	7.22.3 Mechanism of failure
	7.22.4 Avoiding the vulnerability or mitigating its effects

	7.23 Hard-coded Password [XYP]
	7.23.1 Description of application vulnerability
	7.23.2 Cross reference
	7.23.3 Mechanism of failure
	7.23.4 Avoiding the vulnerability or mitigating its effects

	Annex A (informative) Vulnerability Taxonomy and List
	A.1 General
	A.2 Outline of Programming Language Vulnerabilities
	A.3 Outline of Application Vulnerabilities
	A.4 Vulnerability List

	Annex B (informative) Language Specific Vulnerability Template
	Annex C (informative) Vulnerability descriptions for the language C
	C.1 Identification of standards and associated documents
	C.2 General terminology and concepts
	C.3 Type System [IHN]
	C.3.1 Applicability to language
	C.3.2 Guidance to language users

	C.4 Bit Representations [STR]
	C.4.1 Applicability to language
	C.4.2 Guidance to language users

	C.5 Floating-point Arithmetic [PLF]
	C.5.1 Applicability to language
	C.5.2 Guidance to language users

	C.6 Enumerator Issues [CCB]
	C.6.1 Applicability to language
	C.6.2 Guidance to language users

	C.7 Numeric Conversion Errors [FLC]
	C.7.1 Applicability to language
	C.7.2 Guidance to language users

	C.8 String Termination [CJM]
	C.8.1 Applicability to language
	C.8.2 Guidance to language users

	C.9 Buffer Boundary Violation (Buffer Overflow) [HCB]
	C.9.1 Applicability to language
	C.9.2 Guidance to language users

	C.10 Unchecked Array Indexing [XYZ]
	C.10.1 Applicability to language
	C.10.2 Guidance to language users

	C.11 Unchecked Array Copying [XYW]
	C.11.1 Applicability to language
	C.11.2 Guidance to language users

	C.12 Pointer Casting and Pointer Type Changes [HFC]
	C.12.1 Applicability to language
	C.12.2 Guidance to language users

	C.13 Pointer Arithmetic [RVG]
	C.13.1 Applicability to language
	C.13.2 Guidance to language users

	C.14 Null Pointer Dereference [XYH]
	C.14.1 Applicability to language
	C.14.2 Guidance to language users

	C.15 Dangling Reference to Heap [XYK]
	C.15.1 Applicability to language
	C.15.2 Guidance to language users

	C.16 Arithmetic Wrap-around Error [FIF]
	C.16.1 Applicability to language
	C.16.2 Guidance to language users

	C.17 Using Shift Operations for Multiplication and Division [PIK]
	C17.1 Applicability to language
	C17.2 Guidance to language users

	C.18 Sign Extension Error [XZI]
	C.19 Choice of Clear Names [NAI]
	C.19.1 Applicability to language
	C.19.2 Guidance to language users

	C.20 Dead Store [WXQ]
	C.21 Unused Variable [YZS]
	C.21.1 Applicability to language
	C.21.2 Guidance to language users

	C.22 Identifier Name Reuse [YOW]
	C.22.1 Applicability to language
	C.22.2 Guidance to language users

	C.23 Namespace Issues [BJL]
	C.24 Initialization of Variables [LAV]
	C.24.1 Applicability to language
	C.24.2 Guidance to language users

	C.25 Operator Precedence/Order of Evaluation [JCW]
	C.25.1 Applicability to language
	C.25.2 Guidance to language users

	C.26 Side-effects and Order of Evaluation [SAM]
	C.26.1 Applicability to language
	C.26.2 Guidance to language users

	C.27 Likely Incorrect Expression [KOA]
	C.27.1 Applicability to language
	C.27.2 Guidance to language users

	C.28 Dead and Deactivated Code [XYQ]
	C.28.1 Applicability to language
	C.28.2 Guidance to language users

	C.29 Switch Statements and Static Analysis [CLL]
	C.29.1 Applicability to language
	C.29.2 Guidance to language users

	C.30 Demarcation of Control Flow [EOJ]
	C.30.1 Applicability to language
	C.30.2 Guidance to language users

	C.31 Loop Control Variables [TEX]
	C.31.1 Applicability to language
	C.31.2 Guidance to language users

	C.32 Off-by-one Error [XZH]
	C.32.1 Applicability to language
	C.32.2 Guidance to language users

	C.33 Structured Programming [EWD]
	C.33.1 Applicability to language
	C.33.2 Guidance to language users

	C.34 Passing Parameters and Return Values [CSJ]
	C.34.1 Applicability to language
	C.34.2 Guidance to language users

	C.35 Dangling References to Stack Frames [DCM]
	C.35.1 Applicability to language
	C.35.2 Guidance to language users

	C.36 Subprogram Signature Mismatch [OTR]
	C.36.1 Applicability to language
	C.36.2 Guidance to language users

	C.37 Recursion [GDL]
	C.37.1 Applicability to language
	C.37.2 Guidance to language users

	C.38 Ignored Error Status and Unhandled Exceptions [OYB]
	C.38.1 Applicability to language
	C.38.2 Guidance to language users

	C.39 Termination Strategy [REU]
	C.39.1 Applicability to language
	C.39.2 Guidance to language users

	C.40 Type-breaking Reinterpretation of Data [AMV]
	C.40.1 Applicability to language
	C.40.2 Guidance to language users

	C.41 Memory Leak [XYL]
	C.41.1 Applicability to language
	C.41.2 Guidance to language users

	C.42 Templates and Generics [SYM]
	C.43 Inheritance [RIP]
	C.44 Extra Intrinsics [LRM]
	C.45 Argument Passing to Library Functions [TRJ]
	C.45.1 Applicability to language
	C.45. Guidance to language users

	C.46 Inter-language Calling [DJS]
	C.47 Dynamically-linked Code and Self-modifying Code [NYY]
	C.47.1 Applicability to language
	C.47.2 Guidance to language users

	C.48 Library Signature [NSQ]
	C.48.1 Applicability to language
	C.48.2 Guidance to language users

	C.49 Unanticipated Exceptions from Library Routines [HJW]
	C.49.1 Applicability to language
	C.49.2 Guidance to language users

	C.50 Pre-processor Directives [NMP]
	C.50.1 Applicability to language
	C.50.2 Guidance to language users

	C.51 Suppression of Language-defined Run-time Checking [MXB]
	C.52 Provision of Inherently Unsafe Operations [SKL]
	C.53 Obscure Language Features [BRS]
	C.53.1 Applicability to language
	C.53.2 Guidance to language users

	C.54 Unspecified Behaviour [BQF]
	C.54.1 Applicability to language
	C.54.2 Guidance to language users

	C.55 Undefined Behaviour [EWF]
	C.55.1 Applicability to language
	C.55.2 Guidance to language users

	C.56 Implementation-defined Behaviour [FAB]
	C.56.1 Applicability to language
	C.56.2 Guidance to language users

	C.57 Deprecated Language Features [MEM]
	C.57.1 Applicability to language
	C.57.2 Guidance to language users

	C.58 Implications for standardization

	Annex Ruby (informative) Vulnerability descriptions for the language Ruby
	Ruby.1 Identification of standards and associated documents
	Ruby.2 General Terminology and Concepts
	Ruby.3 Type System [IHN]
	Ruby.3.1 Applicability to language
	Ruby.3.2 Guidance to language users

	Ruby.4 Bit Representations [STR]
	Ruby.4.1 Applicability to language
	Ruby.4.2 Guidance to language users

	Ruby.5 Floating-point Arithmetic [PLF]
	Ruby.5.1 Applicability to language
	Ruby.5.2 Guidance to language users

	Ruby.6 Enumerator Issues [CCB]
	Ruby.6.1 Applicability to language
	Ruby.6.2 Guidance to language users

	Ruby.7 Numeric Conversion Errors [FLC]
	Ruby.7.1 Applicability to language
	Ruby.7.2 Guidance to language users

	Ruby.8 String Termination [CJM]
	Ruby.9 Buffer Boundary Violation (Buffer Overflow) [HCB]
	Ruby.10 Unchecked Array Indexing [XYZ]
	Ruby.11 Unchecked Array Copying [XYW]
	Ruby.12 Pointer Casting and Pointer Type Changes [HFC]
	Ruby.13 Pointer Arithmetic [RVG]
	Ruby.14 Null Pointer Dereference [XYH]
	Ruby.15 Dangling Reference to Heap [XYK]
	Ruby.16 Arithmetic Wrap-around Error [FIF]
	Ruby.17 Using Shift Operations for Multiplication and Division [PIK]
	Ruby.18 Sign Extension Error [XZI]
	Ruby.19 Choice of Clear Names [NAI]
	Ruby.19.1 Applicability to language
	Ruby.19.2 Guidance to language users

	Ruby.20 Dead Store [WXQ]
	Ruby.20.1 Applicability to language
	Ruby.20.2 Guidance to language users

	Ruby.21 Unused Variable [YZS]
	Ruby.21.1 Applicability to language
	Ruby.21.2 Guidance to language users

	Ruby.22 Identifier Name Reuse [YOW]
	Ruby.22.1 Applicability to language
	Ruby.22.2 Guidance to language users

	Ruby.23 Namespace Issues [BJL]
	Ruby.23.1 Applicability to language
	Ruby.23.2 Guidance to language users

	Ruby.24 Initialization of Variables [LAV]
	Ruby.25 Operator Precedence/Order of Evaluation [JCW]
	Ruby.25.1 Applicability to language
	Ruby.25.2 Guidance to language users

	Ruby.26 Side-effects and Order of Evaluation [SAM]
	Ruby.26.1 Applicability to language
	Ruby.26.2 Guidance to language users

	Ruby.27 Likely Incorrect Expression [KOA]
	Ruby.27.1 Applicability to language
	Ruby.27.2 Guidance to language users

	Ruby.28 Dead and Deactivated Code [XYQ]
	Ruby.28.1 Applicability to language
	Ruby.28.2 Guidance to language users

	Ruby.29 Switch Statements and Static Analysis [CLL]
	Ruby.28.1 Applicability to language
	Ruby.28.2 Guidance to language users

	Ruby.30 Demarcation of Control Flow [EOJ]
	Ruby.31 Loop Control Variables [TEX]
	Ruby.31.1 Applicability to language
	Ruby.31.2 Guidance to language users

	Ruby.32 Off-by-one Error [XZH]
	Ruby.32.1 Applicability to language
	Ruby.32.2 Guidance to language users

	Ruby.33 Structured Programming [EWD]
	Ruby.33.1 Applicability to language
	Ruby.33.2 Guidance to language users

	Ruby.34 Passing Parameters and Return Values [CSJ]
	Ruby.34.1 Applicability to language
	Ruby.34.2 Guidance to language users

	Ruby.35 Dangling References to Stack Frames [DCM]
	Ruby.36 Subprogram Signature Mismatch [OTR]
	Ruby.36.1 Applicability to language
	Ruby.36.2 Guidance to language users

	Ruby.37 Recursion [GDL]
	Ruby.37.1 Applicability to language
	Ruby.37.2 Guidance to language users

	Ruby.38 Ignored Error Status and Unhandled Exceptions [OYB]
	Ruby.38.1 Applicability to language
	Ruby.38.2 Guidance to language users

	Ruby.39 Termination Strategy [REU]
	Ruby.39.1 Applicability to language
	Ruby.39.2 Guidance to language users

	Ruby.40 Type-breaking Reinterpretation of Data [AMV]
	Ruby.41 Memory Leak [XYL]
	Ruby.42 Templates and Generics [SYM]
	Ruby.43 Inheritance [RIP]
	Ruby.43.1 Applicability to language
	Ruby.43.2 Guidance to language users

	Ruby.44 Extra Intrinsics [LRM]
	Ruby.45 Argument Passing to Library Functions [TRJ]
	Ruby.45.1 Applicability to language
	Ruby.45.2 Guidance to language users

	Ruby.46 Inter-language Calling [DJS]
	Ruby.46.1 Applicability to language
	Ruby.46.2 Guidance to language users

	Ruby.47 Dynamically-linked Code and Self-modifying Code [NYY]
	Ruby.47.1 Applicability to language
	Ruby.47.2 Guidance to language users

	Ruby.48 Library Signature [NSQ]
	Ruby.48.1 Applicability to language
	Ruby.48.2 Guidance to language users

	Ruby.49 Unanticipated Exceptions from Library Routines [HJW]
	Ruby.49.1 Applicability to language
	Ruby.49.2 Guidance to language users

	Ruby.50 Pre-processor Directives [NMP]
	Ruby.51 Suppression of Language-defined Run-time Checking [MXB]
	Ruby.52 Provision of Inherently Unsafe Operations [SKL]
	Ruby.53 Obscure Language Features [BRS]
	Ruby.54 Unspecified Behaviour [BQF]
	Ruby.54.1 Applicability of language
	Ruby.54.2 Guidance to language users

	Ruby.55 Undefined Behaviour [EWF]
	Ruby.55.1 Applicability to language
	Ruby.55.2 Guidance to language users

	Ruby.56 Implementation-defined Behaviour [FAB]
	Ruby.56.1 Applicability to language
	Ruby.56.2 Guidance to language users

	Ruby.57 Deprecated Language Features [MEM]

	Bibliography
	Index

