
Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

C Language Constructs for Parallel
Programming

Robert Geva

5/17/13 1

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Cilk Plus

•  Easy to learn: 3 keywords
•  Tasks, not threads • Load balancing Parallel tasks

• Mitigate data races on non-local
variables Hyper Objects

• Data-parallel array operations
•  Targets SIMD Array notations

• Data-parallel function mapping Elemental
Functions

•  Vectorization annotation for loops
•  Single threaded vector parallelism SIMD Loops

2 5/17/13 2

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

cilk_spawn and cilk_sync Keywords

int	
 tree_walk(node	
 *nodep)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (nodep-­‐>left)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 _Cilk_spawn	
 tree_walk(nodep-­‐>left);	

	
 	
 	
 	
 if	
 (nodep-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 _Cilk_spawn	
 tree_walk(nodep-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(nodep-­‐>value);	

	
 	
 	
 	
 _Cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

Call to f() can run in parallel
with recursive tree walks

Implicit sync at the end of every
function keeps code well structured

5/17/13 3

Asynchronous recursive
call to tree_wak

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

“Serialization” of Tree-walk Example

5/17/13 4

int	
 tree_walk(node	
 *n)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (n-­‐>left)	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 _Cilk_spawn	
 tree_walk(n-­‐>left);	

	
 	
 	
 	
 if	
 (n-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 _Cilk_spawn	
 tree_walk(n-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(n-­‐>value);	

	
 	
 	
 	
 _Cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

int	
 tree_walk(node	
 *n)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (n-­‐>left)	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 _Cilk_spawn	
 tree_walk(n-­‐>left);	

	
 	
 	
 	
 if	
 (n-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 _Cilk_spawn	
 tree_walk(n-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(n-­‐>value);	

	
 	
 	
 	
 _Cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Example of keyword vs. pragma

• The above is currently disallow in Cilk Plus
– But this is not a necessary restriction
– Can be allowed

• The pragmas are separate from the C expression
• Hard to point out an exact point within a sub

expression

X = f1(a,b) + _Cilk_spawn f2(c,d);

X = _Cilk_spawn f1(a,b) + f2(c,d);

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

cilk_for Loop

cilk_for	
 (int	
 i	
 =	
 start;	
 i	
 <	
 finish;	
 i	
 +=	
 stride)	

	
 	
 	
 	
 {	
 /*	
 Body of loop uses i	
 */	
 }	

f();	

The	
 loops	
 has	
 to	
 be	
 a	
 countable	
 loop	

Multiple	
 linear	
 increment	
 allowed	

Iterations can
execute in parallel.

All iterations complete
before f() execute

5/17/13 6

Loop invariant.

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Reducer Hyperobjects

•  “Traditional” reduction on a parallel for loop:
long	
 a[sz];	

reducer_opadd<int>	
 sum	
 =	
 0;	

cilk_for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 sz;	
 ++i)	

	
 	
 	
 	
 sum	
 +=	
 a[i];	

• Generalized reduction for any code executing in parallel:
reducer_opadd<int>	
 sum	
 =	
 0;	

void	
 sum_tree(node*	
 nodep)	
 {	

	
 	
 if	
 (nodep-­‐>left)	
 cilk_spawn	
 sum_tree(nodep-­‐>left);	

	
 	
 if	
 (nodep-­‐>right)	
 cilk_spawn	
 sum_tree(nodep-­‐>right);	

	
 	
 sum	
 	
 +=	
 nodep-­‐>value;	

}	

Parallel accesses each
get their own “view”

5/17/13 7

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Array Notation Example

• Serial Example
float	
 dot_product(unsigned	
 int	
 sz,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 A[],	
 float	
 B[])	
 {	

	
 	
 	
 	
 float	
 dp=0.0f;	

	
 	
 	
 	
 for	
 (int	
 i=0;	
 i<size;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 dp	
 +=	
 A[i]	
 *	
 B[i];	

	
 	
 	
 	
 return	
 dp;	

}	

• Array Notation Version
float	
 dot_product(unsigned	
 int	
 sz,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 A[],	
 float	
 B[])	
 {	

	
 	
 	
 	
 return	
 __sec_reduce_add(A[0:sz]	
 *	
 B[0:sz]);	

}	

Array
Section

Element-wise
multiplication

Intrinsic reduction

5/17/13 8

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Rank and Shape

• An array section doesn't have a new kind of type
–  the type of an array section is exactly that of the analogous

subscript expression.
– Additionally, an array section has rank and shape.

• A section implicitly iterates over some elements of
an array.
– Rank is the number of levels of loop nesting (i.e.

dimensions) in the iteration space.
– Shape is a (mathematical) vector of lengths. (The rank is

the same as the length of the shape vector.)

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Rank and Shape (continued)

• The rank of an expression is determined statically.
In general the shape of a section is determined
dynamically.

Expression	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Rank	
 	
 	
 	
 	
 	
 Shape	

a[0]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	

a[0:n]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 n	

a[0][i:10]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 10	

a[i:n][j:m]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 n×m	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Shapes have to match

•  If array size is not known, both lower-bound and length
must be specified

•  Section ranks and lengths (“shapes”) must match.
–  Scalars are OK.

a[0:5] = b[0:6]; // No. Size mismatch.
a[0:5][0:4] = b[0:5]; // No. Rank mismatch.
a[0:5] = b[0:5][0:5]; // No. No 2D->1D
a[0:4] = 5; // OK. 4 elements of A filled w/ 5.
a[0:4] = b[i]; // OK. Fill with scalar b[i].
a[10][0:4] = b[1:4]; // OK. Both are 1D sections.
b[i] = a[0:4]; // No. 1D  0 D

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Array Notations  Vector Operations

• Selection of array elements
–  “vector” refers to a 1D array. Current implementation is

does not allow [:] to be overloaded, e.g., for std::vector.

• Masked vector operations

A[:]	
 	
 	
 	
 	
 //	
 All of vector A
B[2:6]	
 	
 	
 //	
 Elements 2 to 7 of vector B
C[:][5]	
 	
 //	
 Column 5 of matrix C
D[0:3:2]	
 //	
 Elements 0,2,4 of vector D

if	
 (a[:]	
 >	
 b[:])	
 {	
 	
 	
 	
 	
 	
 	
 //	
 Create a (logical) bit-mask, M
	
 	
 	
 	
 c[:]	
 =	
 d[:]	
 *	
 e[:];	
 	
 //	
 For elements where M contains 1
}	
 else	
 {	

	
 	
 	
 	
 c[:]	
 =	
 d[:]	
 *	
 2;	
 	
 	
 	
 	
 //	
 For elements where M contains 0	

}	

Array x scalar operation

5/17/13 12

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Vector Loop: Order of Evaluation

simd_for	
 (int	
 n	
 =	
 0;	
 n	
 <	
 N;	
 ++n)	
 {	

	
 	
 	
 	
 a[n]	
 +=	
 b[n];	

	
 	
 	
 	
 c[n]	
 +=	
 d[n];	

}	

for	
 (int	
 n	
 =	
 0;	
 n	
 <	
 N;	
 n+=2)	
 {	

	
 	
 	
 	
 t1	
 =	
 a[n];	
 t2	
 =	
 a[n+1];	
 //	
 a[n+1]	
 can	
 be	
 written	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 before	
 c[n]	
 and	
 d[n]	
 are	
 read	

	
 	
 	
 	
 t5	
 =	
 b[n];	
 t6	
 =	
 b[n+1];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 t1	
 +=	
 t5;	
 t2	
 +=	
 t6;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 a[n]	
 =	
 t1;	
 a[n+1]	
 =	
 t2;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 t3	
 =	
 c[n];	
 t4	
 =	
 c[n+1];	
 //	
 c[n+1]	
 can	
 only	
 be	
 accessed	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 after	
 a[n]	

	
 	
 	
 	
 t5	
 =	
 d[n];	
 t6	
 =	
 d[n+1];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 t3	
 +=	
 t5;	
 t4	
 +=	
 t6	

	
 	
 	
 	
 c[n]	
 =	
 t3;	
 d[n]	
 =	
 t4;	

}	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Uniform vs. Private: Illustration

• b is uniform, t is private
– The proposal is mapping the concepts of a uniform and a

private variables onto existing syntax

• Assignments to b inside the loop shall result in
uniform values, otherwise the behavior is undefined.

	
 	
 	
 	
 double	
 b	
 =	
 get_position();	

	
 	
 	
 	
 simd_for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 N;	
 ++i)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 double	
 t;	

	
 	
 	
 	
 	
 	
 	
 	
 t	
 =	
 y[i]	
 *	
 cos(z[i]);	

	
 	
 	
 	
 	
 	
 	
 	
 a[i]	
 =	
 t	
 /	
 b;	

	
 	
 	
 	
 }	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Elemental Functions - Example

• Defining an elemental function:

double	
 option_price_call_black_scholes(

	
 	
 	
 	
 double	
 S,	
 double	
 K,	
 double	
 r,	
 	

	
 	
 double	
 sigma,	
 double	
 time)	
 _Simd	

{	

	
 	
 	
 	
 double	
 time_sqrt	
 =	
 sqrt(time);	

	
 	
 	
 	
 double	
 d1	
 =	
 (log(S/K)+r*time)/(sigma*time_sqrt)	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 0.5*sigma*time_sqrt;	

	
 	
 	
 	
 double	
 d2	
 =	
 d1-­‐(sigma*time_sqrt);	

	
 	
 	
 	
 return	
 S*N(d1)	
 -­‐	
 K*exp(-­‐r*time)*N(d2);	

}	

5/17/13 15

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Illustration

void	

vec_add	
 (
 float	
 *r,	
 float	
 *op1,	
 float	
 *op2,	
 int	
 i)	

	
 	
 	
 	
 simd	
 (chunk	
 (N))	

	
 	
 	
 	
 simd	
 (uniform	
 (r,op1,	
 op2)	
 ,	
 linear	
 (i),	
 chunk(N))	

{	

	
 	
 	
 	
 r[i]	
 =	
 op1[i]	
 +	
 op2[i];	

}	

Two vector versions
and one scalar

ssimd_for	
 (int	
 i	
 =	
 0;	
 i<N;	
 ++i)	
 {	

	
 	
 	
 	
 vec_add(a,b,c,i);	

}	

simd_for	
 (int	
 i	
 =	
 0;	
 i<N;	
 ++i)	
 {	

	
 	
 	
 	
 vec_add(a[x1[[i]],b[x2[[i]],c[x3[[i]],i);	

}	

Call matches the
version w/o the
uniforms

Call matches the
version with the
uniforms

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 5/17/13 17

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization Notice

5/17/13 18

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler
options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for
Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the “Intel® Compiler User and Reference Guides” under
“Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel® compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3
(Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers
and libraries to determine which best meet your requirements. We hope to win your business by striving to
offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Legal Disclaimer

5/17/13 19

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Joint proposal between Cilk Plus and
OpenMP

• A minimal language
• The language does not mandate a scheduling

technique
• The language allows / does not disallow dynamic

load balancing
• Serial semantics and serial equivalence
• Well integrated into the C language

