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An enhanced memory and object model for C++ and C based around implementing a subset of
[P1434] Discussing pointer provenance to make much more rigorous the modification of memory,
and adding two new core operations to objects:

1. Detachment, the reinterpretation of a live object into an array of bytes representing that
object.

2. Attachment, the reinterpretation of a previously detached object representation into a live
object.

It is believed that these changes are sufficient to implement memory shared between concurrent
processes, memory mapped in from another device by DMA, process bootstrap from a database of
shared binary Modules, and the elemental operations for implementing zero-copy serialisation and
deserialisation. One also gains object relocation in memory, and substantially enhanced default
move implementations which can use CPU registers for object transport.

It should be emphasised that care has been taken to ensure that none of the proposed changes
prevent the implementation of standard C++ on even very small embedded devices, or on heavily
concurrent architectures such as GPUs.

Changes since draft 1:
• Simplified the introduction.
• Standardesed attachment and detachment.
• Rewrote, removed or expanded upon contentious stuff which early reviewers objected

to.
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1 Introduction

Hardware memory management units, page-faulted virtual memory, shared memory, memory mapped
files and process concurrency have been ubiquitous on the major platforms, and on many of the
embedded ones, for over two decades, yet despite that C++ implementations rely heavily on these
features, the C++ standard has no knowledge nor support for them. This renders much contempo-
rary C and C++ into undefined behaviour territory, which in turn substantially limits the extent
to which C++ implementations can perform stronger optimising transformations to code. This
proposal would remedy that situation, by making input/output – i.e. a subset of deserialisation/se-
rialisation – well defined.

As messing significantly with the standard memory and object model ought not to be done more
frequently than every twenty years, I have taken the opportunity to strengthen the reasoning that
C++ implementations can make about memory and objects, sufficiently that an implementation
could formally prove the correctness of how a C++ program treats memory. The proposal would
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be that ambiguous and correctness-unproveable code would no longer compile by default in new
C++ standard enabled compilers, but an opt-in ‘escape hatch’ would enable non-conforming code
to compile under the old rules, albeit with those sections of code marked as unproveable. I have
relied heavily on the work of Sewell et al on developing a formally provable C memory model, please
see [P1434] Discussing pointer provenance for more detail.

All this would make defined behaviour some common things done on today’s computing systems
which are currently undefined or implementation defined behaviour:

• Memory mapped files.

• Shared memory.

• Direct Memory Access (DMA).

• More than one C/C++ program running at a time.

• A C/C++ program being executable a second time after its first time, being able to change
its behaviour based on accessing state stored during the first time.

• Page fault allocated memory.

• Copy-on-write memory pages.

That in turn makes possible standardising the following proposed facilities in [P1031] Low level file

i/o which are currently not possible in the current C/C++ memory and object model.

• section_handle

Wraps private, anonymous (disposed on last handle close) or named shared memory (i.e. a
file on the filing system).

• map_handle

Wraps the mapping of a portion of a section_handle into the memory of the local process,
implementing the synchronous read/write API of io_handle as memcpy().

• mapped_file_handle

Combines a section_handle and a map_handle into a ‘fire and forget’ file_handle implemen-
tation, which transparently uses memory maps under the hood to implement a file_handle
implementation complete with barriers, byte range locking, synchronisation etc.

• map_view<T>

A non-owning view of a memory map, refines span<T>.

• mapped<T>

Combines a section_handle and a map_handle into an owning view of a memory map, refines
map_view<T>.
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2 Motivation and Scope

2.1 Genericise static data initialisation

The major C++ implementations already make use of page-fault copy-on-write driven object initial-
isation in the form of the static initialisation of global objects with constexpr constructors. During
compilation, the compiler will compute what the byte representation would be for such objects –
which is possible thanks to the constexpr constructor – and stores that byte representation in the
final executable binary. During static data initialisation, those objects can simply be blessed into
life, with no runtime code execution necessary. The first write into such objects causes a page fault,
and the kernel will make a private copy of that page, replacing the shared read-only page mapped
in from the program executable.

This proposal makes generic that process, such that objects can be attached and detached from the
C++ program at any time. The program, under this proposal, can perform attachment at any time
during its execution.

This makes it possible for future binary Module objects to be dynamically attached into a C++
program, and detached if that Module implements detachment for itself. This would enable the
future implementation of shared library support into C++.

2.2 One C++ program only

I have deliberately restricted the scope of considering multiple C++ programs to no more than
multiple instances of the current C++ program, whether executed more than once over time, or
more than once concurrently, possibly over a network. What this proposal does not cover:

• The same source code compiled into more than one C++ program.

• The same source code compiled for more than one architecture, or settings, or configuration.

• Non-identical C++ programs.

I appreciate that some will be disappointed by this. All I can say is that this proposal is already
huge. Baby steps!

2.3 No inter-process communication

Early reviewers of this paper have remarked on the lack of proposed mechanism for the multiple C++
programs to communicate with one another. Thus, this proposal specifies that it is well defined
for C++ programs to exchange detached storage instances with one another, but says nothing
about how those C++ programs would indicate to one another when one program has detached an
instance, and another program is able to attach that same instance.

Early reviewers find this situation to be problematic, chiefly because one cannot state a complete,
cradle-to-grave, order of sequencing between object detachment in one C++ program through to
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object attachment in a different C++ program. Some find this to be a showstopper, however there
are good reasons to just not go there yet.

Firstly, [P0668] Revising the C++ memory model hasn’t shaken fully out yet. As that paper points
out, the current C++ memory model is not efficiently implementable on Power and nVidia archi-
tectures, so the C++ 20 standard model has been made more complex in order to better match
hardware realities with the memory model (e.g. simply happens before/strongly happens before).
The current memory model does not require hardware assisted implementations of preventing read
and write reordering, however code written to use this model would perform extremely poorly with-
out a hardware assist. And it must be borne in mind that process-based, rather than thread-based,
concurrency often has no hardware assist, thus leading to coarse rather than fine synchronisation
granularity for process-based over thread-based concurrency. As an example, if a CPU needs to
synchronise a detached storage instance with a program running on the other side of a network
connection, it would need to transmit that storage instance to the other side before it can indicate
to the other process that it can proceed. This makes synchronisation exceptionally costly relative
to processing, thus coarse synchronisation granularity is the only reasonable.

Secondly, there is a lot of movement currently occurring in the hardware space in this area, which
makes standardising an interprocess communication mechanism unwise in my opinion at the current
time. In my opinion, it would be better to let operating system kernels evolve how best they will
support synchronising new hardware such as persistent RAM first, see how that falls out, and then
seek to standardise whatever emerges.

This incomplete proposal will be unsatisfying to all. However, operating system kernels provide a
wide suite of interprocess communication mechanisms upon which the proposed enhancements can
be coordinated. That situation is little different to today’s situation, so little is lost. In my opinion
best to bite off what we can chew.

3 Design decisions, guidelines and rationale

3.1 C compatibility

I think it important that these very fundamental changes ought to be 100% compatible with C such
that implementations can retain as similar as possible a memory and object model for both C and
C++.

3.2 Differences from [P1434] Discussing pointer provenance

That paper proposes that every storage instance has an identifier unique throughout the program
execution, and that object lifetime is the same as storage instance lifetime such that that the
identifier will mutate every time an object begins life, even if at the same location in memory. This
permits run-time enforcement of pointer provenance, and thus prevents a wide class of memory-
related bugs.
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This paper divorces the lifetime of storage instances from the objects they contain, and thus the
unique identifier of the storage instance is no longer that of the specific incarnation of the objects
within it. The unique identifier of the storage instance is furthermore unique across all possible
executing C++ program instances, such that one C++ program may transmit a storage instance
identifier to another, and the other C++ program will be able to attach the same storage instance.

Thus this paper’s provenance checking model is rather weaker than P1434’s, because it is per-
storage-instance, not per-object-incarnation. Some may feel this is a fatal flaw. However, equally,
runtime checking of every object incarnation would make such checked implementations infeasible to
deploy in production, whereas it may be the case that runtime checking of storage instances, if com-
bined with a compile-time static analysed checker of object provenance, might produce production
deployable executable binaries.

4 Proposed enhanced memory and object model

4.1 Memory model (6.6.1)

1 The fundamental storage unit in the memory model is the byte. A byte is at least large enough
to contain any member of the basic execution set and the eight-bit code units of the Unicode
UTF-8 encoding form, and is composed of a contiguous sequence of bits, the number of which is
implementation-defined1. The least significant bit is called the low-order bit ; the most significant
bit is called the high-order bit. The memory storage available to a C++ program consists of one
or more sequences of contiguous bytes (arrays). Every byte has a unique address can be uniquely
identified across all reachable C++ programs using the identifier of its storage instance and its offset
into that instance.

2 [Note: The representation of types is described in X.X. – end note]
3 A ‘reachable C++ program’ can be defined by the implementation as one of the following options:

1. The currently running C++ program only. In this definition, all modifications to storage
instances are lost when the C++ program’s execution ends, which would suit embedded
devices without persistent storage.

2. Sequential executions of the unmodified current C++ program over time, where at least one
modification to storage instances by one execution is made available to subsequent executions
of the same C++ program, so long as each execution forms a total sequential ordering. This
definition would suit embedded devices with a single CPU and some persistent storage.

3. Concurrent executions of many instances of the current C++ program, where modified stor-
age instances can be passed between those concurrently executing instances, including across
heterogeneous compute2.

1There is a strong argument that future C++ ought to standardise the eight bit byte, leaving non eight bit byte
architectures on older C++ standards. This argument is much weaker for C, but still worth considering.

2Be very clear that non-identical C++ programs are not supported in this proposal (though it is left open that
implementations may offer extended guarantees).
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4 A storage instance is a contiguous array of bytes in which an object or array of objects starts
and ends its lifetime. If reachable by other C++ programs3, every storage instance has a unique
identifier across all those reachable C++ programs, made up of the identifiers of its memory pages

4,
its offset into the first of those memory pages, and the type of the object(s) stored in that storage
instance5. Previously detached objects within reachable storage instances may be reattached, and
possibly re-detached

6 once again, from the C++ program.
5 A memory page is an architecture-determined grouping of bytes. There can be one or more sizes of

memory page on an architecture, with restrictions on alignment or granularity. Some architectures
fix the memory location of each memory page, others permit a memory page to have one or more
memory locations. Memory pages come in the following kinds:

1. Private, anonymous pages visible only to the current C++ program. The contents of these
are always discarded when the current C++ program ends execution. Storage instances kept
in this kind of memory page are not required to have a unique identifier.

2. Copy-on-write pages which always have the same initial content upon first object attachment,
but in which modifications are local to the current C++ program only, and those modifications
are always discarded when the current C++ program ends execution. Storage instances kept
in this kind of memory page are not required to have a unique identifier.

3. Pages modifications of which are potentially visible to other reachable C++ programs. Storage
instances kept in this kind of memory page are required to have a unique identifier.

6 Memory pages can be concurrently accessible to more than one reachable C++ program at a time,
however accessing a memory page outside an attached storage instance is not defined. It is not
defined what occurs if a storage instance is attached to more than one reachable C++ program at
a time.

7 A memory location is either an object of scalar type, or a maximal sequence of adjacent bit-fields
all having nonzero width , referring to an offset within a memory page. [Note: Various features of
the language, such references and virtual functions, might involve additional memory locations that
are not accessible to programs but are managed by the implementation. – end note] Two or more
threads of execution can access separate memory locations without interfering with each other.
It is therefore not defined what occurs if more than one memory location refers to the same offset
within the same memory page7.

8 [Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore
can be concurrently updated by two threads of execution without interference. The same applies
to two bit-fields, if one is declared inside a nested struct declaration and the other is not, or if the
two are separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field

3Private, anonymous memory is by definition unreachable by other programs, however implementations may give
such storage instances a unique identifier anyway, in order to implement a run-time validator of memory usage
correctness.

4For example, the device, inode and offset into the file backing the storage of the storage instance.
5A high-quality hash of the type-id of the type is suggested.
6There are objects whose detached representation can only ever be attached, and cannot be detached. There are

also objects which can never be attached nor detached.
7This allows the compiler to assume that the same file will never be mapped into more than one location in the

same process, otherwise all memory would have to be assumed could alias.
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declaration. It is not safe to concurrently update two bit-fields in the same struct if all fields between
them are also bit-fields of nonzero width. – end note]

9 [Example: A class declared as
1 struct {
2 char a;
3 int b:5,
4 c:11,
5 :0,
6 d:8;
7 struct {int ee:8;} e;
8 }

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate
memory locations, and can be modified concurrently without interfering with each other. The bit-
fields b and c together constitute the fourth memory location. The bit-fields b and c cannot be
concurrently modified, but b and a, for example, can be. – end example]

4.2 Object model (6.6.2)

10 The constructs in a C++ program create, destroy, attach, detach, refer to, access and manipulate
objects. An object is created by a definition (X.X), by a new-expression (X.X), by attachment,
when implicitly changing the active member of a union (X.X), or when a temporary object is
created (X.X). An object occupies a region of storage storage instance in its period of construction
(X.X), throughout its lifetime (X.X), during detachment (X.X), and in its period of destruction
(X.X). [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. – end note] The properties of an object are determined when the object is
created. An object can have a name (Clause X). An object has a storage duration (X.X) which
influences its lifetime (X.X). An object has a type (X.X). Some objects are polymorphic (X.X);
the implementation generates information associated with each such object that makes it possible
to determine that object’s type during program execution. For other objects, the interpretation of
the values array of bytes found therein is determined by the type of the expressions (X.X) used to
access them.

(Trivially obvious changes next until ...)
11 An object of trivially copyable, standard-layout , trivially attachable, or trivially detachable type

(X.X) shall occupy contiguous bytes of storage.

(Only trivially obvious changes remain in this section)

4.3 Object detachment and attachment (new subsection)

12 The operation of detachment shall be the rendering of a live object into its detached object rep-

resentation which shall be an array of byte equal in number to the sizeof the live object. Upon
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successful detachment, the lifetime of the object or objects within the portion of the storage instance
detached shall end.

13 The operation of attachment shall be the rendering of a previously detached object representation
into a live object. Upon successful attachment, the lifetime of the object or objects within the
portion of the storage instance attached shall begin. It shall be implementation defined what occurs
if a non-reachable C++ program attaches a previously detached object representation.

14 An object of type T is said to have non-vacuous detachment if there exists a free function span<byte>
in_place_detach(span<T>) throws8 for objects of that type, or one of its subobjects. This user-
defined function renders an array of live objects into their detached object representations. The
cast operator span<byte> detach_cast(span<T>) shall be available within the implementation
body of in_place_detach() functions, this reinterprets the array of T into an array of byte; unlike
reinterpret_cast, it shall be an error to access the input array of T after the cast. Implementations
shall carry a dependency from the input array of T to the array of byte9.

15 An object of type T is said to have non-vacuous attachment if there exists a free function span<T>
in_place_attach(span<byte>) throws for objects of that type, or one of its subobjects. This user-
defined function renders an array of bytes representing array of detached object representations into
an array of live T objects. The cast operator span<T> attach_cast(byte<T>) shall be available
within the implementation body of in_place_attach() functions, this reinterprets the array of
byte into an array of T; unlike reinterpret_cast, it shall be an error to access the input array of
byte after the cast. Implementations shall carry a dependency from the input array of byte to the
array of T.

16 An object of type T shall have trivial attachment or detachment if it is neither a pointer nor refer-
ence type, and does not contain subobjects which are of pointer or reference type, and does not have
non-vacuous attachment or detachment. Types with trivial attachment or detachment, and without
a non-vacuous attachment or detachment implementation, shall have a default compiler-generated
in_place_attach(span<byte>) or in_place_detach(span<T>) implementation which shall be de-
fined as the calling of detach_cast(span<T>) for detachment, and attach_cast(byte<T>) for at-
tachment.

4.4 Object and reference lifetime (6.6.3)

17 The lifetime of an object or reference is a runtime property of the object or reference. An object is
said to have non-vacuous initialization if it is of a class or array type and it or one of its subobjects
is initialized by a constructor other than a trivial default constructor. [Note: Initialization by a
trivial copy/move constructor is non-vacuous initialization. – end note] The lifetime of an object o

of type T begins when:

•18 storage a storage instance with the proper alignment and size for type T is obtained, and one
of

•19 if the object has non-vacuous initialization, its initialization is complete, or
8We assume the presence of [P0709] Zero overhead deterministic exceptions throughout this proposal.
9i.e. aliasing between the two regions cannot occur, and memory modifications cannot be reordered in a visible

way across the cast.
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•20 if the object has non-trivial attachment, its attachment routine is complete,

except that if the object is a union member or subobject thereof, its lifetime only begins if that
union member is the initialized member in the union (X.X), or as described in X.X. The lifetime of
an object o of type T ends when:

•21 if T is a class type with a non-trivial destructor (X.X), the destructor call starts, or

•22 if T is a class type with a non-trivial detachment (X.X), the detachment call starts, or

•23 the storage storage instance which the object occupies is released, or is reused by an object
that is not nested within o (X.X).

24 The lifetime of a reference begins when its initialization is complete. The lifetime of a reference
ends as if it were a scalar object requiring storage.

25 [Note: X.X describes the lifetime of base and member subobjects. – end note]

(Only trivially obvious changes remain in this section)

4.5 Indeterminate values (6.6.4)

(Only trivially obvious changes are in this section)

4.6 Storage duration (6.6.5)

26 The storage duration is the property of an object that defines the minimum potential lifetime of the
storage instance containing the object. The storage duration is determined by the construct used
to create the object and is one of the following:

•27 static storage duration

•28 thread storage duration

•29 automatic storage duration

•30 dynamic storage duration
31 Static, thread and automatic storage durations are associated with objects introduced by declara-

tions (X.X) and implicitly created by the implementation (X.X.X). The dynamic storage duration
is associated with objects created by a new-expression (X.X.X.X).

32 The storage duration categories apply to references as well.
33 When the duration of a storage instance begins, pointers representing the address of any part of

that storage instance may be created. These pointers gain a live provenance associated with that
particular storage instance.

34 [Note: A pointer to the byte after the end of a storage instance gains a dead provenance associated
with that particular storage instance. It may also have a live provenance with a separate storage
instance. A pointer cannot have more than one live provenance at a time, but it may have a live
and one or more dead provenances simultaneously. – end note]
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35 When the end of duration of a region of storage storage instance is reached, the values of all pointers
representing the address of any part of that region of storage storage instance become invalid pointer
values gain dead provenance (X.X.X). Indirection through an invalid pointer value and passing an
invalid pointer value to a deallocation function have undefined behavior. Any other use of an invalid
pointer value has implementation-defined behavior.

36 Indirection through pointers has an associated contractual precondition that provenance is live
(X.X). Therefore indirection through pointers with dead provenance may cause a contract violation
for violation of precondition if the implementation has been configured to do so (X.X). Any other
use of an invalid pointer value has implementation-defined behavior.

(Trivially obvious changes follow until 6.6.5.4.3 Safely-derived pointers, the whole of which is to be
replaced with:)

4.6.1 Defined pointer usage

37 A non-void, non-null, non-function pointer object will have an associated provenance:

•38 It may have zero or one live provenance to a byte somewhere within the valid byte array
which makes up its associated storage instance.

•39 It may have zero or many dead provenances to associated storage instances, which can be
identified by their identifier unique across all reachable C++ programs.

40 A non-null function pointer object will have a provenance unique to the function it points to.
41 If the provenance of one or more externally supplied non-void, non-null, non-function pointer object

cannot be determined, they all shall be assumed to have the provenance of a single storage instance
of an array of the type of the pointer10.

42 The following operations involving pointers are defined:

•43 Comparison of two null pointers, which shall be considered equal.

•44 Comparison of one null pointer to a nonnull pointer, which shall be considered unequal.

•45 Ordered comparisons (<, <=, >, >=), where the provenance is common.

•46 Pointer arithmetic, so long as the resulting pointer addresses a byte within its provenanced
storage instance (whereupon it shall be live if its storage instance is live), or the single byte
immediately after (whereupon it shall be dead). The new pointer retains its source’s prove-
nance.

•47 Indirection, if provenance is live.

•48 Comparisons, including equality and inequality, of two void pointers.
10This prevents the compiler having to maintain runtime provenance tracking information for every pointer passed

to a function, or used from global state. It also means that all pointers to the same type passed to a function,
including globals used, are assumed could alias one another, as is the case in the current standard.
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49 The following operations involving two non-void, non-null pointers shall fail to compile with a
diagnostic:

•50 Comparisons, including equality and inequality, of two pointers without common provenance
(user should convert to void* beforehand).

5 Non-standardese proposed changes

We shall break away from Standardese now, as these are more fluid due to implementation questions.

5.1 Utility functions

5.1.1 span<byte> memory_page_sizes(span<byte> tofill, span<T> storage_instance) noexcept

This routine fills an array of bytes with the two-power shifts needed to construct the memory page
size of each of the memory pages in which a storage instance is stored. If the input array is too
small, an empty span is returned.

This call can be implemented easily on Microsoft Windows, Mac OS and BSD using existing APIs.
I am unaware of a straightforward technique on Linux, though a trivially simple device driver, or
new syscall, can implement it within a dozen lines of code using kernel APIs.

It should be noted that the bitscan operation necessary to calculate the bitshift of each page size
is not fast on low end CPUs, though it needs to be done only once per memory page size. It
should also be noted that we assume a two’s power size, which as far as I am aware is true for
any hardware on which modern C++ can be implemented. It finally should be noted that this
function is unavoidably racy in the presence of multiple threads of execution, unless all threads are
synchronised to the execution of this call, which is best done by the end user.

5.1.2 Polymorphic object detach and attach

This will be controversial, but I would propose the following attachment and detachment primitives
to enable polymorphic objects to be detached and reattached.

• void std::in_place_polymorphic_attach(T*) noexcept11

This would make valid into the current C++ program a T polymorphic object. It would be
called by a span<T> in_place_attach<T>(span<byte>) throws implementation as the final
operation to give life to a just-attached T object.

For vptr based implementations, this would rewrite the vptr to point at the static metadata
for that type of polymorphic object. I cannot think of a non-vptr implementation which could
not be similarly made valid.

11Why a pointer not a reference? A reference ought to be to a live object, whereas pointers can refer to any memory
location.
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• void std::in_place_polymorphic_detach(T*) noexcept

This would make invalid in the current C++ program a T polymorphic object. It would be
called by a span<byte> in_place_detach<T>(span<T>) throws implementation as the first
operation to remove life from an about-to-be-detached T object.

For vptr based implementations, this would rewrite the vptr to be null, thus guaranteeing
that any attempt to use the object polymorphically will fail.

I have left open the question as to whether polymorphic types, which otherwise meet the trivially
attachable or detachable criteria, ought to be considered trivially attachable. My personal opinion
is that this is tricky. We don’t implement trivially copyable for polymorphic types, despite that on
vptr implementations it would work just fine. On that basis, we should not make it automatic here
either.

However, there is an argument that all the known C++ 20 implementations are vptr-based, as was
the case for all known C++ 17 implementations. So one could argue that ‘vptr has won’, and to
go ahead and make a new enhanced category of types called ‘bitwise copyable’ types, which is a
superset of trivially copyable types. See [P1029] SG14 [[move_relocates]] for some ideas of what
this enhanced category of bitwise-copyable types could make possible.

5.2 Static initialisation, attachment and detachment

Currently, non-local static initialisation occurs before main() begins by the execution of the con-
structors of all objects stored at global level. For objects with trivial or constexpr constructors, the
compiler may precompute the live byte representation of those objects at compile or link time, thus
avoiding the need to call the constructors for those objects when the program is executed.

It would be proposed that this process be retermed into attachment and detachment instead. Ob-
jects with trivial or constexpr construction placed into static storage initialised at process start
would now be implemented as-if as follows:

1 byte temp[sizeof(T)];
2 new(temp) T(static init args ...); // T constructor is constexpr or trivial
3 span<byte> p = in_place_detach(o); // or detach_cast(o) if in_place_detach() not implemented
4 memcpy(executable_binary, p.data(), p.size());

This is a special case for backwards compatibility, as T may contain pointers or references and
thus not be trivially attachable and detachable. Yet we would silently call detach_cast() if
in_place_detach() is not available for this type. This is safe, as the linker fixes up any const-
expr statically initialised pointers and references to be correct.

5.3 Escape hatching from defined pointer usage

The proposed well defined usage of pointers is sufficiently strict that almost no existing code using
pointers would compile, and would have to be refactored. Consider the following:
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1 A *a; // non-null
2 B *b; // non-null
3

4 // This compiles
5 B *x = (B *)((uintptr_t) a + offsetof(A, the_b));
6

7 // But this does not (x does not have the same provenance as b)
8 assert(b == x);
9

10 // Neither does this (x has no provenance)
11 *x;

Under the proposed text, integers cannot have provenance, and thus x has no provenance.

There are three ways out:

1. You must manually specify which provenance a newly created pointer must take during casting
to pointers:

1 B *x = (B *[a])((uintptr_t) a + offsetof(A, the_b));

2. You permit compilers to track provenance during pointer => integer => pointer conversions,
for which it is hard to conclusively write out a set of comprehensive rules.

3. You add a formal escape hatch like Rust’s unsafe blocks in which the existing pointer usage
rules apply. The entire block is marked as ‘unproveable’ by the compiler.

Even if you add significant complexity to compiler provenance tracking of temporaries such that
single input provenance code like the above does compile, there still will be tens of millions of lines
of code which will need adjusting to be less ambiguous.

I am unaware of any proposal before WG21 or WG14 which would break backwards source com-
patibility so profoundly. It has never been done before. Yet the gains are immense, and perhaps
even crucial to the long term survival of the C ecosystem as the expectations of software reliability
increase, yet the annual improvements to hardware capabilities decrease.

5.4 C language equivalents

It is proposed that C gains underscore-capital mirrors of the above functions, though perhaps in
non-span form. For example, the C mirror of span<T> in_place_attach<T>(span<byte>) throws
might be T *_InPlaceAttach(char *) fails12.

6 Frequently asked questions

6.1 How is object relocation implemented using this proposal?

To relocate an object’s memory location, one would do the following:
12This assumes the C equivalance of [P0709] along the lines of [P1095] Zero overhead deterministic failure.
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1. Detach the object into its detached byte representation.

2. Cause the relocation of those bytes to a different address e.g. memcpy(), or page table modi-
fication e.g. mmap().

3. Reattach the object from its relocated byte representation.

As trivially attachable and detachable types have default attachment and detachment implementa-
tions in this proposal, that would mean that all types without pointers and references within them
can now be relocated. This substantially expands the number of types whose move constructor and
move assignment could be defaulted, and whose representation can be transported in CPU registers
instead of on the stack.

This would make object relocation proposals such as [P1144] Object relocation in terms of move

plus destroy considerably easier to implement.
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