
WG14 N3127 

Meeting notes 

C Floating Point Study Group Teleconference 
2023-03-29  
8 AM PST / 10 PM EST / 4 PM UTC 
 

  Attendees: Rajan, Jim, Fred, Damian, David H. 
  
  New agenda items (https://wiki.edg.com/pub/CFP/WebHome/CFP_meeting_agenda-
20230329-update.pdf): 
    None. 
  
  Next Meeting(s): 
    May 10, 2023, 4PM UTC 
    ISO Zoom teleconference 
    Please notify the group if this time slot does not work. 
  
  New action items: 
    Jim: Comments for CD2: Item 8: Change "unsigned and unsigned zeros" -> "unsigned zeros 
and" 
    Jim: CD2 comment for float_t/double_t re floating type vs real floating type: Add "If the types 
are not real floating types, the behavior is implementation-defined." 
    All: Consider: {FLT/DEC}_EVAL_METHOD in TS-5: Instead of allowing them to change with 
the  #pragma FENV_FLT_EVAL_METHOD, create new macros that can change with the pragma. 
The existing macros give the default evaluation method, and are available for #if/#elif, while the 
new macros have the same value as the original macros at the beginning but can change based 
on the #pragma FENV_FLT_EVAL_METHOD setting and are not valid for use in #if/#elif. 
    Damian: Rework the carg description to say phase instead of phase angle using the 
spreadsheet form. 
     
  C++ liaison: 
    Skipped. 
  
  C23 integration: 
    CD: https://wiki.edg.com/pub/CFP/WebHome/ISO-IEC_JTC_1-
SC_22_N5777_Text_for_CD_9899.pdf 
     
  Carry-over action items results: 
    David H: Get an example for the scaled reduction functions (perhaps by asking Jason or Jim or 
looking into the IEEE references). - Not done. 
      See https://754r.ucbtest.org/background/traps-and-wraps.txt 
    David H: Get an example for the augmented arithmetic functions (perhaps by asking Jason or 
Jim or looking into the IEEE references). - Not done. 
       

https://wiki.edg.com/pub/CFP/WebHome/CFP_meeting_agenda-20230329-update.pdf
https://wiki.edg.com/pub/CFP/WebHome/CFP_meeting_agenda-20230329-update.pdf
https://wiki.edg.com/pub/CFP/WebHome/ISO-IEC_JTC_1-SC_22_N5777_Text_for_CD_9899.pdf
https://wiki.edg.com/pub/CFP/WebHome/ISO-IEC_JTC_1-SC_22_N5777_Text_for_CD_9899.pdf
https://754r.ucbtest.org/background/traps-and-wraps.txt


  Action items results (from previous meeting): 
    Jim to submit [Cfp-interest 2684] as a CD2 comment. - Done. See Other issues entry 1 below. 
    Jim to submit [Cfp-interest 2686] as a CD2 comment. See “Comments for CD2” below. - Done. 
See Other issues entry 1 below. 
  
  Discussion: 
    None. 
  
  Other issues: 
    Comments for CD2 
      See [Cfp-interest 2728] possible NB comments for 
CD2; https://wiki.edg.com/pub/CFP/WebHome/CD2_comments-2D20230307.pdf 
      1) Looks OK. 
      2) OK. 
      3) OK. 
      4) OK. 
      5) OK. 
      6) OK. 
      7) OK. 
      8) ^Jim: Comments for CD2: Item 8: Change "unsigned and unsigned zeros" -> "unsigned 
zeros and" 
      9) OK. 
      10) Fred: 754 does not require complete subsets for the NaN payload? 
        Jim: No it does not. 
        David: This is OK. 
        Jim: This doesn't talk about SNaNs. Inclined to leave that to the implementation. 
        OK. 
      11) Typo. OK. 
  
    Definition of “floating types” 
      See [Cfp-interest 2654 and chain] definition of "floating types" 
      Jim: I would suggest the answer is No for having wide representations being types in some 
way. Evaluating the expression, the type is the semantic type. There still can be a wider 
representation but the type is the type. 
      Jim: For _t types, should they be real floating types from floating types? Classification macros 
can't use these and other things as well. The _t types are for arithmetic. If they are not real 
floating types, it is ambiguous. 
      Damian: Shouldn't they be real floating types? They need to remain so. 
      Jim: We don't say that yet (7.12#3). We can require them to be real floating types. A 
footnote can say they can be implementation extension types. An alternative is if they are not 
real floating types, the behavior is unspecified. 
      Rajan: No implementation has this as a non-real floating type right? 
      Fred: No, Microsoft has wide representation internally that is not in storage. Gives more 
precision. 
      Jim: True, but that is wide evaluation, not directly what is being talked about here. They 
could also make float_t be double. 
      Fred: That wouldn't work on x87 Microsoft. They use precision of double, but wider 
exponent range. And long double is the same as double for them. 

https://wiki.edg.com/pub/CFP/WebHome/CD2_comments-2D20230307.pdf


      Jim: HP had an internal register format with 2 extra exponent bits (82-bit format). It was 
made into an extension type for math library implementers (not end users). It had properties of 
a real floating type. That type could have been the definition of the _t types. 
      Fred: Is floating type defined anywhere? 
      Jim: It is pretty squishy. Generally types that represent floating point numbers. 
      Rajan: There has to be choices for unspecified, so I don't think that is the correct term for 
alternative 2. 
      Jim: It should be implementation defined. 
      Fred: I like it. Unspecified has to list the choices. 
      ^OK to be a CD2 comment for float_t/double_t if not being real floating types, they are 
implementation defined. I.e. Add "If the types are not real floating types, the behavior is 
implementation-defined." 
      Jim: Nothing says if one has to be included in another, other than in Annex H. 
      Fred: It should be a constraint violation. 
      Jim: There are lots of examples but I can't come up with them now. Double double with 
float128 is an example. 
      Fred: I think it is better for portability to force the programmer to have a cast. If neither 
operand is a subset of the other, it is a constraint violation. 
      Jim: This would disallow converting both to a wider format that contains both. 
      Fred: Correct. 
      Jim: For wide evaluation, would you preclude it? 
      Rajan: Where would this be? What does this apply to? There are issues with usual arithmetic 
conversions, other types, etc. 
      Fred: I need to look at the standard to figure it out. 
      Jim: For intermediates, the extra range/precision may not correspond to any other type or 
be contained in another type or vice versa. 
  
    Review TS part 4 revision 
      See [Cfp-interest 2710] Re: post-C23 update for TS 18661-4 
       
  
    Review TS part 5 revision 
      See [Cfp-interest 2730] TS 18661-5 revision 
20230327; https://wiki.edg.com/pub/CFP/WebHome/cfp5r-20230327.pdf 
      Issue 1) Looks like a good idea. Issues with sync, but still very useful. 
      Issue 2) Rajan: Can we do a new macro name for the changing methods? The existing ones 
are the default, and available for #if/#elif, while the new ones have the same default originally 
but can change based on the #pragma FENV_FLT_EVAL_METHOD and not be valid for use in 
#if/#elif. 
        Jim: Sounds like something that would work. 
        ^All: Consider: {FLT/DEC}_EVAL_METHOD in TS-5: Instead of allowing them to change with 
the  #pragma FENV_FLT_EVAL_METHOD, create new macros that can change with the pragma. 
The existing ones are the default, and available for #if/#elif, while the new ones have the same 
default originally but can change based on the #pragma FENV_FLT_EVAL_METHOD and not be 
valid for use in #if/#elif. 
      Issue 3) _Pragma may cause issues with prefix_FLT_EVAL_METHOD if there is no prefix. 
  
  

https://wiki.edg.com/pub/CFP/WebHome/cfp5r-20230327.pdf


    Conversions of comparison macro arguments 
      See [Cfp-interest 2731 and chain] comparison macros and exceptions due to conversion to 
the semantic type 
      Jim: In the main standard, we leave it unspecified or implementation defined if the 
arguments are converted to the semantic type before the comparison is done. For Annex F, we 
say explicitly they are NOT converted. This allows the same values as the builtin comparison 
operators. For the main body, if overfloat/underflow occurs, does it signal? The specification 
says without SNaNs they should not signal. 
      Jim: I believe any conversions have to be prior to the comparison. If there is an overflow, it 
would be raised. Similar to function arguments. 
      Fred: Agreed. 
      Jim: CFP2733 has Vincent show how an implementation may miss an overflow/underflow. 
      Jim: Any issue with the proposed clarification in the email? 
      Rajan: From an implementation perspective, we should not bias one way over another. 
      Jim: Can go on Fred's list? Let's leave this for further thought and put it in Fred's list if we 
don't decide to put it into CD2. 
  
    Terminology in definition of carg 
      See [Cfp-interest 2734] Definition of the 'carg' function 
      Looks good. Needs to be in the right spreadsheet comment form. 
      Consensus not to have alternatives. 
      ^Damian: Rework the carg description to say phase instead of phase angle using the 
spreadsheet form. 
  
Regards, 
 
Rajan Bhakta 
z/OS XL C/C++ Compiler Technical Architect 
ISO C Standards Representative (Canada, USA), INCITS/C Chair 
C/C++ Compiler Development 
rbhakta@us.ibm.com 

 
 

mailto:rbhakta@us.ibm.com

	WG14 N3127
	Meeting notes
	C Floating Point Study Group Teleconference

