
JTC1/SC22/WG14 N3144
Title: Underspecified Declarations
Author: Martin Uecker
Date: 2023-06-22

Suggested alternative text changes to address DE-49 and GB-50:

6.7 Declarations
Constraints

5 In an underspecified declaration all declared identifiers that do not have a prior declaration 
shall be ordinary identifiers.

Semantics

12 A declaration such that the declaration specifiers contain no type specifier or that is declared with
constexpr is said to be underspecified. If such a declaration is not a definition, if it declares no or
more than one ordinary identifier, if the declared identifier already has a declaration in the same 
scope, or if the declared entity is not an object, or if anywhere within the sequence of tokens 
making up the declaration identifiers that are not ordinary are declared, the behavior is 
undefined implementation-defined.XXX)

XXX) It is recommended that implementations that accept such declarations follow the 
semantics of the corresponding feature in ISO/IEC 14882.

6.7.9

NOTE 1 Such A declaration that also defines a structure or union type has implementation 
defined behavior violates a constraint. Here, the identifier x which is not ordinary but in the 
name space of the structure type is declared.

auto p = (struct { int x; } *)0;

Even a forward declaration of a structure tag

struct s;
auto p = (struct s { int x; } *)0;

would not change that situation. A direct use of the structure definition as the type specifier 
ensures the validity portability of the declaration. The following is also implementation-
defined:
 
auto alignas (struct s *) x = 0;

6.7.1

22 EXAMPLE 6 Because declarations using constexpr are underspecified, the following is 
implementation-defined because tokens within the declaration declare s which is not an 
ordinary identifier:

constexpr typeof (struct s *) x = 0;


