
Draft Technical Specification – August 31, 2023 ISO/IEC JTC 1/SC 22/WG 14 CFP Working Draft

 N3164

TECHNICAL ISO/IEC TS
SPECIFICATION 18661-5

Second edition
CFP Working Draft

2023-08-31

Information technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —

Part 5:
Supplementary attributes

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du
logiciel système — Extensions à virgule flottante pour C —

Partie 5: Attributs supplémentaires

Reference number
ISO/IEC TS 18661-5:20yy(E)

ISO/IEC TS 18661-5:CFP Working Draft

ii © ISO/IEC 2023 – All rights reserved

 5

© ISO/IEC 2023 10

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized otherwise in any form or by any means, electronic or mechanical, including
photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the
country of the requester. 15

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22
749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

COPYRIGHT PROTECTED DOCUMENT

mailto:copyright@iso.org

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved iii

FOREWORD ... IV

INTRODUCTION... V

1 SCOPE .. 1

2 CONFORMANCE.. 1

3 NORMATIVE REFERENCES... 1 5

4 TERMS AND DEFINITIONS ... 2

5 C STANDARD CONFORMANCE .. 2

5.1 FREESTANDING IMPLEMENTATIONS.. 2
5.2 PREDEFINED MACROS ... 2
5.3 STANDARD HEADERS .. 2 10

6 STANDARD PRAGMAS ... 2

7 EVALUATION FORMATS ... 3

7.1 EVALUATION METHOD PRAGMA ... 3
7.2 EVALUATION METHOD PRAGMA FOR DECIMAL FLOATING TYPES... 4
7.3 EFFECTIVE EVALUATION METHOD MACROS ... 5 15
7.4 EVALUATION TYPE MACROS .. 5
7.5 EVALUATION FORMATS FOR <TGMATH.H> ... 5

8 OPTIMIZATION CONTROLS ... 6

8.1 THE FP_ALLOW_VALUE_CHANGING_OPTIMIZATION PRAGMA ... 7
8.2 THE FP_ALLOW_ASSOCIATIVE_LAW PRAGMA ... 7 20
8.3 THE FP_ALLOW_DISTRIBUTIVE_LAW PRAGMA .. 8
8.4 THE FP_ALLOW_MULTIPLY_BY_RECIPROCAL PRAGMA .. 8
8.5 THE FP_ALLOW_ZERO_SUBNORMAL PRAGMA .. 9
8.6 THE FP_ALLOW_CONTRACT_FMA PRAGMA .. 9
8.7 THE FP_ALLOW_CONTRACT_OPERATION_CONVERSION PRAGMA .. 10 25
8.8 THE FP_ALLOW_CONTRACT PRAGMA ... 11

9 REPRODUCIBILITY .. 11

9.1 THE FP_REPRODUCIBLE PRAGMA ... 12
9.2 REPRODUCIBLE CODE .. 13

10 ALTERNATE EXCEPTION HANDLING ... 14 30

10.1 THE FENV_EXCEPT PRAGMA ... 15

BIBLIOGRAPHY .. 23

ISO/IEC TS 18661-5:CFP Working Draft

iv © ISO/IEC 2023 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity. 5
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are 10
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 15
Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity 20
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their environments, and system software interfaces.

ISO/IEC TS 18661 originally consisted of the following parts, under the general title Information 25
technology — Programming languages, their environments, and system software interfaces — Floating-
point extensions for C:

⎯ Part 1: Binary floating-point arithmetic

⎯ Part 2: Decimal floating-point arithmetic

⎯ Part 3: Interchange and extended types 30

⎯ Part 4: Supplementary functions

⎯ Part 5: Supplementary attributes

Parts 1, 2, 3, and some of Part 4 are integrated into ISO/IEC 9899:2024 (C23).

ISO/IEC TS 18661 Part 4 Version 2, a separate document, supersedes ISO/IEC TS 18661-4:2015, the 35
previous version of Part 4.

ISO/IEC TS 18661 Part 5 Version 2, this document, supersedes ISO/IEC TS 18661-5:2015, the previous
version of Part 5.

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved v

Introduction

Background

IEC 60559 floating-point standard

The IEC 60559 international standard and the corresponding version of the IEEE 754 standard have
equivalent content. 5

Floating-point standards – matching versions

IEEE 754-1985 IEC 559:1989

IEEE 754-2008 ISO/IEC/IEEE 60559:2011

IEEE 754-2019 ISO/IEC 60559:2020

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding
diversity in floating-point data representation and arithmetic, which made writing robust programs,
debugging, and moving programs between systems exceedingly difficult. Now the great majority of 10
systems provide data formats and arithmetic operations according to this standard. The stated goals of
this standard were (and have remained throughout its revisions) the following:

1 Facilitate movement of existing programs from diverse computers to those that adhere to
this standard.

2 Enhance the capabilities and safety available to programmers who, though not expert in 15
numerical methods, may well be attempting to produce numerically sophisticated
programs. However, we recognize that utility and safety are sometimes antagonists.

3 Encourage experts to develop and distribute robust and efficient numerical programs that
are portable, by way of minor editing and recompilation, onto any computer that conforms
to this standard and possesses adequate capacity. When restricted to a declared subset of 20
the standard, these programs should produce identical results on all conforming systems.

4 Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions

c. Interval arithmetic at a reasonable cost 25

5 Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation

6 Enable rather than preclude further refinements and extensions. 30

ISO/IEC TS 18661-5:CFP Working Draft

vi © ISO/IEC 2023 – All rights reserved

To these ends, the standard specified a floating-point model comprising the following:

— formats – for binary floating-point data, including representations for Not-a-Number (NaN) and
signed infinities and zeros;

— operations – basic arithmetic operations (addition, multiplication, etc.) on the format data to
compose a well-defined, closed arithmetic system; also specified conversions between floating-5
point formats and decimal character sequences, and a few auxiliary operations;

— context – status flags for detecting exceptional conditions (invalid operation, division by zero,
overflow, underflow, and inexact) and controls for choosing different rounding methods.

The IEEE 754-2008 standard for floating-point arithmetic, equivalent to the ISO/IEC/IEEE 60559:2011
international standard, was a major revision. This revision: 10

— Specified more formats, including decimal as well as binary. It added a 128-bit binary format to its
basic formats. It defined extended formats corresponding to all its basic formats. It specified data
interchange formats (which may or may not be arithmetic), including a 16-bit binary format and an
unbounded tower of wider formats. To conform to the floating-point standard, an implementation
must provide at least one of the basic formats, along with the required operations. 15

— Specified more operations. It added required operations including (among others) arithmetic
operations that round their result to a narrower format than the operands (with just one rounding),
more conversions with integer types, more classifications and comparisons, and more operations
for managing flags and modes. It added recommended operations including an extensive set of
mathematical operations and seven reduction operations for sums and scaled products. 20

— Placed more emphasis on reproducible results. This is reflected in its standardization of more
operations. For the most part, it completely specified behaviors. It required conversions between
floating-point formats and decimal character sequences to be correctly rounded for at least three
more decimal digits than is necessary to distinguish all numbers in the widest supported binary
format; it completely specified such conversions involving any number of decimal digits. It specified 25
the recommended transcendental functions to be correctly rounded.

— Added a way to specify a constant rounding direction for a static portion of code, with details left to
programming language standards. This feature potentially allows rounding control without
incurring the overhead of runtime access to a global (or thread) rounding mode.

— Added other recommended features including alternate methods for exception handling, controls 30
for expression evaluation (allowing or disallowing various optimizations), support for fully
reproducible results, and support for program debugging.

The IEEE 754-2019 standard for floating-point arithmetic, equivalent to the ISO/IEC 60559:2020
international standard, was a minor revision. As such it was limited to upward-compatible editorial
corrections and clarifications and minor enhancements. It added some recommended operations, 35
including ones that might be required features in the next revision.

IEC 60559 (like IEEE 754) defines specific encodings for the exchange of floating-point data between
different implementations. However, it does not define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context.

IEC 60559 (like IEEE 754) does not specify how its features are expressed in programming languages. 40
However, its revisions have added guidance for programming language standards, in recognition of the
fact that benefits of the floating-point standard, even if well supported in the hardware, are not

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved vii

available to users unless the programming language provides interfaces for the features and reliable
behaviors. The implementation’s combination of both hardware and software determines conformance
to the floating-point standard.

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a 5
floating-point number is specified in a form where the constituent components (sign, exponent,
significand) of the representation are defined but not the internals of these components. In particular,
the exponent range, significand size, and the base (or radix) are implementation-defined. This allows
flexibility for an implementation to take advantage of its underlying hardware architecture.
Furthermore, certain behaviors of most floating-point operations are also implementation-defined or 10
unspecified, including accuracy and aspects of the way special values and exceptional conditions are
handled.

The reason for this approach is historical. At the time when C was first standardized, before the floating-
point standard was established, there were various hardware implementations of floating-point
arithmetic in common use. Specifying the exact details of the model would have made most of the 15
existing implementations at the time non-conforming.

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative annex F,
introduced nearly complete support for the IEC 60559:1989 standard for binary floating-point
arithmetic. Also, C99’s informative annex G offered a specification of complex arithmetic that is 20
compatible with IEC 60559:1989.

ISO/IEC 9899:2011 (C11) and ISO/IEC 9899:2018 (C17) include refinements to the C99 floating-point
specification, though are still based on IEC 60559:1989. C11 upgraded annex G from “informative” to
“conditionally normative”.

ISO/IEC TR 24732:2009 introduced partial C support for the decimal floating-point arithmetic in 25
ISO/IEC/IEEE 60559:2011. ISO/IEC TR 24732, for which technical content was completed while IEEE
754-2008 was still in the later stages of development, specifies decimal types based on ISO/IEC/IEEE
60559:2011 decimal formats, though it does not include all the operations required by ISO/IEC/IEEE
60559:2011.

ISO/IEC TS 18661 provided a C language binding for ISO/IEC/IEEE 60559:2011, based on the C11 30
standard. ISO/IEC TS 18661 was organized into five parts:

ISO/IEC TS 18661-1:2014 – Binary floating-point arithmetic

ISO/IEC TS 18661-2:2015 – Decimal floating-point arithmetic, Second edition

ISO/IEC TS 18661-3:2015 – Interchange and extended types

ISO/IEC TS 18661-4:2015 – Supplementary functions 35

ISO/IEC TS 18661-5:2016 – Supplementary attributes

ISO/IEC 9899:2024 (C23) incorporates ISO/IEC TS 18661 Parts 1 and 2, the mathematical functions in
Part 4, and, in an annex, Part 3. C23 also updates its floating-point specification to support
ISO/IEC/IEEE 60559:2020.

ISO/IEC TS 18661-5:CFP Working Draft

viii © ISO/IEC 2023 – All rights reserved

A separate document updates ISO/IEC TS 18661-4. It retains the feature that was not incorporated into
C23, namely the reduction functions. It also adds support for the augmented arithmetic operations
introduced in IEC 60559:2020.

This document updates ISO/IEC TS 18661-5, which was not incorporated into C23.

Additional background on supplementary attributes 5

IEC 60559 defines alternatives for certain attributes of floating-point semantics and intends that
programming languages provide means by which a program can specify which of the alternative
semantics apply to a given block of code. The program specification of attributes is to be constant (fixed
at translation time), not dynamic (changeable at execution time). These attributes are recommended
(but not required) by IEC 60559. They are not supported in C23. 10

IEC 60559 recommends attributes for

— alternate exception handling: methods of handling floating-point exceptions

— preferredWidth: evaluation formats for floating-point operations

— value-changing optimizations: allow/disallow program transformations that might affect floating-
point result values 15

— reproducibility: support for getting floating-point result values and exceptions that are exactly
reproducible on other systems

This document provides these attributes by means of standard pragmas, where the pragma parameters
represent the alternative semantics. The pragmas are similar in form to the floating-point pragmas
(FENV_ACCESS, FP_CONTRACT, CX_LIMITED_RANGE) that have been in C since 1999. 20

The FENV_ROUND and FENV_DEC_ROUND pragmas in C23 provide the rounding direction attributes
required by IEC 60559.

TECHNICAL SPECIFICATION ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 1

Information technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C —

Part 5: 5

Supplementary attributes

1 Scope

This document specifies extensions to programming language C to include pragmas corresponding to
attributes specified and recommended in ISO/IEC 60559 and not supported in C23.

2 Conformance 10

An implementation may conform to any or all of four feature sets in this document. It so conforms if

a) it meets the requirements for a conforming implementation of C23;

b) it defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ or both, indicating
support for IEC 60559 binary or decimal floating-point arithmetic, as specified in C23 Annex F;

and one or more of the following are true: 15

c) it defines __STDC_IEC_60559_ATTRIB_EVALUATION_FORMAT__ to 20yymmL and provides
the features for evaluation formats as specified in this document (7);

d) it defines __STDC_IEC_60559_ATTRIB_OPTIMIZATION__ to 20yymmL and provides the

features for optimization as specified in this document (8);

e) it defines __STDC_IEC_60559_ATTRIB_REPRODUCIBLE__ to 20yymmL and provides the 20
features for reproducibility as specified in this document (9);

f) it defines __STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__ to 20yymmL
and provides the features for alternate exception handling as specified in this document (10).

3 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are 25
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:2024, Information technology — Programming languages — C

ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-point arithmetic

ISO/IEC TS 18661-5:CFP Working Draft

2 © ISO/IEC 2023 – All rights reserved

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2024,
ISO/IEC 60559:2020, and the following apply.

4.1

C23 5
standard ISO/IEC 9899:2024, Information technology — Programming languages — C

5 C standard conformance

5.1 Freestanding implementations

The specification in C23 Clause 4 allows freestanding implementations to conform to this technical
specification. 10

5.2 Predefined macros

The implementation defines one or more of the following macros to indicate conformance to the
specification in this document for support of the corresponding attributes specified and
recommended in IEC 60559.

__STDC_IEC_60559_ATTRIB_EVALUATION_FORMAT__ The integer constant 20yymmL. 15

__STDC_IEC_60559_ATTRIB_OPTIMIZATION__ The integer constant 20yymmL.

__STDC_IEC_60559_ATTRIB_REPRODUCIBLE__ The integer constant 20yymmL.

__STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__ The integer

constant 20yymmL.

5.3 Standard headers 20

The identifiers specified in this document are defined or declared by the associated header if and only if
the implementation defines the relevant feature macros (5.2) and

__STDC_WANT_IEC_60559_ATTRIB_EXT__

is defined as a macro at the point in the source file where the header is first included.

6 Standard pragmas 25

C23 provides standard pragmas (C23 6.10.7) for specifying certain attributes pertaining to floating-
point behavior within a compound statement or file. This document extends this practice by introducing
additional standard pragmas to support attributes recommended by IEC 60559:

#pragma STDC FP_FLT_EVAL_METHOD width

#pragma STDC FP_DEC_EVAL_METHOD width 30
#pragma STDC FP_ALLOW_VALUE_CHANGING_OPTIMIZATION on-off-switch

#pragma STDC FP_ALLOW_ASSOCIATIVE_LAW on-off-switch
#pragma STDC FP_ALLOW_DISTRIBUTIVE_LAW on-off-switch
#pragma STDC FP_ALLOW_MULTIPLY_BY_RECIPROCAL on-off-switch
#pragma STDC FP_ALLOW_ZERO_SUBNORMAL on-off-switch 35

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 3

#pragma STDC FP_ALLOW_CONTRACT_FMA on-off-switch
#pragma STDC FP_ALLOW_CONTRACT_OPERATION_CONVERSION on-off-switch
#pragma STDC FP_ALLOW_CONTRACT on-off-switch

#pragma STDC FP_REPRODUCIBLE on-off-switch
#pragma STDC FENV_EXCEPT action except-list 5

width: specified with the pragmas (7.1, 7.2)

on-off-switch: specified in C23 6.10.7

action, except-list: specified with the pragma (10.1)

7 Evaluation formats

This clause applies to implementations that define: 10

 __STDC_IEC_60559_ATTRIB_EVALUATION_FORMAT__

C23 gives implementations the flexibility to evaluate operations to the format of the wider operand
or to a still wider evaluation format. The values of the macros FLT_EVAL_METHOD (C23 5.2.4.2.2,
H.3) and DEC_EVAL_METHOD (C23 5.2.4.2.3, H.3) characterize these evaluation methods. Though
C23 does not provide means for the user to control the evaluation method, some implementations 15
provide such controls as extensions. IEC 60559 recommends an attribute for this purpose. The
following subclauses (7.1 and 7.2) specify pragmas in <math.h> to control the evaluation method.
These evaluation method pragmas, like the FENV_ROUND (C23 7.6.2) and FENV_DEC_ROUND (C23
7.6.3) pragmas, affect translation-time expression evaluation and constants.

NOTE As specified in C23 6.7.1, the value of the initializer for an object declared with storage-class 20
specifier constexpr is constrained to be exactly representable in the target type. Thus, an evaluation

method pragma whose scope includes the declaration might affect the validity of the declaration.

7.1 Evaluation method pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 25
#include <math.h>

#pragma STDC FP_FLT_EVAL_METHOD width

Description  

The FP_FLT_EVAL_METHOD pragma sets the evaluation method for standard floating types and
for binary interchange and extended floating types to the evaluation method represented by width. 30
The parameter width is an expression in one of the forms

0

decimal-constant
- decimal-constant

or 35

DEFAULT

ISO/IEC TS 18661-5:CFP Working Draft

4 © ISO/IEC 2023 – All rights reserved

where the value of the expression is a possible value of the FLT_EVAL_METHOD macro, as specified
in C23 5.2.4.2.2 and H.3. An expression represents the evaluation method corresponding to its value
(C23 5.2.4.2.2, H.3) and DEFAULT designates the implementation’s default evaluation method

(characterized by the FLT_EVAL_METHOD macro). width may be -1, 0, or DEFAULT. Which, if any,
other values of width are supported is implementation-defined. Use of unsupported values of width 5
results in undefined behavior. The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another
FP_FLT_EVAL_METHOD pragma is encountered, or until the end of the translation unit. When

inside a compound statement, the pragma takes effect from its occurrence until another 10
FP_FLT_EVAL_METHOD pragma is encountered (including within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the state for the
pragma is restored to its condition just before the compound statement.

7.2 Evaluation method pragma for decimal floating types

Synopsis 15

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h>

#pragma STDC FP_DEC_EVAL_METHOD width

Description  

The FP_DEC_EVAL_METHOD pragma sets the evaluation method for decimal interchange and 20
extended floating types to the evaluation method represented by width. The parameter width is an
expression in one of the forms

0

decimal-constant
− decimal-constant 25

or

DEFAULT

where the value of the expression is a possible value of the DEC_EVAL_METHOD macro, as specified
in C23 5.2.4.2.3 and H.3. An expression represents the evaluation method corresponding to its value
(C23 5.2.4.2.3, H.3) and DEFAULT designates the implementation’s default evaluation method 30
(characterized by the DEC_EVAL_METHOD macro). width may be -1, 1, or DEFAULT. Which, if any,
other values of width are supported is implementation-defined. Use of unsupported values of width
results in undefined behavior. The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another 35
FP_DEC_EVAL_METHOD pragma is encountered, or until the end of the translation unit. When
inside a compound statement, the pragma takes effect from its occurrence until another
FP_DEC_EVAL_METHOD pragma is encountered (including within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the state for the
pragma is restored to its condition just before the compound statement. 40

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 5

7.3 Effective evaluation method macros

The <float.h> macros FLT_EVAL_METHOD (C23 5.2.4.2.2, H.3) and DEC_EVAL_METHOD (C23

5.2.4.2.3, H.3) characterize the default evaluation method. Their values are constant expressions,
suitable for use in conditional expression inclusion preprocessing directives. They are not affected by
the evaluation method pragmas, thus might not reflect the effective evaluation method. 5

The <math.h> header defines macros FLT_EVAL_METHOD_EFFECTIVE and
DEC_EVAL_METHOD_EFFECTIVE that are similar to the <float.h> macros FLT_EVAL_METHOD
and DEC_EVAL_METHOD, except that they characterize the effective evaluation method at the point in

the program where the macro is used. Thus, they reflect the state of any evaluation method pragmas
(7.1, 7.2) that are in effect. These macros shall not be used in conditional expression inclusion 10
preprocessing directives.

7.4 Evaluation type macros

The <math.h> types with an _t suffix (for example, float_t) (C23 7.12 and H.11), which are
defined to match evaluation formats, reflect the evaluation method where no evaluation method
pragma is in effect. For each of these types, there is a type-like macro in <math.h> with the same 15

name which expands to a designation for the type whose range and precision are used for
evaluating operations and constants of the corresponding standard, binary, or decimal floating type.
The macro reflects the actual evaluation method, which might be determined by an evaluation
method pragma. Use of #undef to remove the macro definition will ensure that the actual type is

referred to (as though no evaluation method pragma was in effect). 20

7.5 Evaluation formats for <tgmath.h>

The evaluation methods in C23 apply to floating-point operators, but not to math functions. Hence, they
do not apply to the IEC 60559 operations that are provided as library functions. This clause specifies a
macro the user can define to cause the generic macros in <tgmath.h> to be evaluated like floating-

point operators. 25

Except for functions that round result to a narrower type, if the macro

__STDC_TGMATH_OPERATOR_EVALUATION__

is defined at the point in the program where <tgmath.h> is first included, the format of the
generic parameters of the function invoked by a type-generic macro is the evaluation format
determined by the effective evaluation method (see C23 5.2.4.2.2, 5.2.4.2.3, H.3) applied to the types 30
of the arguments for generic parameters. The semantic type of the expanded type-generic macro is
as determined by the rules in C23 7.27 and H.13 and is unchanged by the evaluation method. Neither
the arguments for generic parameters nor the result are narrowed to their semantic types. Thus, (if the macro
__STDC_TGMATH_OPERATOR_EVALUATION__ is appropriately defined) the evaluation method

affects the operations provided by type-generic macros and floating-point operators in the same 35
way. See EXAMPLE below.

The macro __STDC_TGMATH_OPERATOR_EVALUATION__ does not alter the conversion of
classification macro arguments to their semantic types (as specified in C23 7.12.3).

ISO/IEC TS 18661-5:CFP Working Draft

6 © ISO/IEC 2023 – All rights reserved

EXAMPLE The following code uses wide evaluation to avoid overflow and underflow.

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#define __STDC_TGMATH_OPERATOR_EVALUATION__

#include <tgmath.h>

{ 5
 #pragma STDC FLT_EVAL_METHOD 1 /* to double */

 float x, y, z;

 ...
 z = sqrt(x * x + y * y);

} 10

Because of the evaluation method pragma, the sum of squares, whose semantic type is float, is
evaluated with the range and precision of double, hence does not overflow or underflow. The
expanded <tgmath.h> macro sqrt acquires the semantic type of its argument: float. However,
because the macro __STDC_TGMATH_OPERATOR_EVALUATION__ is defined before the inclusion

of <tgmath.h>, the sqrt macro behaves like an operator with respect to the evaluation method 15
and does not narrow its argument to its semantic type. Without the definition of the macro
__STDC_TGMATH_OPERATOR_EVALUATION__, the sqrt macro would expand to sqrtf and its

evaluated argument would be converted to float, which might overflow or underflow.

Recommended practice
If the value of width appearing in an evaluation method pragma (7.1, 7.2) is not supported, the 20
implementation is encouraged to issue a diagnostic message.

8 Optimization controls

This clause applies to implementations that define:

 __STDC_IEC_60559_ATTRIB_OPTIMIZATION__

IEC 60559 recommends attributes to allow and disallow value-changing optimizations, individually and 25
collectively. C23 Annex F disallows value-changing optimizations, except for contractions (which can be
controlled as a group with the FP_CONTRACT pragma). This clause provides pragmas to allow or
disallow certain value-changing optimizations, including those mentioned in IEC 60559.

The pragmas in this clause can be used to allow the implementation to do certain floating-point
optimizations that are generally disallowed because the optimization might change values of floating-30
point expressions. These pragmas apply to all floating types. It is unspecified whether optimizations
allowed by these pragmas occur consistently, or at all. These pragmas (among other standard pragmas)
apply to user code. They do not apply to code for operators or library functions that might be placed
inline by the implementation.

Some of the pragmas allow optimizations based on identities of real number arithmetic that are not 35
valid for floating-point arithmetic (C23 5.1.2.3, F.9.2). Optimizations based on identities that are valid
for the implementation’s floating-point arithmetic are always allowed. Optimizations based on
identities derived from identities whose use is allowed (either by a standard pragma or by virtue of
being valid for the implementation’s floating-point arithmetic) may also be done.

These pragmas do not affect the requirements on volatile or atomic variables. 40

Each pragma shall occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations, the pragma takes effect,
on each optimization it controls, from its occurrence until another pragma that affects the same

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 7

optimization is encountered, or until the end of the translation unit. When inside a compound
statement, the pragma takes effect, on each optimization it controls, from its occurrence until another
pragma that affects the same optimization is encountered (including within a nested compound
statement), or until the end of the compound statement; at the end of a compound statement the state
for allowing each optimization controlled by the pragma is restored to its condition just before the 5
compound statement.

8.1 The FP_ALLOW_VALUE_CHANGING_OPTIMIZATION pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h> 10
#pragma STDC FP_ALLOW_VALUE_CHANGING_OPTIMIZATION on-off-switch

Description  

This pragma is equivalent to all the optimization pragmas specified below, with the same value of on-
off-switch (ON, OFF, or DEFAULT).

NOTE The FP_ALLOW_VALUE_CHANGING_OPTIMIZATION pragma does not affect the evaluation 15
methods. Nevertheless, an evaluation method characterized by a negative value of width (C23 5.2.4.2.2,
5.2.4.2.3, H.3) might allow for indeterminable evaluation formats, hence unspecified result values.

8.2 The FP_ALLOW_ASSOCIATIVE_LAW pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 20
#include <math.h>

#pragma STDC FP_ALLOW_ASSOCIATIVE_LAW on-off-switch

Description  

This pragma allows or disallows optimizations based on the associative laws for addition and
multiplication 25

x + (y + z) = (x + y) + z
x × (y × z) = (x × y) × z

where on-off-switch is one of

ON – allow application of the associative laws

OFF – do not allow application of the associative laws 30

DEFAULT – “off”

Note that this pragma allows optimizations based on similar mathematical identities involving
subtraction and division. For example, for IEC 60559 floating-point arithmetic, since the identity

x – y = x + (−y)

ISO/IEC TS 18661-5:CFP Working Draft

8 © ISO/IEC 2023 – All rights reserved

is valid (C23 F.9.2), this pragma also allows optimizations based on

x + (y − z) = (x + y) − z

Similarly, if the states for this pragma and the FP_ALLOW_MULTIPLY_BY_RECIPROCAL pragma (8.4)
are both “on”, then optimizations based on the following are allowed:

x × (y / z) = (x × y) / z 5

Note also that for IEC 60559 floating-point arithmetic, since the commutative laws

x + y = y + x
x × y = y × x

are valid, the pragma allows optimizations based on identities derived from the associative and
commutative laws, such as 10

x + (z + y) = (x + y) + z

8.3 The FP_ALLOW_DISTRIBUTIVE_LAW pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h> 15
#pragma STDC FP_ALLOW_DISTRIBUTIVE_LAW on-off-switch

Description  

This pragma allows or disallows optimizations based on the distributive laws for multiplication and
division

x × (y + z) = (x × y) + (x × z) 20
x × (y − z) = (x × y) − (x × z)
(x + y) / z = (x / z) + (y / z)
(x − y) / z = (x / z) − (y / z)

 where on-off-switch is one of

ON – allow application of the distributive laws 25

OFF – do not allow application of the distributive laws

DEFAULT – “off”

8.4 The FP_ALLOW_MULTIPLY_BY_RECIPROCAL pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 30
#include <math.h>

#pragma STDC FP_ALLOW_MULTIPLY_BY_RECIPROCAL on-off-switch

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 9

Description  

This pragma allows or disallows optimizations based on the mathematical equivalence of division and
multiplication by the reciprocal of the denominator

x / y = x × (1 / y)

where on-off-switch is one of 5

ON – allow multiply by reciprocal

OFF – do not allow multiply by reciprocal

DEFAULT – “off”

8.5 The FP_ALLOW_ZERO_SUBNORMAL pragma

Synopsis 10

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h>

#pragma STDC FP_ALLOW_ZERO_SUBNORMAL on-off-switch

Description  

This pragma allows or disallows replacement of subnormal operands and results by zero, where on-off-15
switch is one of

ON – allow replacement of subnormals with zero

OFF – do not allow replacement of subnormals with zero

DEFAULT – “off”

Within the scope of this pragma, the floating-point operations affected by the pragma are all floating-20
point operators, implicit conversions (including the conversion of a value represented in a format wider
than its semantic type to its semantic type, as done by classification macros), and invocations of
applicable functions in <math.h>, <stdio.h>, <stdlib.h>, and <wchar.h> for which macro
replacement has not been suppressed (C23 7.1.4). Thus, subnormal operands and results of affected
operations may be replaced by zero. Whether the replacement raises the “inexact” and “underflow” 25
floating-point exceptions is unspecified. Functions not affected by the pragma behave as though no
FP_ALLOW_ZERO_SUBNORMAL pragma were in effect at the site of the call.

8.6 The FP_ALLOW_CONTRACT_FMA pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 30
#include <math.h>

#pragma STDC FP_ALLOW_CONTRACT_FMA on-off-switch

ISO/IEC TS 18661-5:CFP Working Draft

10 © ISO/IEC 2023 – All rights reserved

Description  

This pragma allows or disallows contraction (C23 6.5) of floating-point multiply and add or subtract
(with the result of the multiply)

x * y + z
x * y − z 5
x + y * z
x − y * z

where on-off-switch is one of

ON – allow contraction for floating-point multiply-add

OFF – do not allow contraction for floating-point multiply-add 10

DEFAULT – implementation defined whether “on” or “off”

NOTE IEC 60559 uses the term synthesize instead of contract.

8.7 The FP_ALLOW_CONTRACT_OPERATION_CONVERSION pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 15
#include <math.h>

#pragma STDC FP_ALLOW_CONTRACT_OPERATION_CONVERSION on-off-switch

Description  

This pragma allows or disallows contraction (C23 6.5) of a floating-point operation and a conversion (of
the result of the operation), where on-off-switch is one of 20

ON – allow contraction for floating-point operation-conversion

OFF – do not allow contraction for floating-point operation-conversion

DEFAULT – implementation defined whether “on” or “off”

Within the scope of this pragma, the floating-point operations affected by the pragma are all floating-
point operators, implicit conversions (including the conversion of a value represented in a format wider 25
than its semantic type to its semantic type, as done by classification macros), and invocations of
applicable functions in <math.h>, <stdio.h>, <stdlib.h>, and <wchar.h> for which macro

replacement has not been suppressed (C23 7.1.4). Thus, an affected operation may be contracted with a
conversion of its result. Functions not affected by the pragma behave as though no
FP_ALLOW_CONTRACT_OPERATION_CONVERSION pragma were in effect at the site of the call. 30

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 11

 EXAMPLE For the code sequence

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h>

#pragma STDC FP_ALLOW_CONTRACT_OPERATION_CONVERSION ON

float f1, f2; 5
double d1, d2;

…
f1 = d1 * d2;

f2 = sqrt(d1);

the multiply (operation) and assignment (conversion) are allowed to be evaluated with just one 10
rounding (to the range and precision of float). If the on-off-switch for the pragma were OFF, then the
multiply would have to be rounded according to the evaluation method and the assignment would
require a second rounding. With the given code, the sqrt function may be replaced by fsqrt, avoiding
the need for a separate operation to convert the double result of sqrt to float.

8.8 The FP_ALLOW_CONTRACT pragma 15

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h>

#pragma STDC FP_ALLOW_CONTRACT on-off-switch

Description   20

This pragma allows or disallows contraction (C23 6.5) for floating-point operations, where on-off-switch
is one of

ON – allow contraction for floating-point operations

OFF – do not allow contraction for floating-point operations

DEFAULT – implementation defined whether “on” or “off” 25

The optimizations controlled by this pragma include those controlled by the
FP_ALLOW_CONTRACT_FMA and FP_ALLOW_CONTRACT_OPERATION_CONVERSION pragmas.

This pragma is equivalent to the FP_CONTRACT pragma (C23 7.12.2), also in <math.h>: the two
pragmas may be used interchangeably, provided the implementation defines
__STDC_WANT_IEC_60559_ATTRIBS_EXT__. 30

9 Reproducibility

This clause applies to implementations that define:

 __STDC_IEC_60559_ATTRIB_REPRODUCIBLE__

IEC 60559 recommends an attribute to facilitate writing programs whose floating-point results and
exception flags will be reproducible on any implementation that supports the language and library 35
features used by the program. Such code must use only those features of the language and library that
support reproducible results. These features include ones with a well-defined binding to reproducible
features of IEC 60559, so that no unspecified or implementation-defined behavior is admitted.

ISO/IEC TS 18661-5:CFP Working Draft

12 © ISO/IEC 2023 – All rights reserved

This clause provides a pragma to support the IEC 60559 attribute for reproducible results and gives
requirements for programs to have reproducible results. Where the state of the pragma is “on”, floating-
point numerical results and exception flags are reproducible (given the same inputs, including relevant
environment variables) on implementations that define

__STDC_IEC_60559_ATTRIB_REPRODUCIBLE__ 5

and that support the language and library features used by the source code, provided the source code
uses a limited set of features as described below (9.2).

An implementation that defines __STDC_IEC_60559_ATTRIB_REPRODUCIBLE__ also defines
either __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__, or both. If the implementation
defines __STDC_IEC_60559_BFP__, it supports reproducible results for code using (binary) types 10
float and double. If the implementation defines __STDC_IEC_60559_DFP__, it supports
reproducible results for code using types _Decimal32, _Decimal64, and _Decimal128. If the
implementation defines __STDC_IEC_60559_TYPES__, then it supports reproducible results for
code using its interchange floating types (C23 H.2.1). If the implementation provides a set of correctly
rounded math functions (C23 7.33.8), then it supports reproducible results for code using correctly 15
rounded math functions from that set.

9.1 The FP_REPRODUCIBLE pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <math.h> 20
#pragma STDC FP_REPRODUCIBLE on-off-switch

Description  

This pragma enables or disables support for reproducible results. The pragma shall occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until 25
another FP_REPRODUCIBLE pragma is encountered, or until the end of the translation unit. When
inside a compound statement, the pragma takes effect from its occurrence until another
FP_REPRODUCIBLE pragma is encountered (including within a nested compound statement), or until

the end of the compound statement; at the end of a compound statement the state for the pragma is
restored to its condition just before the compound statement. 30

If the state of the pragma is “on”, then the effects of the following are implied

#pragma STDC FENV_ACCESS ON

#pragma STDC FP_ALLOW_VALUE_CHANGING_OPTIMIZATION OFF

and if __STDC_IEC_60559_BFP__ is defined

#pragma STDC FP_FLT_EVAL_METHOD 0 35

and if __STDC_IEC_60559_DFP__ is defined

#pragma STDC FP_DEC_EVAL_METHOD 1

If the FP_REPRODUCIBLE pragma appears with the on-off-switch OFF under the effect of a
FP_REPRODUCIBLE pragma with on-off-switch ON, then the states of the FENV_ACCESS pragma, the

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 13

value-changing optimization pragmas, and the evaluation method pragmas (even an evaluation method
pragma whose state was explicitly changed under the effect of the pragma with on-off-switch ON) revert
to their states prior to the FP_REPRODUCIBLE pragma with on-off-switch ON. The

FP_REPRODUCIBLE pragma with on-off-switch OFF has no effect if it occurs where the state of the
pragma is “off”. 5

The default state of the pragma is “off”.

Recommended practice
The implementation is encouraged to issue a diagnostic message if, where the state of the
FP_REPRODUCIBLE pragma is “on”, the source code uses a language or library feature whose results
may not be reproducible. 10

9.2 Reproducible code

The following properties support code sequences in producing reproducible results.1

— The code is under the effect of the FP_REPRODUCIBLE pragma (with state “on”).

— All floating-point operations used by the code are bound to IEC 60559 operations, as
described in C23 F.3 in the table entitled “Operation binding”. 15

— The code does not contain any use that may result in undefined behavior. The code does not
depend on any behavior that is unspecified, implementation-defined, or locale-specific.

The restrictive properties below are examples, not a complete list. See also C23 Annex J. Although the
properties may not be necessary in all cases for reproducible code, the user is advised to follow the
restrictions to avoid common programming practices that would undermine reproducibility. 20

— The code does not use the long double type.

— The code does not use complex or imaginary types.

— If __STDC_IEC_60559_BFP__ is not defined by the implementation, the code does not
use the float or double types.

— Even if __STDC_IEC_60559_TYPES__ is defined, the code does not use extended floating 25

types. (Even if __STDC_IEC_60559_TYPES__ is defined, some interchange floating types
are optional features.)

— The code does not depend on the payloads (C23 F.10.13) or sign bits of quiet NaNs.

— The code does not use signaling NaNs.

— The code does not depend on conversions between binary floating types and character 30
sequences with more than M + 3 significant decimal digits, where M is 17 if
__STDC_IEC_60559_TYPES__ is not defined (by the implementation), and M is
1 + ⌈p×log10(2)⌉, where p is the precision of the widest supported binary interchange
floating type, if __STDC_IEC_60559_TYPES__ is defined. Even if

1 Of course, if the code uses optional features, results will be reproducible only on implementations that support those
features.

ISO/IEC TS 18661-5:CFP Working Draft

14 © ISO/IEC 2023 – All rights reserved

__STDC_IEC_60559_TYPES__ is defined, support for interchange floating types wider
than binary64 is an optional feature. (This specification differs from IEC 60559 which
specifies that an implementation supporting reproducibility shall not limit the number of
significant decimal digits for correct rounding.)

— The code does not depend on the actual character sequence in printf results with style a 5
(or A), nor does it depend on numerical values of such results when the precision is not
sufficient for an exact representation.

— The code does not depend on the quantum of a result for the decimal maximum and
minimum functions in C23 7.12.12 when the arguments are equal.

— The code does not use the remquo functions. 10

— The code does not set the state of any pragma that allows value-changing optimizations to
“on” or “default”.

— The code does not set the state of the FENV_ACCESS pragma to “off” or “default”.

— The code does not use the FP_FLT_EVAL_METHOD pragma with any width except 0 or 1.
(Support for width equal to 1 is an optional feature.) 15

— The code does not use the FP_DEC_EVAL_METHOD pragma with any width except 1 or 2.

(Support for width equal to 2 is an optional feature.)

— The code does not use an FENV_EXCEPT pragma (10.1) with an action OPTIONAL_FLAG,
BREAK, TRY, or CATCH.

— The code does not depend on the “underflow” or “inexact” floating-point exceptions or flags. 20

10 Alternate exception handling

This clause applies to implementations that define:

 __STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__

IEC 60559 arithmetic raises floating-point exceptions to inform the program when an operation
encounters problematic inputs, such that no one result would be suitable for all situations. The default 25
exception handling in IEC 60559 is intended to be more useful in more situations than other schemes,
or at least predictable. However, other exception handling is more useful in certain situations. Thus, IEC
60559 describes alternate exception handling and recommends that programming languages provide
means for the program to specify which exception handling will be done.

When a floating-point exception is raised, the IEC 60559 default exception handling sets the appropriate 30
exception flag(s), returns a specified result, and continues execution. IEC 60559 also prescribes
alternate exception handling. The pragma in this subclause provides a means for the program to choose
the method of exception handling. The pragma applies to operations on all floating types.

For the “underflow” exception, the chosen exception handling occurs if the exception is raised, whether
the default result would be exact or inexact, unless stated otherwise. 35

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 15

10.1 The FENV_EXCEPT pragma

Synopsis

#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__

#include <fenv.h>

#pragma STDC FENV_EXCEPT action except-list 5

Description  

The FENV_EXCEPT pragma sets the method specified by action for handling the exceptions represented
by except-list.

except-list shall be a comma-separated list of distinct supported exception designations (or one
supported exception designation). The supported exception designations shall include the exception 10
macro identifiers (C23 7.6)

FE_DIVBYZERO

FE_INEXACT

FE_INVALID

FE_OVERFLOW 15
FE_UNDERFLOW

FE_ALL_EXCEPT

The <fenv.h> header should define macros for the following sub-exceptions and may define
additional macros with the appropriate prefix (FE_INVALID_ or FE_DIVBYZERO_) for other sub-
exceptions. The supported exception designations shall include the defined sub-exception macro 20
identifiers (if any). If defined, the macros expand to integer constant expressions. Sub-exceptions
corresponding to defined macros occur as specified below, and not in other cases.

— “invalid” floating-point exceptions from add and subtract operators and functions that add
or subtract (C23 7.12.14.1, 7.12.14.2, F.10.11), not caused by signaling NaN input

FE_INVALID_ADD 25

— “invalid” floating-point exceptions from divide operators and functions that divide
(C23 7.12.14.4, F.10.11), not caused by signaling NaN input

FE_INVALID_DIV

— “invalid” floating-point exceptions from functions that compute multiply-add
(C23 7.12.13.1, F.10.10.1, 7.12.14.5, F.10.11) and from contracted multiply and add 30
operators, not caused by signaling NaN input

FE_INVALID_FMA

— “invalid” floating-point exceptions from conversions from floating to integer types (C23 F.4),
not caused by signaling NaN input

FE_INVALID_INT 35

— “invalid” floating-point exceptions from ilogb and llogb functions (C23 F.10.3.8,
F.10.3.10), not caused by signaling NaN input

FE_INVALID_ILOGB

— “invalid” floating-point exceptions from multiply operators and functions that multiply
(C23 7.12.14.3, F.10.11), not caused by signaling NaN input 40

FE_INVALID_MUL

ISO/IEC TS 18661-5:CFP Working Draft

16 © ISO/IEC 2023 – All rights reserved

— “invalid” floating-point exceptions from the quantizedN functions (C23 7.12.15.1), not
caused by signaling NaN input

FE_INVALID_QUANTIZE

— “invalid” floating-point exceptions from the remainder and remquo functions
(C23 F.10.7.2, F.10.7.3), not caused by signaling NaN input 5

FE_INVALID_REM

— “invalid” floating-point exceptions from functions that compute square root or reciprocal of
square root (C23 F.10.4.9, F.10.4.10, 7.12.14.6, F.10.11), not caused by signaling NaN input

FE_INVALID_SQRT

— “invalid” floating-point exceptions caused by signaling NaN input (C23 F.2.1) 10
FE_INVALID_SNAN

— “invalid” floating-point exceptions from relational operators and comparison macros
(C23 6.5.8, 7.12.17, F.10.14.1), not caused by signaling NaN input

FE_INVALID_UNORDERED

— “divide-by-zero” floating-point exceptions from divide operators and functions that divide 15
(C23 7.12.14.4, F.10.11)

FE_DIVBYZERO_ZERO

— “divide-by-zero” floating-point exceptions from logarithm and logb functions
(C23 F.10.3.11, F.10.3.12, F.10.3.13, F.10.3.14, F.10.3.15, F.10.3.16, F.10.3.17)

FE_DIVBYZERO_LOG 20

action shall be a designation of a supported exception handling method. The following actions shall be
provided:

— default exception handling (as specified in IEC 60559).
DEFAULT

— default exception handling, but without setting the flag. 25
NO_FLAG

— default exception handling, but whether the flag is set (as with default exception handling),
and for which operations and their occurrences, is unspecified.
OPTIONAL_FLAG

— abrupt underflow. If an “underflow” floating-point exception occurs (see IEC 60559), the 30
operation delivers a result with magnitude zero or the minimum normal magnitude (for the
result format) and with the same sign as the default result, sets the “underflow” floating-
point exception flag, and raises the “inexact” floating-point exception. When

rounding to nearest, ties to even
rounding to nearest, ties away from zero 35

or

rounding toward zero

the result magnitude is zero. When rounding toward positive infinity, the result magnitude
is the minimum normal magnitude if the result sign is positive, and zero if the result sign is
negative. When rounding toward negative infinity, the result magnitude is the minimum 40

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 17

normal magnitude if the result sign is negative, and zero if the result sign is positive. Abrupt
underflow has no effect on the interpretation of subnormal operands. The action has no
effect if FE_UNDERFLOW is not included in except-list.

ABRUPT_UNDERFLOW

With one of the actions in the list above, the pragma shall occur either outside external declarations, or 5
preceding all explicit declarations and statements inside a compound statement, which then is the
compound statement associated with the pragma. When outside external declarations, the pragma
action for a designated exception takes effect from the occurrence of the pragma until another
FENV_EXCEPT pragma designating the same exception is encountered, or until the end of the
translation unit. When inside a compound statement, the pragma action for a designated exception 10
takes effect from the occurrence of the pragma until another FENV_EXCEPT pragma designating the
same exception is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for handling each exception
designated in except-list is restored to its condition just before the compound statement.

The actions in the lists below in this subclause affect flow of control. With one of these actions, the 15
pragma shall precede a compound statement, which is the compound statement associated with the
pragma. There shall be nothing between the pragma and its associated compound statement except
perhaps white space (including comments). For a designated exception, the pragma takes effect from
the beginning of the associated compound statement until another FENV_EXCEPT pragma designating
the same exception is encountered (with a nested associated compound statement), or until the end of 20
the compound statement. At the end of a compound statement the state for handling each exception
designated in except-list is restored to its condition just before the compound statement.

— break. Terminate execution of the compound statement associated with the pragma. Then,
continue execution after the associated compound statement. When termination occurs, the
following apply: if the execution to completion of the associated compound statement 25
(without the break) would at any point modify an object, the value of the object is
indeterminate; if the execution would modify the state of the dynamic rounding mode or
any state maintained by the standard library (e.g. in the I/O system), the state is
unspecified; the values of flags for the designated exceptions are unspecified. (Thus,
termination may occur as soon as possible after the exception is raised, to maximize 30
performance.)

BREAK

The following two actions work together. A compound statement associated with a try action shall be
paired with one or more compound statements each associated with a catch action. The pragmas with
catch actions and their associated compound statements shall appear contiguously immediately below 35
the compound statement associated with the try action, except for white space (including comments).
Each exception designation in the pragma with a try action shall appear in one and only one of the
pragmas with a catch action.

ISO/IEC TS 18661-5:CFP Working Draft

18 © ISO/IEC 2023 – All rights reserved

— try. The designated exceptions may be handled by a catch action. It is unspecified whether
flags for designated exceptions that are set in the execution of the associated compound
statement are restored to their states before the associated compound statement. The
associated compound statement shall not be the statement of a selection (C23 6.8.4) or
iteration (C23 6.8.5) statement.2 There shall be no jumps into or out of the associated 5
compound statement, other than to handle an exception, as specified below.

TRY

— catch. If any designated exception occurs in the execution of the compound statement
associated with the try action, jump to a compound statement associated with some catch
action with an occurring designated exception. Upon completion of the associated 10
compound statement, continue execution after the last of the compound statements
associated with catch actions. The jump target should be a compound statement associated
with the first occurring designated exception. When the jump occurs, the following apply: if
the execution of the associated compound statement to completion (without the jump)
would at any point modify an object, the value of the object is indeterminate; if the 15
execution would modify the state of the dynamic rounding mode or any state maintained by
the standard library (e.g., in the I/O system), the state is unspecified. (Thus, the jump may
occur as soon as possible after the exception is raised, to maximize performance). The
compound statement associated with a catch action is executed only to handle an exception
occurring in the compound statement associated with the try action. There shall be no other 20
jumps into or out of the compound statement associated with a catch action.

CATCH

The following two actions work together. A compound statement associated with a delayed-try action
shall be paired with one or more compound statements each associated with a delayed-catch action. The
pragmas with delayed-catch actions and their associated compound statements shall appear 25
contiguously immediately below the compound statement associated with the delayed-try action, except
for white space (including comments). Each exception designation in the pragma with a delayed-try
action shall appear in one and only one of the pragmas with a delayed-catch action. For supported sub-
exceptions, the behavior of the actions listed below shall be as if the exceptions, flags, and functions in
the specification were extended for sub-exceptions, though such extensions are not prescribed in this 30
document.

— delayed-try. The designated exceptions may be handled by a delayed-catch action. Before
executing the compound statement associated with the delayed-try action, save (as by
fegetexceptflag) the states of the flags for the designated exceptions, and then clear
(as by feclearexcept) the designated exceptions. After normal completion of the 35

2 The compound statements associated with a try action and its catch actions (or with a delayed-
try action and its delayed-catch actions), together enclosed in braces, may be the statement of a
selection or iteration statement. For example, the following code segment is permitted:

for (int i = 0; i < LEN; i++) {

#pragma STDC FENV_EXCEPT TRY FE_OVERFLOW

{

y[i] = x[i] * x[i];

}

#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW

{

y[i] = DBL_MAX;

}
}

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 19

associated compound statement, re-save the states of the designated exceptions. Then
restore (as by fesetexceptflag) the designated exception flag states before the
associated compound statement. The associated compound statement shall not be the
statement of a selection (C23 6.8.4) or iteration (C23 6.8.5) statement. There shall be no
jumps into or out of the associated compound statement. 5

DELAYED_TRY

— delayed-catch. Test (as by fetestexceptflag) the exception flag states saved after
completion of the compound statement associated with the delayed-try action. If any
exception with the same designation for the delayed-try action and a delayed-catch action
occurred (as determined by flag state tests), jump to the first compound statement 10
associated with an occurring exception with the same designation for the delayed-try action
and a delayed-catch action. Upon completion of the associated compound statement,
continue execution after the last of the compound statements associated with delayed-catch
actions. Each exception designation shall be listed in at most one of the pragmas with a
delayed-catch action. The compound statement associated with a delayed-catch action is 15
executed only to handle an exception occurring in the compound statement associated with
the delayed-try action. There shall be no other jumps into or out of the compound statement
associated with a delayed-catch action.

DELAYED_CATCH

Within the scope of an FENV_EXCEPT pragma, the floating-point operations affected by the pragma are 20
all floating-point operators, implicit conversions (including the conversion of a value represented in a
format wider than its semantic type to its semantic type, as done by classification macros), and
invocations of applicable functions in <math.h>, <stdio.h>, <stdlib.h>, and <wchar.h> for
which macro replacement has not been suppressed (7.1.4). Thus, exceptions raised by affected
operations are handled according to the specified action. Functions not affected by the pragma behave 25
as though no FENV_EXCEPT pragma were in effect at the site of the call.

Behavior is undefined if non-default SIGFPE handling is set on entry to code with a non-default

FENV_EXCEPT pragma, or if code within such a scope uses the signal function, uses
raise(SIGFPE), or explicitly accesses the flag of a designated exception.

EXAMPLE 1 This example illustrates differences between try and catch actions and delayed-try and 30
delayed-catch actions.

ISO/IEC TS 18661-5:CFP Working Draft

20 © ISO/IEC 2023 – All rights reserved

Code sequence with try and catch actions:

#pragma STDC FENV_ACCESS ON

#include <fenv.h>

#define LEN 2

double d[LEN]; 5
float f[LEN];

…

#pragma STDC FENV_EXCEPT TRY FE_DIVBYZERO, FE_OVERFLOW

{

for (int i=0; i<LEN; i++) { 10
f[i] = 1.0 / d[i];

}

}

#pragma STDC FENV_EXCEPT CATCH FE_DIVBYZERO

{ 15
printf("divide-by-zero\n");

}

#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW

{

printf("overflow\n"); 20
}

…

The same code but with delayed-try and delayed-catch actions:

#pragma STDC FENV_ACCESS ON

#include <fenv.h> 25
#define LEN 2

double d[LEN];

float f[LEN];

…

#pragma STDC FENV_EXCEPT DELAYED_TRY FE_DIVBYZERO, FE_OVERFLOW 30
{

for (int i=0; i<LEN; i++) {

f[i] = 1.0 / d[i];

}

} 35
#pragma STDC FENV_EXCEPT DELAYED_CATCH FE_DIVBYZERO

{

printf("divide-by-zero\n");

}

#pragma STDC FENV_EXCEPT DELAYED_CATCH FE_OVERFLOW 40
{

printf("overflow\n");

}

…

The following table shows examples of inputs and results for the two code sequences above. 45

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 21

 try - catch delayed-try – delayed-
catch

Input d 0.5, 0.0

Results
f = 1/d indeterminate,

indeterminate
2.0, infinity

output “overflow” “divide-by-zero”

“divide-by-zero” flag unspecified (set or
restored)

restored

“overflow” flag unchanged restored (unchanged)

Input d 0.5, 1e−100

Results
f = 1/d indeterminate,

indeterminate
2.0, infinity

output “overflow” “overflow”

“divide-by-zero” flag unchanged restored (unchanged)
“overflow” flag unspecified (set or

restored)
restored

Input d 1e−100, 0.0

Results
f = 1/d indeterminate,

indeterminate
infinity, infinity

output “overflow”
(recommended) or

“divide-by-zero”

“divide-by-zero”

“divide-by-zero” flag unspecified (set or restored) restored
“overflow” flag unspecified (set or restored) restored

NOTE The delayed-try and delayed-catch actions are deterministic. They can be implemented with the
floating-point exception flags. The following code sequence is equivalent to the code sequence using
delayed-try and delayed-catch in the example above.

#pragma STDC FENV_ACCESS ON 5
#include <fenv.h>

#define LEN 2

double d[LEN];

float f[LEN];

… 10
{

fexcept_t old_except, new_except;

fegetexceptflag(&old_except, FE_DIVBYZERO | FE_OVERFLOW);

feclearexcept(FE_DIVBYZERO | FE_OVERFLOW);

{ 15
for (int i=0; i<LEN; i++) {

f[i] = 1.0 / d[i];

}

}

fegetexceptflag(&new_except, FE_DIVBYZERO | FE_OVERFLOW); 20
fesetexceptflag(&old_except, FE_DIVBYZERO | FE_OVERFLOW);

ISO/IEC TS 18661-5:CFP Working Draft

22 © ISO/IEC 2023 – All rights reserved

if (fetestexceptflag(&new_except, FE_DIVBYZERO)) {

 printf("divide-by-zero\n");

}

else if (fetestexceptflag(&new_except, FE_OVERFLOW)) {

 printf("overflow\n"); 5
}

}

…

NOTE The try and catch actions are not deterministic (see example above), which allows more
implementation flexibility for better performance. 10

In most cases, the try and catch actions can be implemented like delayed-try and delayed-catch actions,
though not for the “underflow” exception (which occurs without causing the “underflow” flag to be set,
in cases of exact subnormal results). Such implementation would not always handle the first occurring
designated exception, as recommended.

An implementation of try and catch actions using floating-point exception traps might well be able to 15
handle the first occurring designated exception (including “underflow”), as recommended, and achieve
better performance.

EXAMPLE 2 The following code sequence uses overlapping exception designations:

#pragma STDC FENV_ACCESS ON

#include <fenv.h> 20
double x, y;

…

#pragma STDC FENV_EXCEPT DELAYED_TRY FE_INVALID

{

#pragma STDC FENV_EXCEPT TRY FE_INVALID_DIV 25
{

y = sin(x) / x;

}

#pragma STDC FENV_EXCEPT CATCH FE_INVALID_DIV

{ 30
y = 1.0;

}

}

#pragma STDC FENV_EXCEPT DELAYED_CATCH FE_INVALID

{ 35
printf("invalid\n");

}

…

The inner try/catch overrides the handling in the outer delayed-try/delayed-catch for an “invalid
divide” but does not affect the handling of other “invalid” exceptions. Thus an “invalid divide”, which can 40
occur here only for x = 0, gives y the value 1.0, without printing “invalid”. Other invalid exceptions,
which can occur if x is infinite or a signaling NaN, cause “invalid” to be printed (after y is given a NaN
value).

Note that if DELAYED_TRY and DELAYED_CATCH were changed to TRY and CATCH, an “invalid”

exception other than “invalid divide” might cause a jump out of the inner try statement resulting in 45
undefined behavior.

 ISO/IEC TS 18661-5:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 23

Bibliography

[1] IEC 559:1989, Binary floating-point arithmetic for microprocessor systems, second edition

[2] IEEE 754−1985, IEEE Standard for Binary Floating-Point Arithmetic

[3] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

[4] IEEE 754-2019, IEEE Standard for Floating-Point Arithmetic 5

[5] IEEE 854−1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

[6] ISO/IEC 9899:2011/Cor.1:2012, Information technology — Programming languages —
C / Technical Corrigendum 1

[7] ISO/IEC 9899:2018, Information technology — Programming languages — C

[8] ISO/IEC 9899:2024, Information technology — Programming languages — C 10

	Foreword
	Introduction
	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 C standard conformance
	5.1 Freestanding implementations
	5.2 Predefined macros
	5.3 Standard headers

	6 Standard pragmas
	7 Evaluation formats
	7.1 Evaluation method pragma
	7.2 Evaluation method pragma for decimal floating types
	7.3 Effective evaluation method macros
	7.4 Evaluation type macros
	7.5 Evaluation formats for <tgmath.h>

	8 Optimization controls
	8.1 The FP_ALLOW_VALUE_CHANGING_OPTIMIZATION pragma
	8.2 The FP_ALLOW_ASSOCIATIVE_LAW pragma
	8.3 The FP_ALLOW_DISTRIBUTIVE_LAW pragma
	8.4 The FP_ALLOW_MULTIPLY_BY_RECIPROCAL pragma
	8.5 The FP_ALLOW_ZERO_SUBNORMAL pragma
	8.6 The FP_ALLOW_CONTRACT_FMA pragma
	8.7 The FP_ALLOW_CONTRACT_OPERATION_CONVERSION pragma
	8.8 The FP_ALLOW_CONTRACT pragma

	9 Reproducibility
	9.1 The FP_REPRODUCIBLE pragma
	9.2 Reproducible code

	10 Alternate exception handling
	10.1 The FENV_EXCEPT pragma

