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Abstract

A number of possible approaches to automatic memory management
in C++ have been considered over the years. Here we propose the re-
consideration of an approach that relies on partially conservative garbage
collection. Its principal advantage is that objects referenced by ordinary
pointers may be garbage-collected.

Unlike other approaches, this makes it possible to garbage-collect ob-
jects allocated and manipulated by most legacy libraries. This makes it
much easier to convert existing code to a garbage-collected environment.
It also means that it can be used, for example, to “repair” legacy code
with deficient memory management.

The approach taken here is similar to that taken by Bjarne Strous-
trup’s much earlier proposal (N0932=96-0114). Based on prior discussion
on the core reflector, this version does insist that implementations make
an attempt at garbage collection if so requested by the application. How-
ever, since there is no real notion of space usage in the standard, there is
no way to make this a substantive requirement. An implementation that
“garbage collects” by deallocating all collectable memory at process exit
will remain conforming, though it is likely to be unsatisfactory for some
uses.

1 Introduction

A number of different mechanisms for adding automatic memory reclamation
(garbage collection) to C++ have been considered:

1. Smart-pointer-based approaches which recycle objects no longer ref-
erenced via special library-defined replacement pointer types. Boost
shared ptrs (in TR1, see N1450=03-0033) are the most widely used exam-
ple. The underlying implementation is often based on reference counting,
but it does not need to be.

2. The introduction of a new kind of primitive pointer type which must
be used to refer to garbage-collected (“managed”) memory. Uses of this
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type are more restricted than C pointers. This is the approach taken by
C++/CLI, which is currently under consideration by ECMA TC39/TG5.
This approach probably provides the most freedom to the implementor
of the underlying garbage collector, thus potentially providing the best
GC performance, and possibly the best interoperability with aggressive
implementations of languages like C#.

3. Transparent GC, which allows objects referenced by ordinary pointers to
be reclaimed when they are no longer reachable.

We propose to support the third alternative, independently of the other two.
While manual memory management is a powerful feature of C++, this pro-

posal provides a developer the choice of not using manual memory management
without feeling penalized by its presence in the language. This is supported by
the principle that C++ programmers should not be impacted by unused fea-
tures. Likewise, programs using explicit memory management should not be
impacted in any way by the presence of the optional garbage collection feature
we are proposing.

This proposal allows C++ to provide full support for the large class of ap-
plications that do not have a specific need for manual memory management
and could be more quickly and reliably developed in a fully garbage collected
environment. We believe this will make C++ a simpler and more attractive
option for the large number of developers and development organizations that
are not willing or able to use manual memory management and do not develop
applications requiring manual memory management without negatively affect-
ing current users of C++. Our intent is to support use of preexisting C++ code
with a garbage collector in as many cases as possible.

Transparent garbage collection has a long history of proven value in C++

as in many other popular languages. The two authors of this proposal have
extensive experience with the Boehm-Demers-Weiser garbage collector [4], and
the Geodesic Systems C/C++ garbage collector (commercialized in Geodesic’s
Great Circle, Sun’s libgc library and VERITAS Application Saver), both of
which have been successfully used in this manner for at least ten years.

Although these garbage collectors have been used in a variety of ways, here
we focus on transparent garbage collection for all or most memory allocated by
a program. This is probably the most common existing usage model. And safe
use of such garbage collectors generally requires that all pointers in memory be
examined by the garbage collector. Hence the additional cost of collecting all
allocated objects is often minimal or negative.

Although this general approach has demonstrated its utility during this time,
it would be more robust, particularly in the context of C++, with some explicit
support from the language standard.1

1The particular attribute-based interface discussed here has not been implemented, but is
based on experience with other approaches.
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2 Benefits

Transparent collection creates support for a variety of useful C++ scenarios:

1. Transparent garbage collection provides C++ with support for fully
garbage collected applications on a par with other popular languages with
respect to ease of use, standard library support, performance, automatic
collection of cycles, etc. This would make C++ a simpler and more attrac-
tive for the large class of applications that do not require manual mem-
ory management, which are currently often written in other languages
solely due to their transparent support for automatic memory manage-
ment. Although smart pointers are known to work well in some contexts,
particularly if only a distinguished set of large objects are affected, and if
smart-pointer updates can be made infrequent, they are not suitable for
the myriad programmers who wish to dispense with manual memory man-
agement entirely. This underscores the complementary value provided by
the transparent garbage collection approach.

2. Most existing code can be converted to garbage collection with no code
changes, such that the code no longer fails to deallocate “unreachable”
memory. Because the existing code’s deallocation calls are still executed,
garbage collection is only used to reclaim leaked memory, so collection cy-
cles need only occur very infrequently, providing the safety of full garbage
collection without the performance cost of running frequent garbage collec-
tion cycles. This mode of operation is often referred to as “litter collection”
as described in [15].

3. Even if the programmer’s goal is to continue to use explicit memory deal-
location, this approach strengthens the use of tools such as the use of tools
such as IBM/Rational Purify’s leak detector. Since these tools are based
on conservative garbage collectors, they suffer the same issues as trans-
parently garbage-collected applications, though the failure mode is often
limited to spurious error messages.2

4. Unlike the smart-pointer based approaches, this approach to garbage col-
lection allows pointers to be manipulated as in traditional C and C++

code. There are no correctness restrictions on, for example, the life-time
of C++ references to garbage-collected memory. There is no performance
motivation to pass pointers by reference. Thus it does not require the pro-
grammer to relearn some basic C idioms. Since we do not reference count,
we avoid difficult-to-debug cyclic pointer chain issues that may occur with
reference-counted smart pointers.

2Although transparent garbage collectors have been used with C++ programs for many
years, the lack of a standard has precluded the use of such tools with programs using garbage
collection as they do not have a way to distinguish leaked memory from garbage collected
memory.
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5. This approach will normally significantly outperform smart-pointer based
techniques for applications manipulating many small objects[8], particu-
larly if the application is multi-threaded.3 Transparent garbage collection
allows garbage-collector implementations that perform well enough to be
used in open source Java and CLI implementations, though probably not
quite as well as what can be accomplished for C++/CLI.4

6. Unlike the C++/CLI approach, transparent garbage collection allows easy
“cut-and-paste” reuse of existing source code and object libraries without
the need to modify their memory management or learn how to manipu-
late two types of pointers.5 The same template code that was designed
for manually managed memory can almost always be applied to garbage-
collected memory. The transparent garbage collection approach also al-
lows safe reuse of the large body of C and C++ code that is not known to
be fully type-safe as long as the Required Changes below are verified. The
tradeoff from the greater reuse and simplicity is that transparent garbage
collection is not quite as safe as for the C++/CLI because we require that
programmers must recognize when they are hiding pointers and use one
of the Required Changes mechanisms in that infrequent case.

7. The approach will interact well with atomic pointer update primitives,
once those are added to the language. Smart-pointer-based approaches
generally cannot accommodate concurrent updates to a shared pointer, at
least probably not without significant additional cost. This is important
for some high-performance lock-free algorithms.

3 Required Changes

We believe we can provide robust support for transparent GC with minimal
changes to the existing language. More importantly, we believe that except
for those few programs requiring “advanced” garbage collection features, most
programs will require no code changes at all.6

1. In obscure cases, the current language allows the program to effectively
hide “pointers” from the garbage collector, thus potentially inducing the
collector to recycle memory that is still in use. We propose rules similar to
Stroustrup’s original proposal (N0932) to clarify when this may happen.

3The smart-pointer approach may perform better for programs making extensive use of
virtual memory due to the larger working set of full garbage collection. Paging-aware GC
techniques such as [2] can mitigate that.

4In our eyes, the extent of the difference here is an open research problem, especially if
we hypothesize a C++compiler that communicates more type information than is done in
current implementations.

5Many people have expressed that even one type is hard enough!
6Indeed, one of the more common uses of C++ garbage collection today is to protect pre-

existing programs from memory leaks without any code changes or even recompilation (“litter
collection”). Experience has shown this to be safe and beneficial even for many multi-million
line commercial programs.
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2. We propose a set of attributes to allow the programmer to specify any
assumptions about garbage collection made by the source file. In the
absence of any such specifications, it is implementation defined whether
a garbage collector will be used. We expect this to be controlled by a
compiler flag.

3. We propose a small set of APIs and classes to access advanced but occa-
sionally necessary garbage collection features. We expect that these APIs
will not be used outside of specialized circumstances.

4 Reachability

We say that a pointer variable or member points to an object if it points to any
address inside the object, or just past the end of an array (A union member
is treated as a pointer only if it was last assigned to through a pointer field).
Because, C++ is a type-unsafe language we also allow for a more “relaxed”
form of reachability. If the gc relaxed attribute 7 is not in effect, we also treat
an integer variable or member which is of sufficient size to hold a pointer, or a
pointer-aligned section of a char-array as if it contains a pointer.

The roots of the collection consist of

• Automatic or static variables

• Uncollectible memory allocated through new(nogc) or malloc nogc

• Thread-local variables (if the C++ standard supports them)

• Any roots required by operating system APIs that can store away pointers,
such as SetWindowLong() on Windows.

It is likely that compilers may define extensions for specifying additional roots.
A heap-allocated object is reachable if it can be accessed through a chain of

pointers consisting of a root followed by heap-allocated objects.

5 Controlling garbage collection

The garbage collection behavior of a C++ application may be influenced by
annotations of the form8

[[gc xxxx]]

In the examples below, we will assume that annotations are associated with
individual declarations. Its meaning extends to nested declarations unless over-
ridden there.

7See the discussion of [[gc relaxed]] below for a more precise definition.
8If desired, the Java @annotation notation may also be considered.
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In practice, we will avoid excessive annotations by associating a single an-
notation with regions of code. In the hope that such a facility will also need
to be introduced for other kinds of annotations, we do not discuss the required
syntactic short-hand here.

The following values of xxxx are recognized:

forbidden This code may not be used in garbage collected programs. Possible
reasons to use this attribute include:

• This code has strict real-time requirements that cannot tolerate col-
lection latencies.

• This code uses collectible objects that may have been unreachable
since they were allocated. For example, it may build bidirectional
lists by x-oring pointers to objects allocated elsewhere9.

• The programmer chooses not to garbage collect this program for any
reason even if it would be “safe” to do so. After all, this proposal
does not force the use of garbage collection when the programmer
does not desire it.

required This is a hint to the compiler that this code relies on a garbage
collector to recycle unreachable objects to avoid memory growth. A pro-
gram that contains both [[gc forbidden]] and [[gc required]] is er-
roneous.

relaxed This code is safe to use in garbage collected programs, but it may store
pointers as integers of sufficient size, and in suitably aligned sections of
character arrays. Thus this code does not access collectible objects that
were once unreachable, and it does not store pointers to such objects such
that they may later be dereferenced. (We expect this to be the default
unless a compiler flag indicates otherwise.) All standard libraries should
obey at least these constraints, and not specify either [[gc required]]
or [[gc forbidden]], so they can be used in both garbage collected and
manually managed programs.

If neither [[gc strict]] or [[gc forbidden]] is explicitly declared, a
default of [[gc relaxed]] is assumed.

strict This attribute can be used to provide type-safety hints to help improve
the effectiveness and performance of garbage collection.

As C++ is a type-unsafe language, in the absence of any additional an-
notation the garbage collector may need to scan non-pointer types for po-
tential pointers (fully-conservative garbage collection). This can preclude
the effective use of garbage collection in a number of important situations
that could otherwise benefit from garbage collection:

9Alternatively, see the new(nogc) operator for a way to use such lists in gc-safe code
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• Fully conservative garbage collection can result in unacceptable mem-
ory retention in large 32-bit applications. For example, in a program
with a 2GB heap, a uniformly randomly chosen 32-bit integer value
would have a 50% chance of being interpreted as a pointer and pos-
sibly unnecessarily preventing garbage collection of an object that is
no longer in use.10

• Scanning of large objects with few or no pointers, such as a 500MB
mpeg file, can dramatically increase the time taken by garbage collec-
tion, to no effect (except to increase the risk of excess data retention).

In situations such as these, garbage collector space and time performance
can be greatly improved by using the [[gc strict]] annotation to pro-
vide type-safety hints. While we do allow garbage collectors to ignore the
[[gc strict]] annotation, we believe that most C++ implementations
will want to make at least some use of strictness information to avoid
situations such as the above.

The basic idea is simple. Any data declared having primitive non-pointer
type while the [[gc strict]] annotation is in effect need not be scanned
by the garbage collector to determine reachability. Note that the [[gc
strict]] annotation need only be in effect when the data is declared
and not when the object is allocated. We expect that implementations
will essentially treat [[gc strict]] as a type qualifier on primitive types
mentioned in its scope.

The following examples should help make this clear:

• [[gc strict]] class A {
A *next;
B b;
int data[1000000];

}

In this case, the garbage collector will not need to scan the data
member of A objects for pointers, although it will need to scan the
next member and the b member. This spares the implementor of A
from knowing about whether the internals of B are type-safe as the
b member may be scanned conservatively if it was not declared in a
strict environment.

• class mpeg {
[[gc strict]] mpeg(size_t s) {
mpegData = new char[s];

10This is probably pessimistic, since the values of most integer variables are not uniformly
distributed. Note also that this problem should recede entirely in the 64-bit architectures that
we expect will dominate by the time the next C++ standard is adopted. However, we do not
believe that the standard should rely either on a 64-bit address space, or on 64-bit address
spaces continuing forever to be sparsely occupied.
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}
...
char *mpegData;

};

This provides an mpeg class that can be used anywhere without need-
less scanning the video data for pointers.11

• [[gc strict]]typedef int binop;

This indicates that objects of type binop do not contain pointers
that are needed to deduce reachability.

• [[gc strict]]union U {
int b;
char *c;
float d;

}

This indicates that if an object of type U was initialized through the
b or d members, it will not contain a pointer needed to deduce reach-
ability. In practice, there are cases in which it is extremely difficult
to take advantage of such an annotation, and we would expect that
most garbage collectors will not attempt to do so.

• struct S { // Not strict
int a[100];

};
[[gc strict]] S *s = new S;

The garbage collector will need to scan the object pointed to by s
for pointers. Anything else would require unacceptable knowledge of
the internals of S. This illustrates that although the allocated type
of an object is used to deduce strictness, strictness is associated with
a type at the point of declaration, and not object creation.

In most cases (including the above examples), the programmer will dis-
pense with fine-grained annotations and simply apply a [[gc strict]]
annotation to the non-header portions of her source file as long as she does
not declare any types that hide pointers in non-pointer primitive types.12

A particular compilation unit will either

1. specify [[gc forbidden]] someplace in the source file, in which case no
other annotations matter,

2. specify [[gc required]] together with appropriate [[gc relaxed]] and
[[gc strict]] annotations, or

11In this case, the type char[s] is “declared” implicitly. It would also be equivalent to
simply annotate this entire class with [[gc strict]].

12Some care is needed in something like the implementation of memcpy(), which takes a
primitive type of unknown strictness as an argument. We believe such cases can be made
rare, and the loss of layout information is likely to be very temporary in any case.
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3. specify only appropriate [[gc relaxed]] and [[gc strict]] annota-
tions, effectively declaring the compilation unit safe for both garbage col-
lected and manually managed use.

An implementation shall attempt to reclaim unreachable memory if [[gc
required]] is in effect for any part of the application. It shall not attempt to
reclaim unreachable memory if [[gc forbidden]] is in effect for any part of
the application. An application that specifies both is erroneous, with a required
diagnostic. If neither is specified, it is implementation-defined (presumably
subject to a compiler flag) whether unreachable memory will be reclaimed.

If an implementation attempts to reclaim unreachable memory, it must, at
an extreme minimum, ensure that allocated memory is reclaimed at process
exit, so that repeated program invocations don’t lead to failure.

Because it may not be obvious whether any part of a program con-
tains a [[gc forbidden]] annotation, this proposal provides for an API
std::is garbage collected() returning a bool indicating whether the cur-
rent program is nominally garbage collected. It does not convey any information
about the quality of the garbage collection facility. In particular, a true return
value does not imply in principle that unreachable memory will be deallocated
prior to program termination.

6 Advanced features

Some advanced garbage collected features are necessary in specialized circum-
stances. We list these as advanced features to avoid detracting from the expected
simplicity of mainstream use.

6.1 Manually managed memory

This proposal provides an API to allocate memory that is not garbage collected.
This memory is still scanned for pointers according to the strictness criteria in
effect at the point in the code where its memory is allocated. These can help
prevent a single use of an xor-linked list from disabling garbage collection for
a whole application. They can also be used in systems-level code to create
additional roots for the garbage collection.13

Such memory can be allocated using one of the following mechanisms:

• A new(std::nogc) expression. This results in a call to a new
builtin operator new(size t, std:: nogc), where std::nogc has type
std:: nogc, which is an empty class.

• A call to std::nogc allocator<T>().allocate(). The standard allo-
cator std::nogc allocator<T> behaves like std::allocator<T>, except
that it allocates uncollectable memory, even when garbage collection is
called for.

13Further analysis of using manually managed memory in garbage collected programs is
available in Ellis and Detlefs work[11]
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• A call to the nogc malloc function.

6.2 Destructors and object cleanup

When an object is recycled by the garbage collector, its destructor is not invoked.
Garbage collected objects may perform clean-up actions with the aid of the
library routines below. We expect this mechanism to be very rarely used, but
it would be very difficult to work around its absence in those rare cases when it
is needed. Hence we chose to include it, but we propose a variant with minimal
impact on the implementation, and essentially no impact on the programmer
who chooses not to use it (or the reader who chooses to skip this section).

The mechanism described here has not yet been implemented in this form,
though it is based on extensive experience with a number of closely related
approaches in both C++ and Java.

Objects can specify a finalization action by inheriting from class
std::finalizable:

class finalizable {
public:

virtual void finalize() = 0;
}

Finalization methods may resurrect objects.
Finalizable objects need to be registered for cleanup actions using the func-

tion register for finalization:

class finalization_queue {
public:

int finalize_all();
...
}

void
register_for_finalization(std::finalizable *obj,

std::finalization_queue &q = std::system_finalization_queue>);

When an object passed to register for finalization becomes eligible for
finalization, it is pushed onto the back of the supplied std::finalization queue.
The client may later finalize all the elements on the queue with q.finalize all(),14

which returns the number of elements actually finalized.
The default system finalization queue periodically calls its finalize all()

method once immediately after the return from main() and, if threads are sup-
ported, periodically from a thread holding no user-visible locks.

14If thread support is added to the standard, finalize all() will be safe in the presence
of concurrent calls.
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If an object that is already registered for finalization is registered a second
time, the resulting behavior is undefined except that an object that has already
been enqueued may be re-registered for finalization.

Some common idioms require that finalization not occur until somewhat
after the object becomes unreachable.15 As in Java[14], we require programmer
support in these case. To facilitate this, we provide the function

template <class T> void delay_finalization(T * x);

to ensure that x may not be enqueued for finalization until the call completes.
(In a multi-threaded environment, it also ensures memory visibility of prior
actions to finalization actions.)

More precisely, an object p is guaranteed to be ineligible for finalization be-
tween the time it is allocated, and the time its delay finalization(p) is called
for the last time (excluding calls that are made as a result of enqueueing the
object itself for finalization), or the last time it is pointed to by a heap object
which is itself ineligible for finalization. An object becomes eligible for finaliza-
tion once it is no longer ineligible for finalization. It is not guaranteed that an
object which becomes eligible for finalization will be added to its finalization
queue before program termination.

Notes:

• This effectively requires topologically ordered finalization, an intentional
difference from Java[12] and C#[10].

• An object which is registered for finalization is pointer-reachable. Thus,
with safe (in the sense of the relaxed or strict annotation) client code,
no cleanup action can ever access memory that has been recycled by the
garbage collector.

• The delay finalization() function typically allows a very inexpensive
implementation. The compiler needs to prevent the movement of memory
references from before the call to after the call, and the argument needs
to be kept in a register up to the call site. No actual code needs to
be generated for the call, i.e. it can be in-line expanded to the empty
instruction sequence.

• Weak pointers could be considered as a possible extension.

7 Implementation Impact

This proposal does not mandate a particular garbage collection algorithm. We
believe that it is possible to use any garbage collector that supports object
pinning for at least union members which cannot be easily tagged, for any
pointers in stack frames corresponding to legacy code or non-strict code, and

15For details, see [7].
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for data structures not subject to [[gc strict]]. The cost of supporting such
object pinning in copying collectors seems to not be well understood. (Anecdotes
from others suggest that the collector should avoid moving objects if more than
about 1% of objects would be pinned. We expect this to be rare in most C++

applications if [[gc strict]] is used for major data structures. Experience
with mostly copying collectors [1] appears consistent with this.) Of course this
is not an issue for non-moving collectors.

As many powerful garbage collection algorithms are inextricably linked with
memory allocation, allocations of garbage collected objects are not required
to call ::new. For gc-safe code, which may or may not have garbage collection
enabled at run-time, the compiler can insert a single comparison against a global
to determine whether to call ::new, or it may be possible to eliminate these
comparisons at link time.

Classes with custom allocators are not garbage collected (although their
memory should still be scanned for pointers, any [[gc strict]] annotations
remain in effect, and the underlying pools may be garbage collected as a whole).
Similarly, STL containers will only be garbage collected if they use the default
allocator.16

In order to effectively use legacy C++ and C binary libraries in garbage
collected programs, memory allocated by ::new or malloc should be scanned
(conservatively) for pointers. As many existing binary libraries benefit substan-
tially from “litter collection,” an implementation is allowed to provide an option
for having ::new or malloc allocated garbage collected memory.

We expect that most implementations targeting potentially long-running ap-
plications will, at least initially, use a non-moving partially conservative garbage
collector.

This will often prevent the implementation from making guarantees about
space usage of garbage collected programs. (There are some exceptions. See
[6] for details.) But existing implementations make no such guarantees in the
absence of garbage collection either, and indeed malloc implementations may
vary tremendously in their worst-case fragmentation overhead, which rarely
seems to be a design consideration.

In practice, experience with conservatively garbage-collected implementa-
tions has usually been positive, though sometimes with clearly measurable space
overhead (although the collector is provided with much less pointer-location in-
formation than is possible under this proposal). Published empirical studies
include [9, 13]. Exceptions have generally involved excessive unnecessary mem-
ory retention in applications that use much of the process address space for live
data, a scenario that is unfortunately common now. Even minimal use of the
type information exposed by the [[gc strict]] annotation can often rectify the
problem (e.g., by avoiding scanning large character arrays of multimedia data)
and “litter collection” remains useful regardless of retention rate. We expect
such retention issues to recede entirely once 64-bit platforms dominate, as we
expect by the time the next C++ standard is adopted.

16Recent results suggest that custom allocators are of use only in limited contexts[3].
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Most current implementations supporting conservative GC use unmodified
compilers. This may fail if optimizations “disguise” the last pointer to an ob-
ject. Implementations performing such transformations may need to extend the
lifetimes of some pointer variables, potentially slightly increasing register pres-
sure. See [5]. This is expected to have minimal performance impact, but may
require compiler work. (JVM and CLI implementations routinely ensure much
stronger properties.)
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