

 Doc No: SC22/WG21/N2214
 J16/07-0074

 Date: 2007-03-08

 Project: JTC1.22.32

 Reply to: Herb Sutter Bjarne Stroustrup
 Microsoft Corp. Computer Science Dept.
 1 Microsoft Way Texas A&M University, TAMU 3112
 Redmond WA USA 98052 College Station TX USA 77843-3112
 Fax: +1-928-438-4456 Fax: +1-979-458-0718
 Email: hsutter@microsoft.com Email: bs@cs.tamu.edu

A name for the null pointer: nullptr (revision 3)

This is a revision of our paper N1488 that incorporates the following EWG direction
from the Kona meeting:

• Re NULL macro: No change is proposed, in order to preserve C compatibility.

• Re nullptr: It must be copyable, throwable, and passable through varargs.

• Re the type of nullptr: It should be named, and be a POD type. Named variables
of this type are allowed. reinterpret_cast to and from this type is allowed. It is
both a pointer type and a pointer-to-member type; i.e., it matches both a T* and a
T::* partial specialization. If it matches two partial specializations, you have an
ambiguity.

• Re the name of the type of nullptr: nullptr_t is introduced as a typedef for
decltype(nullptr).

In addition, this paper includes proposed wording for the feature.

1. The Problem, and Current Workarounds
The current C++ standard provides the special rule that 0 is both an integer constant and a
null pointer constant. From [C++03] clause 4.10:

A null pointer constant is an integral constant expression (expr.const) rvalue of integer type
that evaluates to zero. A null pointer constant can be converted to a pointer type; the result is
the null pointer value of that type and is distinguishable from every other value of pointer to
object or pointer to function type. Two null pointer values of the same type shall compare equal.
The conversion of a null pointer constant to a pointer to cv-qualified type is a single

WG21/N2214 = J16/07-0074 page 2
A name for the null pointer: nullptr (revision 3)

conversion, and not the sequence of a pointer conversion followed by a qualification conversion
(conv.qual).

This formulation is based on the original K&R C definition and differs from the definition in
C89 and C99. The C standard [C99] says (clause 6.3.2.3):

An integer constant expression with the value 0, or such an expression cast to type void *, is
called a null pointer constant.[55] If a null pointer constant is converted to a pointer type, the
resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any
object or function.

This use of the value 0 to mean different things (a pointer constant and an int) in C++ has
caused problems since at least 1985 in teaching, learning, and using C++. In particular:

Distinguishing between null and zero. The null pointer and an integer 0 cannot be
distinguished well for overload resolution. For example, given two overloaded
functions f(int) and f(char*), the call f(0) unambiguously resolves to f(int).1 There
is no way to write a call to f(char*) with a null pointer value without writing an
explicit cast (i.e., f((char*)0)) or using a named variable. For another example,
consider the following oddity in Standard C++:

std::string s1(false); // compiles, calls char* constructor with null
std::string s2(true); // error

 Naming null. Further, programmers have often requested that the null pointer constant
have a name (rather than just 0). This is one reason why the macro NULL exists,
although that macro is insufficient. (If the null pointer constant had a type-safe name,
this would also solve the previous problem as it could be distinguished from the
integer 0 for overload resolution and some error detection.)

To avoid these problems, 0 must mean only one thing (an integer value), and we need to
have a different name to express the other (a null pointer).

1 An alternative description of this effect might be: “0 is always both an integer constant and a null pointer
constant, except when it’s not.”

WG21/N2214 = J16/07-0074 page 3
A name for the null pointer: nullptr (revision 3)

This problem falls into the following categories:

• Improve support for library building, by providing a way for users to write less
ambiguous code, so that over time library writers will not need to worry about
overloading on integral and pointer types.

• Improve support for generic programming, by making it easier to express both integer
0 and nullptr unambiguously.

• Make C++ easier to teach and learn.

• Remove embarrassments.

We propose that a desirable solution should be able to fulfill the following design goals:

1. The name for the null pointer should be a reserved word.

2. The null pointer cannot be used in an arithmetic expression, assigned to an integral
value, or compared to an integral value; a diagnostic is required.

3. The null pointer can be converted to any pointer type, and cannot be converted to any
other type including any integral type.

4. The integer 0 does not implicitly convert to any pointer type.

Obviously, (4) is infeasible because it would break spectacular amounts of code, so we don’t
propose that.

1.1 Alternative #1: A Library Implementation of nullptr

Perhaps the closest current workaround is to provide a library implementation of nullptr.
This alternative is based on [Meyers96] Item 25:

const // this is a const object...
class {
public:
 template<class T> // convertible to any type
 operator T*() const // of null non-member
 { return 0; } // pointer...

 template<class C, class T> // or any type of null
 operator T C::*() const // member pointer...
 { return 0; }

WG21/N2214 = J16/07-0074 page 4
A name for the null pointer: nullptr (revision 3)

private:
 void operator&() const; // whose address can't be taken
} nullptr = {}; // and whose name is nullptr

There is one real advantage to this workaround:

 It does not make nullptr a reserved word. This means that it would not break existing
programs that use nullptr as an identifier, but on the other hand it also means that its
name can be hidden by such an existing identifier. (Note: In practice, the name is
intended to be pervasively used and so will still be effectively a reserved word for
most purposes.)

There is one apparent advantage that we believe is less significant in practice:

 It provides nullptr as a library value, rather than a special value known to the
compiler. We believe it is likely that compiler implementations will still treat it as a
special value in order to produce quality diagnostics (see note below).

This alternative has drawbacks:

 It requires that the user include a header before using the value.

 Since nullptr doesn’t implicitly convert to bool, it does not support usages like if(
nullptr), although these will probably not be common.

 Experiments with several popular existing compilers show that it generates poor
and/or misleading compiler diagnostics for several of the common use cases
described in section 2. (Examples include: “no conversion from ‘const ’ to ‘int’”; “no
suitable conversion function from ‘const class <unnamed>’ to ‘int’ exists”; “a template
argument may not reference an unnamed type”; “no operator ‘==’ matches these
operands, operand types are: int == const class <unnamed>”.) We believe that
compilers will still need to add special knowledge of nullptr in order to provide quality
diagnostics for common use cases.

 Although available for many years, it has not been widely adopted and incompatible
variants are not uncommon

 An elaborate class-based solution would cause problems in constant expressions as
will become common with the adoption of generalized constant expressions
(constexpr).

1.2 Alternative #2: (void*)0

WG21/N2214 = J16/07-0074 page 5
A name for the null pointer: nullptr (revision 3)

A second alternative solution would be to accept (void*)0 as a “magic” pointer value with
roughly the semantics of the nullptr proposed in section 2.

However, this solution has serious problems:

 It would still be necessary for programmers to use the macro NULL to name the null
pointer (the notation (void*)0 is just too ugly).

 Furthermore, (void*)0 would have to have a unique semantics; that is, its type would
not be void*. We do not consider opening the C type hole by allowing any value of
type void* to any T*.

The introduction of nullptr as proposed in section 2 is a far cleaner solution.

2. Our Proposal
We propose a new standard reserved word nullptr. The nullptr keyword designates a constant
rvalue of type decltype(nullptr). We also provide the typedef:

typedef decltype(nullptr) nullptr_t;

nullptr_t is not a reserved word. It is a typedef (as its _t typedef indicates) for
decltype(nullptr) defined in <cstddef>. We do not expect to see much direct use of nullptr_t in
real programs.

nullptr_t is a POD typethat is convertible to both a pointer type and a pointer-to-member
type.

All objects of type nullptr_t are equivalent and behave identically, except that they may differ
in cv-qualification and whether they are rvalues or lvalues. The address of nullptr itself
cannot be taken (it is a literal, just like 1 and true); another nullptr_t object’s address could be
taken, although this isn’t very useful. Objects of type nullptr_t can be copied and thrown.

An object of type nullptr_t can be converted to any pointer or pointer-to-member type by a
standard conversion. It cannot be converted to any other type (including any integral or bool
type), cannot be used in an arithmetic expression, cannot be assigned to an integral value,
and cannot be compared to an integral value; a diagnostic is required for these cases.

With this specification for nullptr and nullptr_t, the following points follow from the existing
rules already in the standard:

• Performing a reinterpret_cast to and from a nullptr_t object is allowed (this is already
covered by saying that nullptr_t is a pointer type, see [C++03] §5.2.10).

WG21/N2214 = J16/07-0074 page 6
A name for the null pointer: nullptr (revision 3)

• nullptr_t matches both a T* and a T::* partial specialization. If it matches two partial
specializations of the same template, the result is ambiguous because neither partial
specialization is more specialized than the other (see [C++03] §14.5.4.2).

We recommend that the name of the reserved word be nullptr because:

 nullptr says what it is. For example, it is not a null reference.

 Programmers have often requested that the null pointer constant have a name, and nullptr
appears to be the least likely of the alternative text spellings to conflict with identifiers
in existing user programs. For example, a Google search for nullptr cpp returns a total
of merely 150 hits, only one of which appears to use nullptr in a C++ program.

o The alternative name NULL is not available. NULL is already the name of an
implementation-defined macro in the C and C++ standards. If we defined NULL
to be a keyword, it would still be replaced by macros lurking in older code.
Also, there might be code “out there” that (unwisely) depended on NULL being
0. Finally, identifiers in all caps are conventionally assumed to be macros,
testable by #ifdef, etc.

o The alternative name null is impractical. It is nearly as bad as NULL in that null is
also a commonly used in existing programs as an identifier name and (worse)
as a macro name. For example, a Google search for null cpp returns about
180,000 hits, of which an estimated 3%2 or over 5,000 use null in C++ code as an
identifier or as a macro. Another favorite, nil, is worse still.

o Any other name we have thought of is longer or clashes more often.

 The alternative spelling 0P or 0p, adding the letter as a constant type suffix, is
impractical. It overlaps with a C99 extension that already uses P or p in a constant to
write the binary exponent part of a hexadecimal floating-point constant (see [C99]
clause 6.4.4.2). For example, 0P occurs as a part of the constant 0x0P2. Although using
0P or 0p would not be ambiguous today (the C99 P or p must be preceded by 0x and a
hex number, and must be followed by a decimal number), it seems imprudent to reuse

2 Based on inspection of the first 300 hits, in which there were nine code hits (most related to Qt’s QString::null).

WG21/N2214 = J16/07-0074 page 7
A name for the null pointer: nullptr (revision 3)

a constant type suffix already used for another type of constant in a sister standard.
Also, using an obscure notation, such as 0P, would encourage people to rely on a NULL
macro.

 Our informal polling suggests that people seem to like nullptr. If nothing else, it is the
spelling that has elicited the fewest strong objections to date in our experience.

We do not propose to define the standard library macro NULL to nullptr. We considered that
and liked the idea, but the EWG opinion was that it would break too much code, even
though in many cases that would be code that deserved to be broken. New code should use
the cleaner and safer nullptr.

2.1 Basic Cases

The following example illustrates basic use cases: assignment, comparison, and arithmetic
operations.

char* ch = nullptr; // ch has the null pointer value
char* ch2 = 0; // ch2 has the null pointer value
int n = nullptr; // error
int n2 = 0; // n2 is zero

if(ch == 0); // evaluates to true
if(ch == nullptr); // evaluates to true
if(ch); // evaluates to false

if(n2 == 0); // evaluates to true
if(n2 == nullptr); // error

if(nullptr); // error, no conversion to bool
if(nullptr == 0); // error

// arithmetic
nullptr = 0; // error, nullptr is not an lvalue
nullptr + 2; // error

In particular, note that 0 can still be assigned to a pointer. This is essential for compatibility.

2.2 Advanced Cases

The following example illustrates additional use cases: the ternary operator, sizeof, typeid,
throw, overload resolution, and template specialization.

WG21/N2214 = J16/07-0074 page 8
A name for the null pointer: nullptr (revision 3)

// Ternary operator cases
//
char* ch3 = expr ? nullptr : nullptr; // ch1 is the null pointer value
char* ch4 = expr ? 0 : nullptr; // error, types are not compatible
int n3 = expr ? nullptr : nullptr; // error, nullptr can’t be converted to int
int n4 = expr ? 0 : nullptr; // error, types are not compatible

// Sizeof, typeid, and throw
//
sizeof(nullptr); // ok
typeid(nullptr); // ok
throw nullptr; // ok

// Overloading cases
//
void f(char*);
void f(int);

f(nullptr); // calls f(char*)
f(0); // calls f(int)

WG21/N2214 = J16/07-0074 page 9
A name for the null pointer: nullptr (revision 3)

// Specialization cases
//
template<typename T> void g(T t);

g(0); // specializes g, T = int
g(nullptr); // specializes g, T = nullptr_t
g((float*) nullptr); // specializes g, T = float*

// Partial specialization cases
//
template<typename T> class X { };
template<typename T> class X<T*> X { }; // case X<T*>
template<typename T> class X<T::*> X { }; // case X<T::*>

X<nullptr_t> x; // error, ambiguous; nullptr_t is both a pointer
 // and pointer-to-member type, so it’s undecidable which
 // partial specialization to use

3. Interactions and Implementability
3.1 Interactions

See §2.2.

Effects on legacy code: Existing code that uses nullptr as an identifier will have to change the
name of that identifier because it will be a reserved word.

3.2 Implementability

There are no known or anticipated difficulties in implementing this feature.

4. Proposed Wording
In this section, where changes are either specified by presenting changes to existing wording,
strikethrough text refers to existing text that is to be deleted, and underscored text refers to
new text that is to be added. Existing footnotes are unchanged unless otherwise indicated. All
clause references are to [C++03].

WG21/N2214 = J16/07-0074 page 10
A name for the null pointer: nullptr (revision 3)

In §2.11, Table 3, add nullptr to the list of keywords.

In §2.13 add the alternative pointer-literal to literal.

In §2.13.1 add the rule

 pointer-literal:

 nullptr

Change §4.10 as indicated:

4.10 Pointer conversions [conv.ptr]

1 A null pointer constant is an integral constant expression (5.19) rvalue of integer type
that evaluates to zero. A null pointer constant or an object of type nullptr_t can be
converted to a pointer type; the result is the null pointer value of that type and is
distinguishable from every other value of pointer to object or pointer to function type.
Two null pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to cv-qualified type is a single conversion, and not the
sequence of a pointer conversion followed by a qualification conversion (4.4).

2 An rvalue of type “pointer to cv T,” where T is an object type, can be converted to an
rvalue of type “pointer to cv void.” The result of converting a “pointer to cv T” to a
“pointer to cv void” points to the start of the storage location where the object of type T
resides, as if the object is a most derived object (1.8) of type T (that is, not a base class
subobject).

3 An rvalue of type “pointer to cv D,” where D is a class type, can be converted to an
rvalue of type “pointer to cv B,” where B is a base class (clause 10) of D. If B is an
inaccessible (clause 11) or ambiguous (10.2) base class of D, a program that necessitates
this conversion is ill-formed. The result of the conversion is a pointer to the base class
sub-object of the derived class object. The null pointer value is converted to the null
pointer value of the destination type.

4 The nullptr keyword designates a literal of type std::nullptr_t (18.1). [Note: The address
of nullptr cannot be taken. —end note]

Change §4.11 as indicated:

4.11 Pointer to member conversions [conv.mem]

WG21/N2214 = J16/07-0074 page 11
A name for the null pointer: nullptr (revision 3)

1 A null pointer constant (4.10) or an object of type nullptr_t (4.10) can be converted to a
pointer to member type; the result is the null member pointer value of that type and is
distinguishable from any pointer to member not created from a null pointer constant.
Two null member pointer values of the same type shall compare equal. The
conversion of a null pointer constant to a pointer to member of cv-qualified type is a
single conversion, and not the sequence of a pointer to member conversion followed
by a qualification conversion (4.4).

2 An rvalue of type “pointer to member of B of type cv T,” where B is a class type, can be
converted to an rvalue of type “pointer to member of D of type cv T,” where D is a
derived class (clause 10) of B. If B is an inaccessible (clause 11), ambiguous (10.2) or
virtual (10.1) base class of D, a program that necessitates this conversion is ill-formed.
The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a
member of the derived class. The result refers to the member in D’s instance of B. Since
the result has type “pointer to member of D of type cv TTT,” it can be dereferenced with a
D object. The result is the same as if the pointer to member of B were dereferenced
with the B sub-object of D. The null member pointer value is converted to the null
member pointer value of the destination type.52)

In §18.1, add nullptr_t to Table 15 as follows:

Table 15—Header <cstddef> synopsis

Kind Name(s)
Macros: NULL offsetof
Types: ptrdiff_t size_t nullptr_t

Also in §18.1, insert the following new paragraph:

6 nullptr_t is defined as follows:

namespace std {
 typedef implementation defined nullptr_t;
}

The type for which nullptr_t is a synonym shall have the following characteristics: It is
a POD type, and sizeof(nullptr_t) shall be equal to sizeof(void*). nullptr_t is both a
pointer type and a pointer to member type. Objects of type nullptr_t can be copied and
thrown. An object of type nullptr_t shall not be converted to an object of any type other
than a pointer or pointer to member type, shall not be used in an arithmetic
expression, shall not be assigned to an integral value, and shall not be compared to an
integral value; a diagnostic is required. All objects of type nullptr_t are equivalent and

WG21/N2214 = J16/07-0074 page 12
A name for the null pointer: nullptr (revision 3)

behave identically (see also the definition of nullptr in 4.10), except that they may differ
in cv-qualification and whether they are rvalues or lvalues. [Note: Although nullptr’s
address cannot be taken, the address of another nullptr_t object that is an lvalue could
be taken. —end note]

References

[C99] ISO/IEC 9899:1999(E), Programming Language C.

[C++03] ISO/IEC 14882:2003(E), Programming Language C++.

[Meyers96] S. Meyers. More Effective C++, 2nd edition (Addison-Wesley, 1996).

	A name for the null pointer: nullptr (revision 3)
	1. The Problem, and Current Workarounds
	2. Our Proposal
	3. Interactions and Implementability
	4. Proposed Wording
	References

