
P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 1 of 8

Doc No: P0987r0

Date: 2018-04-02

Audience: LWG

Authors: Pablo Halpern, Intel Corp. <phalpern@halpernwightsoftware.com>

polymorphic_allocator<byte> instead of type-erasure

Contents

1 Abstract .. 1
2 History .. 1
3 Motivation ... 2
4 Proposal Overview ... 2
5 Future directions .. 3
6 Formal Wording .. 3

6.1 Document Conventions .. 3
6.2 Feature test macros ... 3
6.3 Undo changes to uses-allocator construction ... 3
6.4 Remove erased_type from the TS ... 4
6.5 Changes to std::experimental::function ... 4
6.6 Changes to type-erased allocator .. 6
6.7 Changes to class template promise ... 7
6.8 Changes to class template packaged_task .. 7

7 References .. 7

1 Abstract

Type-erased allocators have been proposed in the Library Fundamentals Technical
Specification working draft as a way to add allocator customization to types such as
std::function that do not have allocators as part of their type (i.e., we specify the allocator

type on construction, not when instantiating the type). Type erasure of allocators is
somewhat complex and inefficient for implementers, especially when combined with erasure
of other types in the constructor (2-dimentional type erasure), as would be the case for
std::function. This paper proposes replacing type-erased allocators in the LFTS WP with

the use of std::pmr::polymorphic_allocator<byte>, consistent with the proposed use of

polymorphic_allocator as a vocabulary type, proposed in P0339.

This paper is split off from P0339r3, which proposes polymorphic_allocator<byte> as a

vocabulary type. While P0339r4 contains those portions of P0339r3 targeted for the C++
working draft, this proposal contains those portions of P0339r3 that are targeted for the next
release of the Library Fundamentals technical specification.

2 History

This paper was formerly part of P0339, which proposed extensions to
polymorphic_allocator so that it can more easily be used as a vocabulary type. At the

March 2018 Jacksonville meeting, LEWG voted to split P0339r3 into two parts: one part to be

mailto:phalpern@halpernwightsoftware.com

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 2 of 8

targeted to C++20 (P0339r4), and the other part to be targeted to the next LFTS (this paper).
LEWG also voted to advance both papers to LWG without further LEWG review.

3 Motivation

The current definition of std::function in the C++17 standard does not allow the user to

supply an allocator to control memory allocation despite the fact that it sometimes allocates
memory and that the C++14 standard had a (broken and never implemented) interface for
supplying an allocator. The LFTS defines a version of function that does take an allocator

argument at construction and uses type erasure to hold that allocator. The main constructor,
as it appears currently in the LFTS looks like this:

template<class F, class A>

 function(allocator_arg_t, const A&, F);

Note that both F and A are template parameters to the constructor that do not appear in the
class type. This means that the implementation of function needs to do two-dimensional

type erasure. which is both complicated and can be inefficient. The LFTS specification for
type-erased allocators is also somewhat complicated by the desire to have type-erased objects
place nicely in the realm of other objects that take allocator parameters.

The proposed revision of the above constructor looks like this:

template<class F>

 function(allocator_arg_t, const polymorphic_allocator<byte>&, F);

Note that the allocator is no longer a template argument, which simplifies specification and
copying of the allocator, and provides the ability to return the allocator to the client using a
straight-forward interface consistent with other allocator-savvy types:

polymorphic_allocator<byte> get_allocator() const noexcept;

4 Proposal Overview

Consistent with the use of polymorphic_allocator<> as a vocabulary type in P0339, this

paper proposes the following significant simplifications to the memory section of the Library
Fundamentals TS:

• Because polymorphic_allocator<byte> is an allocator, and does not require

special handling, we back out changes to the definition of uses-allocator construction
and the uses_allocator trait that are present in the current draft of the LFTS.

(Section 2 of the TS is completely removed.)

• Rewrite the Type-erased allocator section in terms of
polymorphic_allocator<byte> instead of memory_resource* and eliminate the

erased_type struct.

• Eliminate the type-erased allocator from the function class template, replacing it

with polymorphic_allocator<byte>. (Note that the type-erased allocator for

function was not implemented by any major standard-library supplier.)

• Update promise and packaged_task to use the new type-erased allocator idiom.

https://wg21.link/P0339r4

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 3 of 8

5 Future directions

We should consider using polymorphic_allocator<byte> in the interface to

std::experimental::any.

6 Formal Wording

6.1 Document Conventions

All section names and numbers are relative to the November 2016 draft of the Library
Fundamentals TS, N4617. Note that major sections of the TS have been moved into C++17.
Section numbers are, therefore, subject to significant change in the future.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

6.2 Feature test macros

Modify selected rows from Table 2 in section 1.6 [general.feature.test] as follows:

Table 2 — Significant features in this technical specification

Doc. No. Title
Primary
Section

Macro Name Suffix Value Header

N3916
P0987R0

Type-erased
Polymorphic
allocator for
function

4.2
function_erasedpolymorphic_all

ocator

201406
201804

<experimental/functional>

N3916
P0987R0

Type-erased
Polymorphic
allocator for
promise

11.2
promise_erasedpolymorphic_allo

cator

201406
201804

<experimental/future>

N3916
P0987R0

Type-erased
Polymorphic
allocator for
packaged_tas

k

11.3
packaged_task_erasedpolymorphi

c_allocator

201406
201804

<experimental/future>

6.3 Undo changes to uses-allocator construction

Remove section 2.1 [mods.allocator.uses] from the TS, which would have made changes to
sections 23.10.7.1, [allocator.uses.trait] and 23.10.7.2 [allocator.uses.construction] of the
standard. Note that this change, applied to N4617 would make section 2 [mods] empty, so
that section can be completely removed unless some other material is added before adoption
of this paper.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 4 of 8

6.4 Remove erased_type from the TS

Remove section section 3.1.1 [utility.synop], which introduces an <experimental/utility>

header, and section 3.1.2 [utility.erased.type], which defines struct erased_type, from the

TS draft. The changes to type-erased allocators, below, make this struct no longer

necessary. Note that removing these two sections from N4617 would make section 3.1
[utility[empty, and thus it, too, can be removed.

6.5 Changes to std::experimental::function

In section 4.1 [header.functional.synop] of the TS, remove the specialization of
uses_allocator from the end of the <functional> synopsis:

 template<class R, class... ArgTypes, class Alloc>

 struct uses_allocator<experimental::function<R(ArgTypes...)>, Alloc>;

In section 4.2 [func.wrap.func] of the TS, modify allocator_type and all of the constructors

that take an allocator in std::experimental::function:

 template<class R, class... ArgTypes>

 class function<R(ArgTypes...)> {

 public:

 using result_type = R;

 using argument_type = T1;

 using first_argument_type = T1;

 using second_argument_type = T2;

 using allocator_type = erased_typepmr::polymorphic_allocator<byte>;

 function() noexcept;

 function(nullptr_t) noexcept;

 function(const function&);

 function(function&&);

 template<class F> function(F);

 template<class A> function(allocator_arg_t,

 const Aallocator_type&) noexcept;

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, nullptr_t) noexcept;

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, const function&);

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, function&&);

 template<class F, class A> function(allocator_arg_t,

 const A allocator_type&, F);

replace get_memory_resource() with get_allocator():

 pmr::memory_resource* get_memory_resource();

 allocator_type get_allocator() const noexcept;

 };

and remove the definition of uses_allocator:

 template<class R, class... ArgTypes, class Alloc>

 struct uses_allocator<experimental::function<R(ArgTypes...)>, Alloc>

 : true_type { };

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 5 of 8

In sections 4.2.1 [func.wrap.func.con] and 4.2.2 [func.wrap.func.mod], eliminate all
references to type erasure and memory resources:

4.2.1 function construct/copy/destroy [func.wrap.func.con]

When a function constructor that takes a first argument of type allocator_arg_t and a second argument of

type polymorphic_allocator<byte> is invoked, the second argument is treated as a type-erased

allocator (8.3) a copy of the allocator argument is used to allocate memory, if necessary, for the internal data

structures of the constructed function object, otherwise pmr::polymorphic_allocator<byte>{}

is used. If the constructor moves or makes a copy of a function object (C++14 §20.9), including an instance

of the experimental::function class template, then that move or copy is performed by using-allocator

construction with allocator get_memory_resource()get_allocator().

In the following descriptions, let ALLOCATOR_OF(f) be the allocator specified in the construction of

function f, or allocator<char>() if no allocator was specified.

function& operator=(const function& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

Returns: *this.

function& operator=(function&& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::move(f)).swap(*this);

Returns: *this.

function& operator=(nullptr_t) noexcept;

Effects: If *this != nullptr, destroys the target of this.

Postconditions: !(*this). The memory resourceallocator returned by

get_memory_resource()get_allocator() after the assignment is equivalent to the memory

resourceallocator before the assignment. [Note: the address returned by

get_memory_get_allocator().resource() might change — end note]

Returns: *this.

template<class F> function& operator=(F&& f);

Effects function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::forward<F>(f)).swap(*this);

Returns: *this.

Remarks: This assignment operator shall not participate in overload resolution unless

declval<decay_t<F>&>() is Callable (C++14 §20.9.11.2) for argument types ArgTypes...

and return type R.

template<class F> function& operator=(reference_wrapper<F> f);

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 6 of 8

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

Returns: *this.

4.2.2 function modifiers [func.wrap.func.mod]

void swap(function& other);

Requires: *this->get_memory_resource() == *other.get_memory_resource()

this->get_allocator() == other.get_allocator().

Effects: Interchanges the targets of *this and other.

Remarks: The allocators of *this and other are not interchanged.

Add a new section describing the get_allocator() function:

allocator_type get_allocator() const noexcept;

Returns: A copy of the allocator specified at construction, if any; otherwise a copy of

allocator_type{} evaluated at the time of construction of this object.

6.6 Changes to type-erased allocator

Make the following changes to section 8.3 Type-erased allocator
[memory.type.erased.allocator]:

8.3 Type-erased allocator [memory.type.erased.allocator]

A type-erased allocator is an allocator or memory resource, alloc, used to allocate internal data structures for

an object X of type C, but where C is not dependent on the type of alloc. Once alloc has been supplied to X

(typically as a constructor argument), a copy of alloc can be retrieved from X only as a pointer rptr of static

type std::experimental::pmr::memory_resource* (8.5) via an object named (for exposition)

pmr_alloc of type pmr::polymorphic_allocator<byte> (C++17 §23.12.3

[memory.polymorphic.allocator.class]). The process by which rptrpmr_alloc is computedinitialized from

alloc depends on the type of alloc as described in Table 13:

Table 13 — Initialization of type-erased allocator

If the type of alloc is then the value of rptr is

non-existent — no alloc specified The value of

experimental::pmr::get_default_resource()at the

time of construction pmr_alloc is value initialized.

nullptr_t The value of

experimental::pmr::get_default_resource()at the

time of construction pmr_alloc is value initialized.

a pointer type convertible to
pmr::memory_resource*

static_cast<experimental::pmr::memory_resource

*>(alloc)pmr_alloc is initialized with alloc

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 7 of 8

pmr::polymorphic_allocator<U> pmr_alloc is initialized with alloc.resource()

any other type meeting the Allocator

requirements (C++14 §17.6.3.5)

requirements for the Allocator parameter to
pmr::resource_adaptor

[memory.resource.adaptor.overview]

pmr_alloc is initialized with a pointer to a value of type

experimental::pmr::resource_adaptor<A> where A is

the type of alloc. rptrpmr_alloc remains valid only for the

lifetime of X.

None of the above The program is ill-formed.

Additionally, class C shall meet the following requirements:

— C::allocator_type shall be identical to a specialization of

std::experimental::erased_typepmr::polymorphic_allocator.

— X.get_memory_resource()X.get_allocator() returns rptrpmr_alloc.

6.7 Changes to class template promise

Make the following changes to the class definition of promise in section 11.2

[futures.promise] of the TS, consistent with the change in type-erased allocators:

 template <class R>

 class promise {

 public:

 using allocator_type = erased_typepolymorphic_allocator<byte>;

 ...

 pmr::memory_resource* get_memory_resource();

 allocator_type get_allocator() const noexecpt;

 };

6.8 Changes to class template packaged_task

Make the following changes to the class definition of packaged_task in section 11.3

[futures.task], consistent with the change in type-erased allocators:

 template <class R, class... ArgTypes>

 class packaged_task<R(ArgTypes...)> {

 public:

 using allocator_type = erased_typepolymorphic_allocator<byte>;

 ...

 pmr::memory_resource* get_memory_resource();

 allocator_type get_allocator() const noexecpt;

 };

7 References

P0039r4 polymorphic_allocator<> as a vocabulary type, Pablo Halpern & Dietmar Kühl, 2018-
04-01.

N4617 Draft Technical Specification, C++ Extensions for Library Fundamentals, Version 2,
Geoffrey Romer, editor, 2016-11-28.

http://wg21.link/P0339
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

P0987r0: polymorphic_allocator<byte> instead of type-erasure Page 8 of 8

N3916 Polymorphic Memory Resources - r2, Pablo Halpern, 2014-02-14.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf

