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Abstract

This paper proposes a wording fix to the C++ standard to allow read access to the object
representation (i.e. the underlying bytes) of an object. This is valid in C, and is widely used
and assumed to be valid in C++ as well. However, in C++ this is is undefined behaviour under
the current specification.

1 Motivation
Consider the following program, which takes an int and prints the underlying bytes of its value in
hex format:

void print_hex(int n) {
unsigned char* a = (unsigned char*)(&n);
for (int i = 0; i < sizeof(int); ++i)
printf("%02x ", a[i]);

}

int main() {
print_hex(123456);

}

In C, this is a valid program. On a little-endian machine where sizeof(int) == 4, this will print
40 e2 01 00 . In C++, this is widely assumed to be valid as well, and this functionality is widely
used in existing code bases (think of binary file formats, hex viewers, and many other low-level use
cases).
However, surprisingly, in C++ this code is undefined behaviour under the current specification. In
fact, it is impossible in C++ to directly access the object representation of an object (i.e. to read
its underlying bytes), even for built-in types such as int. Instead, we would have to use memcpy to
copy the bytes into a separate array of unsigned char, and access them from there. However, this
workaround only works for trivially copyable types. It also directly violates one of the fundamental
principles of C++: to leave no room for a lower-level language.
The goal of this paper is to provide the necessary wording fixes to make accessing object represen-
tations such as in the code above defined behaviour. Existing compilers already assume that this
should be valid. The goal of the paper is therefore to not require any changes to existing compilers
or existing code, but to legalise existing code that already works in practice and was always intended
to be valid.
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2 The problem
The cast to unsigned char*, which performs a reinterpret_cast, is fine, because char, unsigned
char, and std::byte can alias any other type, so we do not violate the rules for type punning.
However, with the current wording, this cast does not yield a pointer to the first element of n’s
object representation (i.e. a pointer to a byte), and in fact it is currently impossible in C++ to
obtain such a pointer. This is because this particular reinterpret_cast is exactly equivalent to
static_cast<unsigned char*>(static_cast<void*>(n)) as per [expr.reinterpret.cast] p7, and
as such, [expr.static.cast] p13 dictates that the value of the pointer is unchanged and therefore it
points to the original object (the int). When a is dereferenced, the behaviour is undefined as per
[expr.pre] p4 because the value of the resulting expression would not be the value of the first byte,
but the value of the whole int object (123456), which is not a value representable by unsigned
char.
Further, even if we ignore this issue, a does not point to an array of unsigned char, because such
an array has never been created, and therefore pointer arithmetics on a is undefined behaviour. An
object representation as defined by [basic.types] p4 is merely a sequence of unsigned char objects,
not an array, and is therefore unsuitable for pointer arithmetics. No array is ever created explicitly,
and no operation is being called in the above code that would implicitly create an array, since casts
are not operations that implicitly create objects as per [intro.object] p10.

3 History and context
The intent of CWG has always been that the above code should work, as exemplified by [CWG1314],
in which it is stated that access to the object representation is intended to be well-defined. Further,
it seems that the above code actually did work until C++17, when [P0137R1] was accepted. This
proposal fixed an unrelated core issue and included a change to how pointers work, notably that they
point to objects, rather than just representing an address. It seems that the proposal neglected to
add any provisions to allow access to the object representation of an object, and thus inadvertently
broke this functionality. Therefore, this paper is a defect report, not a proposal of a new feature.
Notably, there are even standard library facilities that directly use this functionality and cannot be
implemented in standard C++ without fixing it. One such facility is std::as_bytes (introduced in
C++20), which obtains a std::span<const std::bytes> view to the object representation of the
elements of another span. Now, we do have a few “magic” functions in the C++ standard library
that cannot be implemented in standard C++, but reading the underlying bytes of an object is
such basic functionality that it should not fall into this category.

4 Non-goals
This paper does not propose to make in-place modification of the object representation valid, i.e.
writing into the underlying bytes, only reading them. The following code will still be undefined
behaviour:

void increment_first_byte(int* n) {
auto* a = reinterpret_cast<char*>(n);
++(*a);

}

It may be desirable to allow such code as well. However, unlike reading the object representation,
modifying it was never allowed in C++, so fixing it would be a new feature, not be a defect report.
Note that the current rules in [basic.types.general] allow only to memcpy the value of an object
into an array of char, unsigned char, or std::byte and then memcpy it back unmodified, or to
memcpy the value of one object into another, but not to memcpy the value of an object into an array,
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then modify the elements of the array, and then memcpy back the modified value. Writing back a
modified value would be a new invention, and modifying the value in-place even more so. It can
also only ever work for trivially copyable types. Therefore, CWG gave the guidance to reduce the
scope of this paper to reading only, and propose the modifying case in a separate paper (not yet
published).
This paper also does not propose to subvert existing type punning rules in any way. The proposed
changes will not allow type punning between two different types where it was not previously allowed,
such as between int and float (this should be done using std::bit_cast). It only allows type
punning to char, unsigned char, and std::byte, which are already allowed to alias any other
type.
We also do not propose to make accessing the object representation work for all types in C++, only
for types that are currently guaranteed to occupy contiguous bytes of storage, that is, for trivially
copyable or standard-layout types as per [intro.object] p5. On the one hand, this is unnecessarily
restrictive: in practice, any sane implementation will have complete objects, array elements, and
member subobjects occupying contiguous memory, as the only reason an object would need to be
non-contiguous would be if it was a virtual base subobject. On the other hand, making more objects
contiguous (and therefore, their object representations accessible) is not in scope for this paper, and
is instead tackled in a separate proposal [P1945R0].

5 Proposed solution
For an object a of type T, we propose to change the definition of object representation to be
considered an array of unsigned char, and not merely a sequence of unsigned char objects, if
T is a type that occupies contiguous bytes of storage. We propose that this object representation
should be an object in its own right, occupying the same storage as a and having the same lifetime.
This will make pointer arithmetic work with a pointer to an element of the object representation.
To avoid an infinite recursion of nested object representations, we further specify that an array
of unsigned char acts as its own object representation. We also need to prevent implicit object
creation [P0593R6] within object representations.
We further propose that obtaining a pointer to the object representation should be possible through
the use of a cast to char, unsigned char, or std::byte, and allow this pointer to be cast back to a
pointer to its respective object. For this, we need to make the appropriate changes to the specification
of static_cast and to make a pointer-interconvertible with its own object representation as well
as with the first element thereof. We need to do this in a way that preserves reinterpret_cast’s
equivalence with static_cast with respect to converting object pointers. Simultaneously, if multiple
pointer-interconvertible objects exist, we need to specify which one is chosen.
Additionally, we need to make reading an object representation through a pointer to char or
std::byte well-defined, even though it points to an element of the object representation which is
of type unsigned char. In these cases, we must allow for the type of the expression to differ from
that of the object pointed to.
We also need to say something about the values of the elements of an object representation. We
propose that for objects of type char, unsigned char, and std::byte, the value of each element
is the value of the object it represents. For all other types, the values of the elements of the object
representation are unspecified. It seems extremely difficult to specify for the general case what the
value of each element would be, but it is also unnecessary, since our goal is only to make reading the
elements well-defined, not to specify a particular result (which won’t be the same across platforms).
Finally, multiple objects may occupy the same storage, in which case the objects’ respective object
representations will overlap. We must therefore adjust the specification of std::launder to define
which object it will return a pointer to.
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6 Polls

EWGI

Should accessing the object representation be defined behaviour?
Unanimous consent

Forward P1839R1 as presented to EWG, recommending that this be a core issue?
Unanimous consent

EWG

It should be possible to access the entire object representation through a pointer to a char-like type
as a DR.

SF F N A SA
10 8 2 0 0 Consensus

7 Proposed wording
The reported issue is intended as a defect report with the proposed resolution as follows. The effect
of the wording changes should be applied in implementations of all previous versions of C++ where
they apply. The proposed changes are relative to the C++ working draft [N4910].
Modify [basic.types] paragraph 4 as follows:

The object representation of an object a of type cv T is thea sequence of N cv unsigned char
objects taken up by the object of type Tthat occupy the same storage as a, where N equals
sizeof(T). The sequence is considered to be an array of N cv unsigned char if the object
of type T occupies contiguous bytes of storage ([intro.object]).
For an object of type unsigned char or an array of unsigned char (ignoring cv-qualification),
the object representation is the object itself. For an object of type char, std::byte, or
an array of such types (ignoring cv-qualification), the value of the elements of the object
representation is the value of the object itself. For all other types, the value of the elements
of the object representation is unspecified.
The sequence of bytes in the object representation of an object nested within an object a is
a sub-sequence of the sequence of bytes in the object representation of a.

Modify [intro.object] paragraph 9 as follows:

Two objects with overlapping lifetimes that are not bit-fields may have the same address if
one is nested within the other, or if at least one is a subobject of zero size and they are of
different types, or if at least one is an element of an object representation; otherwise, they
have distinct addresses and occupy disjoint bytes of storage.

Insert a new paragraph below [basic.life] paragraph 2 as follows:

The lifetime of a reference begins when its initialization is complete. The lifetime of a reference
ends as if it were a scalar object requiring storage.
[ Note 1: [class.base.init] describes the lifetime of base and member subobjects. — end note ]
The lifetime of the elements of the object representation of an object begins when the lifetime
of the object begins. For class types, the lifetime of the elements of the object representation
ends when the destruction of the object is completed, otherwise, the lifetime ends when the
object is destroyed.
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Modify [intro.object] paragraph 13 as follows:

An operation that begins the lifetime of an array of char, unsigned char, or std::byte
other than the lifetime of an object representation implicitly creates objects within the region
of storage occupied by the array.

Modify [expr.static.cast] paragraph 13 as follows:

Otherwise, if the original pointer value points to an object a, and there is an object b of type
T (ignoring cv-qualification) that is pointer-interconvertible with a, the result is a pointer
to b if doing so would give the program defined behavior. Otherwise, the pointer value is
unchanged by the conversion.

Modify [basic.compound] paragraph 4.3 as follows:

Two objects a and b are pointer-interconvertible if:

— they are the same object, or
— one is a union object and the other is a non-static data member of that object

([class.union]), or
— one is a standard-layout class object and the other is the first non-static data member of

that object or any base class subobject of that object ([class.mem]), or
— one is the object representation of the other, or the first element thereof, or
— there exists an object c such that a and c are pointer-interconvertible, and c and b are

pointer-interconvertible.

If two objects are pointer-interconvertible, then they have the same address, and it is
possible to obtain a pointer to one from a pointer to the other via a reinterpret_cast
([expr.reinterpret.cast]).
[ Note: An array object and its first element are not pointer-interconvertible, even though
they have the same address, except if the array is an object representation. — end note ]

Modify [expr.add] paragraph 6 as follows:

For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and
the array element type are not similar, the behavior is undefined. and point to an object a,
one of the following shall hold:

— T is similar to the type of a, or
— T is similar to unsigned char, char or std::byte and a is an element of an object

representation.

Otherwise, the behavior is undefined.

Modify [ptr.launder] paragraph 3 as follows:

Returns: A value of type T* that points to the object X that would give the program defined
behavior. If no such object exists, the behavior is undefined.
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8 Known issues
There are a number of known issues with the proposed wording that need to be resolved before this
paper can make any further progress:

— The current proposed wording says that the first element of an object representation is
pointer-interconvertible with the object that is represented by the representation. Combined
with the existing rules, this means that first elements of some object representations are
pointer-interconvertible with first elements of other object representations. In other words,
a reinterpret_cast of a value to its own type is no longer equivalent to its operand.
Example:

struct A {
unsigned char x[5];
unsigned char y[5];
// Note: arrays of unsigned char are their own object representation

} a;

int main(void) {
unsigned char* p = &a.x[0];
++reinterpret_cast<unsigned char*>(p)[7]; // OK
--p[7]; // not OK

}

This changes the existing behaviour of reinterpret_cast and potentially breaks array bounds
checking.

— The current proposed wording for std::launder (returning a pointer to the object that would
give the program defined behaviour) doesn’t quite work because there is possibly more than
one such object, such as elements of different object representations. Example:

struct A {
unsigned char x;
unsigned char y;

} a;

auto f(bool b) {
unsigned char *pastRepX = 1 + &a.x;
unsigned char *pastRepA = sizeof(A) + reinterpret_cast<unsigned char*>(&a);
unsigned char *ambiguous = reinterpret_cast<unsigned char*>(&a);
return (b ? pastRepX : pastRepA) // ambiguous;

}

— The current proposed wording allows reinterpret_cast or std::launder to unsigned char*
to produce a pointer to the first element of an object representation. The same cannot be
said for std::byte*.

— The current proposed wording does not allow reinterpret_cast of pointers past-the-end of
an object to produce pointers past-the-end of the object representation. For cases involving
pointer arithmetic, such as looping over the entire object representation (an important use
case), such conversions are necessary.

— In [expr.static.cast], as well as in [ptr.launder], there might be multiple such objects that would
give the program defined behaviour. We don’t know how to specify which one is returned.
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Document history

— R0, 2019-07-30: Initial version.

— R1, 2019-09-28: Allowed pointer arithmetic on expressions of type unsigned char*, char*
and std::byte* when pointing to objects of different type. Removed exclusion of the object
representation of objects of zero size from appearing in the object representation of their
containing object. Added multi-dimensional arrays of contiguous-layout types to the definition
of contiguous-layout types. Slight change to the behavior of std::launder for when there
are multiple viable objects.

— R2, 2019-11-20: Removed contiguous-layout types from wording, this should be tackled by
[P1945R0].

— R3, 2022-02-15: Moved wording for casts to the rules of pointer-interconvertibility. Changed
the wording for std::launder to bind to the best candidate object.

— R4, 2022-03-16: Changed the wording to fix ambiguous usage of N in object representations
specification.

— R5, 2022-06-16: Reduced scope of paper to only reading object representations, not writing.
Completely rewrote rationale. Added wording to prevent implicit object creation within object
representations. Added cross-reference to types with contiguous storage ([intro.object]) in
the wording. Fixed inconsistency in the wording by defining that only unsigned char is its
own object representation, not char or std::byte. Removed erroneous wording regarding
memory locations. Added list of known issues.
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