
Document Number: P2661R0
Date: 2022-10-14
Revises:
Reply to: Brian Bi

Bloomberg
bbi10@bloomberg.net

Miscellaneous amendments to the Contracts TS

1 Overview
We propose to make a few miscellaneous amendments to the proposed
Contracts TS, [P2660R0], immediately prior to publishing it as a TS:

• Make the behavior of assumed contracts, by reference, identical to that
of the assume attribute.

• Permit checked contracts to have arbitrary side effects, but discourage
programmers from relying on the side effects by leaving unspecified the
number of times they are evaluated.

• Modify the std::experimental::contract_violation class so that
it provides access to a std::source_location object.

• Add a contract_behavior accessor to std::experimental::contract_-
violation.

• Clarify that contract conditions are not in the immediate context for
SFINAE.

• Make access to non-const, non-reference parameters in postconditions
ill-formed.

• Clarify the effect of contract conditions on defaulted and deleted func-
tions.

1

2 Rationale
As explained in [P2659R0], we have deliberately kept the Contracts TS as
close as possible to the wording of the C++20 working draft (prior to the
removal of Contracts by [P1823R0]) after applying [P1607R1] and [P1344R1]
(which were approved by EWG). This ensures that there is a starting point
for the Contracts TS that is as uncontroversial as possible. However, we
also believe that evolution since P1823R0 should be incorporated into the
Contracts TS. In particular, we have carefully studied the recommendations
made by SG21 and described in [P2521R2] and propose to adopt a number
of them that we feel reflect a consensus for positive evolution.

3 Assumptions

3.1 Detailed rationale

In 2022, the assume attribute was added to C++23 ([P1774R8]). The
Contracts TS provides a second way of expressing asssumptions, namely
via the assume contract behavior. It will be surprising if these two types of
assumptions do not have the same semantics. Therefore, the specification of
the assume contract behavior should refer to that of the assume attribute in
order to avoid any unintentional deviation.

3.2 Wording

Apply these changes to the Contracts TS [dcl.attr.contract.check]:
The predicate of a contract with contract-behavior ignore or assume
is an unevaluated operand (7.2). The predicate of a contract with-
out contract-behavior where the implicit contract behavior is ignore or
assume is not evaluated.
[Note: The predicate is potentially evaluated (6.3). — end note]
If the predicate of a contract with the contract behavior assume would
evaluate to false, the behavior is undefined.

An assertion with contract behavior assume and the predicate E is
equivalent to [[assume(E)]] (9.12.3). A precondition or postcondition
with contract behavior assume and the predicate E is equivalent to
a null statement (8.3) with the attribute [[assume(E)]], where the
meaning of E, the applicable semantic restrictions, and the point at
which E is evaluated are as specified by 9.4.2.2.
[Note: For example, a contract with behavior assume causes the odr-use
(6.3) and implicit instantiation (13.9.2) of the same set of entities as
the corresponding assumption. For a precondition or postcondition,
name lookup for the conditional-expression of the corresponding assumption
are done as if from the context of a function body. — end note]

2

4 Side effects in checked contracts

4.1 Detailed rationale

We believe that it desirable to permit checked contracts to have side effects
without incurring undefined behavior, so that, for example, a contract condi-
tion can call a function that performs logging or allocates memory. These
reasons are elaborated on by [P1670R0], which proposed to allow implemen-
tations to elide the side effects in order to prevent programmers from relying
on them. SG21 also concluded that side effects should be permitted, but
proposed to allow those side effects to occur more than once in order to
support implementation strategies that might result in precondition and
postcondition checks being placed in both the caller and callee (see P2521R2).
We now propose to combine both approaches: the condition of a checked
contract will be evaluated 0 or more times, and if the contract behavior
is observe and the condition is false or would be false, then the violation
handler will be invoked 1 or more times. (If the contract behavior is enforce,
it will, of course, not be possible for the violation handler to be invoked more
than once.)

4.2 Wording

Apply these changes to the Contracts TS [dcl.attr.contract.syn]:
The only side effects of a predicate of a checked contract that are
allowed in a contract-attribute-specifier are modifications of non-volatile
objects whose lifetime began and ended within the evaluation of the
predicate. An evaluation of a predicate that exits via an exception in-
vokes the function std::terminate (14.6.2). The behavior of any other
side effect is undefined.
[Example: ... — end example]

Apply these changes to the Contracts TS [dcl.attr.contract.check]:
The violation handler of a program is a function of type “noexceptopt

function of (lvalue reference to const std::experimental::contract_-
violation) returning void”. The violation handler is invoked when the
predicate of a checked contract evaluates to false or would evaluate
to false if it were evaluated (called a contract violation). If the violation
handler is invoked because a contract with contract behavior observe
is violated, it is unspecified how many times the violation handler is
invoked.
[Note: Implementations are encouraged to ensure that the violation
handler is invoked only once for each violation of a checked contract.
— end note]
There should be no programmatic way of setting or modifying the vio-
lation handler. [...]

3

[...]

A checked contract is a contract with the contract behavior observe
or enforce. When the value of the predicate of a checked contract can
be determined without evaluating that predicate, an implementation
is allowed to omit the evaluation of the predicate, even if the predicate
has side effects. If the predicate is evaluated, it is unspecified how
many times it is evaluated (and, thus, how many times the side effects
of the predicate occur.)
[Note: Predicates with side effects are discouraged as the validity of
a program should not depend upon the evaluation (or not) of contract
predicates. — end note]
If the contract behavior of a violated contract is enforce and the execu-
tion of the violation handler does not exit via an exception, execution
is terminated by invoking the function std::terminate (14.6.2).

5 Use of std::source_location

5.1 Detailed rationale

The std::source_location library class was adopted into C++20 in July
2019, at the same meeting at which Contracts were removed from C++20. We
think that the use of std::source_location to represent file name, function
name, and line number information corresponding to contract violations is a
natural and uncontroversial step.

5.2 Wording

Replace the content of section [support.contract.cviol] of the Contracts TS
with:

namespace std {
namespace experimental {

class contract_violation {
public:

source_location source_location() const noexcept;
string_view comment() const noexcept;

};
}
}

The class contract_violation describes information about a contract
violation generated by the implementation.

source_location source_location() const noexcept;
Returns: A source_location object representing the location where the
contract violation happened (9.4.2) as if created by a call to source_-
location::current() (17.9.2.2).

4

[Note: For the purposes of 17.9.2.2, in the case of a postcondition vio-
lation, the current function is considered to be the function specified
by 9.4.2, notwithstanding the fact that __func__ (9.5.1) may be bound
to the name of a different function at the point where the postcondi-
tion lexically appears. — end note]

string_view comment() const noexcept;
Returns: Implementation-defined text describing the predicate of the
violated contract.

6 contract_violation::contract_behavior()

6.1 Detailed rationale

We believe that the contract violation handler should have access to the
contract behavior of the violated contract in order to support exponential
backoff (or other backoff strategies) in logging violations of contracts with the
observe contract behavior. If the violated contract has behavior enforce,
the violation handler will typically want to log it unconditionally, so it needs
a way to distinguish between the two. We are therefore proposing to add a
contract_behavior() accessor to replace the assertion_level() accessor
from P0542R5.

Note that this means the violation handler will be able to distinguish whether
the implicit behavior for the entire translation unit is observe or enforce,
which might seem to violate the principle that there should be no program-
matic way of querying the implicit contract behavior. However, the program
can only force the execution of such a query if it has control over the vio-
lation handler, so as long as there is no programmatic way of setting the
violation handler, there is also no programmatic way of using the proposed
contract_behavior() accessor to query the implicit contract behavior.

6.2 Wording

The wording below is relative to the wording for the source_location
changes (5).

Apply these changes to the Contracts TS, [support.contract.cviol]:
namespace std {
namespace experimental {

class contract_violation {
public:

source_location source_location() const noexcept;
string_view comment() const noexcept;

5

contract_behavior() const noexcept;
};

}
}

[...]

string_view comment() const noexcept;
Returns: Implementation-defined text describing the predicate of the
violated contract.

string_view contract_behavior() const noexcept;
Returns: The contract behavior of the violated contract, in the form of
the string observe or enforce.

7 SFINAE and instantiation of contract conditions

7.1 Detailed rationale

In P2521R2, SG21 recommended that contract conditions should not be
considered in the immediate context for SFINAE and should “behave similarly
to exception specification”. We agree with this direction and believe that
contract conditions should be considered separately instantiated entities (like
noexcept-specifiers) more generally and not just for the purposes of SFINAE.
However, this will require more detailed study. For the time being, we are only
proposing to add a non-normative note that clarifies that contract conditions
are not in the immediate context for SFINAE. We believe that the normative
wording of N4919 [temp.deduct]/7 already excludes contract conditions from
being in the immediate context, since they are not “expressions that are used
in the function type”.

7.2 Wording

Add section 13.10.3.1 to the Contracts TS that adds these changes at the
end of [temp.deduct.general]/7:

[Note: Contract conditions (9.4.2.2) are not part of the function type;
therefore, substitution into contract conditions is done only when they
are themselves instantiated, at which point a program is ill-formed if
the substitution results in an invalid type or expression. — end note]
[Example:

#include <complex>
#include <concepts>
#include <string>

template <std::regular T>

6

void f(T v, T u)
[[pre observe: v < u]]; // not part of std::regular

template <typename T>
constexpr bool has_f =

std::regular<T> &&
requires(T v, T u) { f(v, u); };

static_assert(has_f<std::string>); // OK: has_f
returns true
static_assert(!has_f<std::complex<float>>); // ill-formed: has_-
f causes hard instantiation error

— end example]

8 Function parameters in postconditions

8.1 Detailed rationale

The proposed Contracts TS contains wording originally from P0542R5 that
makes it undefined behavior for a postcondition to odr-use a parameter value
that has been modified by the function body. According to P2521R2, SG21
recommended (SF/F/N/A/SA 5/6/0/1/0) to take a different approach, in
which any non-reference function parameter named by a postcondition must
be declared const in every declaration of the function, otherwise the program
is ill-formed. We therefore propose to adopt this change in the Contracts TS.

8.2 Wording

Replace [dcl.attr.contract.cond]/7 in the Contracts TS with:
If a postcondition odr-uses (6.3) a parameter of non-reference type of
the function to which it appertains, that parameter’s declared type
shall be const in every declaration of the function.
[Example:

int f(int x)
[[post enforce r: r == x]] // ill-formed

{
return ++x;

}

void g(int * p)
[[post enforce: p != nullptr]] // ill-formed

{

7

*p = 42;
}

void h(int & r, const int x)
[[post enforce: r == x]] // OK

{
r = x;

}

void h(int&, int); // ill-formed

— end example]

9 Contract conditions on defaulted and deleted
functions

9.1 Detailed rationale

The Contracts TS does not mention the effect of contract conditions on de-
faulted functions. It seems that a defaulted function must become nontrivial
if it has a contract condition, and there is an argument in favor of banning
this entirely, since explicitly defaulting a function normally completely waives
the right to explicitly specify any expressions to be evaluated when the func-
tion is function is called. However, the following example shows a use case
for a contract condition on an explicitly defaulted function:

bool fizzable();

struct M {
M() [[pre : fizzable()]] {}

};

class D {
private:

M d_m; // just an implementation detail

public:
D() [[pre : fizzable()]] = default;

};

We therefore propose to continue to allow contract conditions on explicitly
defaulted functions. With respect to explicitly deleted functions, it seems
that contract conditions would be meaningless and probably a bug, so we
propose to disallow them.

8

9.2 Wording

Apply these changes to the Contracts TS, [dcl.attr.contract.cond]/1:
[...] If a friend declaration is the first declaration of the function in
a translation unit and has a contract condition, the declaration shall
be a definition and shall be the only declaration of the function in the
translation unit.A function definition whose function-body is of the
form = delete ; shall not have contract conditions.
[Note 1: This restriction does not apply to an explicitly defaulted definition
that defines the function as deleted. — end note]

Add section 12.4.5.2 to the Contracts TS that makes these changes to
[class.default.ctor]/3:

A default constructor is trivial if it is not user-provided and if:

• [...]

• for all the non-static data members of its class that are of class
type (or array thereof), each such class has a trivial default con-
structor., and

• it has no contract conditions (9.4.2).

Otherwise, the default constructor is non-trivial.

Add section 11.4.5.3 to the Contracts TS that makes these changes to
[class.copy.ctor]/11:

A copy/move constructor for class X is trivial if it is not user-provided
and if:

• [...]

• for each non-static data member of X that is of class type (or ar-
ray thereof), the constructor selected to copy/move that member
is trivial;, and

• it has no contract conditions (9.4.2);

otherwise the copy/move constructor is non-trivial.

Add section 11.4.6 to the Contracts TS that makes these changes to [class.copy.assign]/9:
A copy/move assignment operator for class X is trivial if it is not user-
provided and if:

• [...]

• for each non-static data member of X that is of class type (or
array thereof), the assignment operator selected to copy/move
that member is trivial;, and

• it has no contract conditions (9.4.2);

otherwise the copy/move assignment operator is non-trivial.

9

Add section 11.4.7 to the Contracts TS that makes these changes to [class.dtor]/8:
A destructor is trivial if it is not user-provided and if:

• [...]

• for all of the non-static data members of its class that are of class
type (or array thereof), each such class has a trivial destructor.,
and

• it has no contract conditions (9.4.2).

Otherwise, the destructor is non-trivial.

10

References
[P1344R1] Nathan Myers, Pre/Post vs. Expects/Ensures

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1344r1.md

[P1607R1] Joshua Berne et al., Minimizing Contracts
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1607r1.pdf

[P1670R0] Alisdair Meredith and Joshua Berne, Side Effects of Checked
Contracts and Predicate Elision
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1670r0.pdf

[P1774R8] Timur Doumler, Portable assumptions
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p1774r8.pdf

[P1823R0] Nicolai Josuttis et al., Remove Contracts from C++20
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1823r0.pdf

[P2521R2] Gašper Ažman et al., Contract support—Working Paper
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2521r2.html

[P2659R0] Brian Bi, A Proposal to Publish a Technical Specification for
Contracts
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2659r0.pdf

[P2660R0] Brian Bi, Proposed Contracts TS
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2660r0.pdf

11

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1344r1.md
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1344r1.md
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1670r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1670r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1823r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1823r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2659r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2659r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2660r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2660r0.pdf

	1 Overview
	2 Rationale
	3 Assumptions
	3.1 Detailed rationale
	3.2 Wording

	4 Side effects in checked contracts
	4.1 Detailed rationale
	4.2 Wording

	5 Use of std::source_location
	5.1 Detailed rationale
	5.2 Wording

	6 contract_violation::contract_behavior()
	6.1 Detailed rationale
	6.2 Wording

	7 SFINAE and instantiation of contract conditions
	7.1 Detailed rationale
	7.2 Wording

	8 Function parameters in postconditions
	8.1 Detailed rationale
	8.2 Wording

	9 Contract conditions on defaulted and deleted functions
	9.1 Detailed rationale
	9.2 Wording

