
Pack Indexing
Document #: P2662R0
Date: 2022-10-15
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Pablo Halpern <phalpern@halpernwightsoftware.com>
John Lakos <jlakos@bloomberg.net>
Alisdair Meredith <ameredith1@bloomberg.net>
Joshua Berne <jberne4@bloomberg.net>

Abstract

This paper expands on the pack indexing feature described in P1858R2 [4] and provides
wording.

Revisions

R0

Initial revision

Motivation

The motivation for pack indexing is covered in ”Generalized pack declaration and usage”
(P1858R2 [4]) and ”A plan for better templatemeta programming facilities in C++26” [P2632R0].

The short version is that packs are sequences of types/expressions, and indexing is a funda-
mental operation on sequences. C++ and its users have so far relied on deduction or library
facilities such as index_sequence or full-fledged template metaprogramming libraries such as
mp11 and boost.Hana to extract the Nth element of a pack, which has a high cost both in
terms of code complexity and compiler throughput.

Previous works in this area also include P0565R0 [1], P1803R0 [2], N3761 [3] and N4235 [5].

Proposal

This paper proposes a new code language syntax to index packs of types (yielding a type),
and packs of expressions (yielding an expression).

1

mailto:corentin.jabot@gmail.com
mailto:phalpern@halpernwightsoftware.com
mailto:jlakos@bloomberg.net
mailto:ameredith1@bloomberg.net
mailto:jberne4@bloomberg.net
https://wg21.link/P1858R2
https://wg21.link/P1858R2
https://wg21.link/P0565R0
https://wg21.link/P1803R0
https://wg21.link/N3761
https://wg21.link/N4235

Syntax

The general syntax is name-of-a-pack ... [constant-expression]. The syntax has the benefit
of reusing familiar elements (... usually denotes a pack expansion) and [] subscripts, It is
therefore natural that indexing a pack expansion reuses these elements.

template <typename... T>
constexpr auto first_plus_last(T... values) -> T...[0] {

return T...[0](values...[0] + values...[sizeof...(values)-1]);
}
int main() {

//first_plus_last(); // ill-formed
static_assert(first_plus_last(1, 2, 10) == 11);

}

Pack Index

The index of a pack indexing expression or specifier is an integral constant expression between
0 and sizeof...(pack). Empty packs can’t be indexed.

This paper does not add support for indexing from the end (as an alias of T...[sizeof...(T)-
N]). Indeed, a negative index (T...[-1]) would be surprising.

Consider:

// Return the index of the first type convertible to Needle in Pack
or -1 if Pack does not contain a suitable type.
template <typename Needle, typename... Pack>
auto find_convertible_in_pack;

// if find_convertible_in_pack<Foo, Types> is -1, T will be the last type, erronously.
using T = Types...[find_convertible_in_pack<Foo, Types>];

In general, incorrect computations in an index can lead to a negative value that should make
the program ill-formed but would instead yield an incorrect type.

Note however that circle does support from-the end indexing using a negative index, and
Sean Baxter reports no surprise from using this feature.

The solution for indexing from the end is to provide a specific syntax, for example, C# uses ^
to mean ”from the end”, and Dlang interprets $ as the size of the array it appears in

using Foo = T...[0];
using Bar = T...[^1]; // First from the end
using Bar = T...[$ - 1]; // First from the end

Given that there are different alternatives, all of which can be added later, and for which we
do not have usage experience, this proposal does not support from-the-end indexing.

Indexing a pack of types

Indexing a pack of type is a type specifier that can, like decltype appear:

2

• As a simple-type-specifier

• As a base class specifier

• As a nested name specifier

• As the type of an explicit destructor call

Type deduction

Pack indexing specifiers should not allow deducing the pack from such an expression.

Consider:

template <typename... T>
void f(T...[0]);
f(0);

It doesn’t really make sense to start thinking about how deduction would work here or what
that code would possibly mean. We simply always consider packs indexing non-deduced
contexts.

Indexing a pack of expressions

The intent is that a pack indexing expression behaves exactly as the underlying expression
would. In particular, decltype(id-dexpression) and decltype(pack-indexing-expression) be-
have the same.

Future Evolutions

The syntax can be extended in subsequent proposals to support:

• Indexing packs introduced by structured bindings or other non dependent packs

• Indexing packs of template template parameters

• From-the-end-indexing

• Pack Slicing (Returning a subset of a pack as an unexpanded packs)

• Packs of univeral template parameters could be indexed in the same way.

Potential impact on existing code

In C++11, T... [N] declares a pack of arrays of size N;

template <typename... T>
void f(T... [1]); //
int main() {

f<int, double>(nullptr, nullptr); // void f<int, double>(int [1], double [1])
}

3

Neither MSVC nor gcc supports this syntax and this pattern does not appear outside of
compiler test suites (from a search on Github, isocpp and in VCPKG).

Should anyone be affected, a workaround is to name the variable.

template <typename... T>
void f(T... foo[1]);

Implementation

This proposal is inspired from features implemented in the Circle compiler (with the same
syntax). The provided wording is based on an implementation in a fork of clang, which is
available on compiler explorer.

The implementation is available on Compiler Explorer.

As of the writting of the paper, the implementation is known not to support pack indexing
inside of the expansion of another template parameters. We hope to fix these issues before
Kona.

Ie, the following is intended to work but currently does not

template <typename... Ts, int... N>
auto f(Ts... ts) {

return std::tuple{ (ts...[N])... };
}

Wording

�? Qualified name lookup [basic.lookup.qual]

�? General [basic.lookup.qual.general]

Lookup of an identifier followed by a :: scope resolution operator considers only namespaces,
types, and templateswhose specializations are types. If a name, template-id, pack-indexing-specifier,
or decltype-specifier is followed by a ::, it shall designate a namespace, class, enumeration, or
dependent type, and the :: is never interpreted as a complete nested-name-specifier.

4

https://cs.github.com/
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=...%5B&search=Search
https://compiler-explorer.com/z/WKobTEq6x

�? Names [expr.prim.id]

�? Unqualified names [expr.prim.id.unqual]

unqualified-id:
identifier
pack-indexing-expression
operator-function-id
conversion-function-id
literal-operator-id

~ type-name

~ decltype-specifier

~ pack-indexing-specifier
template-id

An identifier is only an id-expression if it has been suitably declared or if it appears as part
of a declarator-id. An identifier that names a coroutine parameter refers to the copy of the
parameter. [Note: For operator-function-ids, see ??; for conversion-function-ids, see ??; for literal-
operator-ids, see ??; for template-ids, see ??. A type-name , pack-index-type, or decltype-specifier
prefixed by ~ denotes the destructor of the type so named; see ??. Within the definition of a
non-static member function, an identifier that names a non-static member is transformed to
a class member access expression. —end note]

A component name of an unqualified-id U is

• U if it is a name or

• the component name of the template-id or type-name of U , if any.

[Note: Other constructs that contain names to look up can have several component names.
—end note] The terminal name of a construct is the component name of that construct that
appears lexically last.

�? Qualified names [expr.prim.id.qual]

qualified-id:
nested-name-specifier templateopt unqualified-id

nested-name-specifier:
::
type-name ::
namespace-name ::
decltype-specifier ::
pack-indexing-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

The component names of a qualified-id are those of its nested-name-specifier and unqualified-id.
The component names of a nested-name-specifier are its identifier (if any) and those of its
type-name, namespace-name, simple-template-id, and/or nested-name-specifier.

A nested-name-specifier is declarative if it is part of

5

• a class-head-name,

• an enum-head-name,

• a qualified-id that is the id-expression of a declarator-id, or

• a declarative nested-name-specifier.

A declarative nested-name-specifier shall not have a decltype-specifier. A declaration that uses a
declarative nested-name-specifier shall be a friend declaration or inhabit a scope that contains
the entity being redeclared or specialized.

The nested-name-specifier :: nominates the global namespace. A nested-name-specifier with a
decltype-specifier nominates the type denoted by the decltype-specifier, which shall be a class
or enumeration type. If a nested-name-specifier N is declarative and has a simple-template-id
with a template argument list A that involves a template parameter, let T be the template
nominated by N without A. T shall be a class template.

• If A is the template argument list of the corresponding template-head H , N nominates
the primary template of T ; H shall be equivalent to the template-head of T .

• Otherwise, N nominates the partial specialization of T whose template argument list is
equivalent to A; the program is ill-formed if no such partial specialization exists.

Any other nested-name-specifier nominates the entity denoted by its type-name, namespace-
name, identifier, or simple-template-id. If the nested-name-specifier is not declarative, the entity
shall not be a template.

A qualified-id shall not be of the forms nested-name-specifier templateopt ~ decltype-specifier nor
of the form , decltype-specifier :: ~ type-name , nested-name-specifier templateopt ~pack-indexing-specifier
or pack-indexing-specifier :: ~ type-name .

The result of a qualified-id Q is the entity it denotes. The type of the expression is the type of
the result. The result is an lvalue if the member is

• a function other than a non-static member function,

• a non-static member function if Q is the operand of a unary & operator,

• a variable,

• a structured binding, or

• a data member,

and a prvalue otherwise.

[Editor’s note: Add a new section after [expr.prim.id.qual]]

�? Pack Indexing Expression [expr.prim.pack.index]

pack-indexing-expression:
id-expression ... [constant-expression]

6

The id-expression in a pack-indexing-expression shall denote a pack.

The constant-expression shall be an integral constant expression. The constant-expression shall
evaluate to a value V such that 0 <= V < sizeof...(id-expression).

The index of a pack-indexing-expression is the value of its constant-expression.

A pack-indexing-expression denotes the indexth expression in a pack ([temp.variadic]). A pack-
indexing-expression is a pack expansion ([temp.variadic]).

�? Simple type specifiers [dcl.type.simple]

The simple type specifiers are

simple-type-specifier:
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
pack-indexing-specifier
placeholder-type-specifier
nested-name-specifieropt template-name

[...]

Table 1: simple-type-specifiers and the types they specify
Specifier(s) Type

type-name the type named
simple-template-id the type as defined in [temp.names]
pack-indexing-specifier the type as defined in [dcl.type.pack.indexing]
decltype-specifier the type as defined in [dcl.type.decltype]
placeholder-type-specifier the type as defined in [dcl.spec.auto]
template-name the type as defined in [dcl.type.class.deduct]
char “char”
unsigned char “unsigned char”
signed char “signed char”
char8_t “char8_t”
char16_t “char16_t”

When multiple simple-type-specifiers are allowed, they can be freely intermixed with other
decl-specifiers in any order. [Note: It is implementation-defined whether objects of char type
are represented as signed or unsigned quantities. The signed specifier forces char objects to
be signed; it is redundant in other contexts. —end note]

[Editor’s note: Add a new section after [dcl.type.simple]]

7

�? Pack Indexing Specifier [dcl.type.pack.indexing]

pack-indexing-specifier:
typedef-name ... [constant-expression]

The typedef-name in a pack-indexing-specifier shall denote a pack.

The constant-expression shall be an integral constant expression. The constant-expression shall
evaluate to a value V such that 0 <= V < sizeof...(typedef-name).

The index of a pack-indexing-specifier is the value of its constant-expression.

A pack-indexing-specifier denotes the type of the indexth typedef-name in a pack ([temp.variadic]).
A pack-indexing-specifier is a pack expansion ([temp.variadic]).

�? Decltype specifiers [dcl.type.decltype]

decltype-specifier:
decltype (expression)

For an expression E, the type denoted by decltype(E) is defined as follows:

• if E is an unparenthesized id-expression naming a structured binding, decltype(E) is the
referenced type as given in the specification of the structured binding declaration;

• otherwise, ifE is an unparenthesized id-expressionnaming anon-type template-parameter,
decltype(E) is the type of the template-parameter after performing any necessary type
deduction;

• otherwise, if E is an unparenthesized id-expression or an unparenthesized class member
access, decltype(E) is the type of the entity named by E. If there is no such entity, the
program is ill-formed;

[Note: A pack-indexing-expression is an id-expression. —end note]

• otherwise, if E is an xvalue, decltype(E) is T&&, where T is the type of E;

• otherwise, if E is an lvalue, decltype(E) is T&, where T is the type of E;

• otherwise, decltype(E) is the type of E.

The operand of the decltype specifier is an unevaluated operand.

[Example:

const int&& foo();
int i;
struct A { double x; };
const A* a = new A();
decltype(foo()) x1 = 17; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

8

[](auto... pack){
decltype(pack...[0]); // // type is int
decltype((pack...[0])); // type is int&

}(0);

—end example]

�? Classes [class]

�? Destructors [class.dtor]

In an explicit destructor call, the destructor is specified by a ~ followed by a type-name ,
pack-index-specifier, or decltype-specifier that denotes the destructor’s class type. The invoca-
tion of a destructor is subject to the usual rules for member functions; that is, if the object is
not of the destructor’s class type and not of a class derived from the destructor’s class type
(including when the destructor is invoked via a null pointer value), the program has undefined
behavior.

�? Derived classes [class.derived]

�? General [class.derived.general]

A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier ...opt
base-specifier-list , base-specifier ...opt

base-specifier:
attribute-specifier-seqopt class-or-decltype
attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
attribute-specifier-seqopt access-specifier virtualopt class-or-decltype

class-or-decltype:
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
pack-index-specifier

access-specifier:
private
protected
public

9

�? Type equivalence [temp.type]

If an expression e is type-dependent, decltype(e) denotes a unique dependent type. Two
such decltype-specifiers refer to the same type only if their expressions are equivalent. [Note:
However, such a type might be aliased, e.g., by a typedef-name. —end note]

For a template argument T, if the constant-expression of a pack-index-specifier is type-dependent
T...[constant-expression] denotes a unique dependent type. Two such pack-index-specifiers
refer to the same type only if their constant-expressions are equivalent and their type are the
same.

�? Variadic templates [temp.variadic]

[...]

A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces
zero or more instantiations of the pattern in a list (described below). The form of the pattern
depends on the context in which the expansion occurs. Pack expansions can occur in the
following contexts:

• In a function parameter pack; the pattern is the parameter-declarationwithout the ellipsis.

• In a using-declaration; the pattern is a using-declarator.

• In a template parameter pack that is a pack expansion:

– if the template parameter pack is a parameter-declaration; the pattern is the parameter-
declaration without the ellipsis;

– if the template parameter pack is a type-parameter; the pattern is the corresponding
type-parameter without the ellipsis.

• In an initializer-list; the pattern is an initializer-clause.

• In a base-specifier-list; the pattern is a base-specifier.

• In amem-initializer-list for amem-initializer whosemem-initializer-id denotes a base class;
the pattern is themem-initializer.

• In a template-argument-list; the pattern is a template-argument.

• In an attribute-list; the pattern is an attribute.

• In an alignment-specifier; the pattern is the alignment-specifier without the ellipsis.

• In a capture-list; the pattern is the capture without the ellipsis.

• In a sizeof... expression; the pattern is an identifier.

• In a pack-indexing-expression ; the pattern is an id-expression.

• In a pack-indexing-specifier ; the pattern is an identifier.

• In a fold-expression; the pattern is the cast-expression that contains an unexpanded pack.

10

[Example:

template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {

f(&rest ...); // ``&rest ...'' is a pack expansion; ``&rest'' is its pattern
}

—end example]

For the purpose of determining whether a pack satisfies a rule regarding entities other than
packs, the pack is considered to be the entity that would result from an instantiation of the
pattern in which it appears.

A pack whose name appears within the pattern of a pack expansion is expanded by that pack
expansion. An appearance of the name of a pack is only expanded by the innermost enclosing
pack expansion. The pattern of a pack expansion shall name one or more packs that are not
expanded by a nested pack expansion; such packs are called unexpanded packs in the pattern.
All of the packs expanded by a pack expansion shall have the same number of arguments
specified. An appearance of a name of a pack that is not expanded is ill-formed. [Example:

template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

template<class ... Args1> struct zip {
template<class ... Args2> struct with {

typedef Tuple<Pair<Args1, Args2> ... > type;
};

};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;
// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>
typedef zip<short>::with<unsigned short, unsigned>::type T2;
// error: different number of arguments specified for Args1 and Args2

template<class ... Args>
void g(Args ... args) { // OK, Args is expanded by the function parameter

pack args
f(const_cast<const Args*>(&args)...); // OK, ``Args'' and ``args'' are expanded
f(5 ...); // error: pattern does not contain any packs
f(args); // error: pack ``args'' is not expanded
f(h(args ...) + args ...); // OK, first ``args'' expanded within h,
// second ``args'' expanded within f

}

—end example]

The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of
elements in the pack expansion parameters. Each Ei is generated by instantiating the pattern
and replacing each pack expansion parameter with its ith element. Such an element, in the
context of the instantiation, is interpreted as follows:

11

• if the pack is a template parameter pack, the element is an id-expression (for a non-type
template parameter pack), a typedef-name (for a type template parameter pack declared
without template), or a template-name (for a type template parameter pack declared with
template), designating the ith corresponding type or value template argument;

• if the pack is a function parameter pack, the element is an id-expression designating the
ith function parameter that resulted from instantiation of the function parameter pack
declaration; otherwise

• if the pack is an init-capture pack, the element is an id-expression designating the variable
introduced by the ith init-capture that resulted from instantiation of the init-capture pack.

WhenN is zero, the instantiation of a pack expansion does not alter the syntactic interpretation
of the enclosing construct, even in cases where omitting the pack expansion entirely would
otherwise be ill-formed or would result in an ambiguity in the grammar.

The instantiation of a sizeof... expression produces an integral constant with value N .

When instantiating a pack-indexing-expression P , let K be the index of P . The instantiation of
P is the id-expression EK .

When instantiating a pack-indexing-specifier P , let K be the index of P . The instantiation of P
is the typedef-name EK .

[...]

�? Deducing template arguments from a type [temp.deduct.type]

The non-deduced contexts are:

• The nested-name-specifier of a type that was specified using a qualified-id.

• A pack-index-specifier,

• The expression of a decltype-specifier.

• A non-type template argument or an array bound in which a subexpression references
a template parameter.

• A template parameter used in the parameter type of a function parameter that has a
default argument that is being used in the call for which argument deduction is being
done.

• A function parameter for which the associated argument is an overload set, and one or
more of the following apply:

– more than one function matches the function parameter type (resulting in an
ambiguous deduction), or

– no function matches the function parameter type, or

– the overload set supplied as an argument contains one or more function templates.

12

• A function parameter for which the associated argument is an initializer list but the
parameter does not have a type for which deduction from an initializer list is specified.
[Example:

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

—end example]

• A function parameter pack that does not occur at the end of the parameter-declaration-list.

�? C++ and ISO C++23 [diff.cpp23]

�? Declarations [diff.cpp23.dcl.dcl]

�?
Change: [decl.array]

Previously, T...[n] would declarare a pack of function parameters of type ”array of T of size
n”. T...[n] is now a pack-indexing-specifier.
Rationale: Improve the handling of packs.
Effect on original feature: Valid C++ 2023 code that declares pack of arrays parameter
without specifying a declarator-idmay become ill-formed.

template <typename... T>
void f(T... [1]);
template <typename... T>
void g(T... ptr[1]);

int main() {
f<int, double>(nullptr, nullptr); // ill-formed, previously void f<int, double>(int [1], double

[1])
g<int, double>(nullptr, nullptr); // ok

}

Feature test macros

[Editor’s note: Add a new macro in [tab:cpp.predefined.ft] : __cpp_pack_indexing set to the
date of adoption] .

Acknowledgments

We would like to thank Bloomberg for sponsoring this work.

13

Sean Baxter for his work on Circle and Barry Revzin, for his work on P1858R2 [4], both works
being the foundation of the design presented here.

Also Thanks to Lewis Baker, for his valuable feedback on this paper.

References

[1] Bengt Gustafsson. P0565R0: Prefix for operator as a pack generator and postfix operator[]
for pack indexing. https://wg21.link/p0565r0, 2 2017.

[2] JeanHeyd Meneide. P1803R0: packexpr(args, i) - compile-time friendly pack inspection.
https://wg21.link/p1803r0, 8 2019.

[3] Sean Middleditch. N3761: Proposing type_at<>. https://wg21.link/n3761, 8 2013.

[4] Barry Revzin. P1858R2: Generalized pack declaration and usage. https://wg21.link/
p1858r2, 3 2020.

[5] Daveed Vandevoorde. N4235: Selecting from parameter packs. https://wg21.link/n4235,
10 2014.

[P2632R0] Corentin Jabot, Pablo Halpern, John Lakos, Alisdair Meredith, Joshua Berne, and
Gašper Ažman
A plan for better template meta programming facilities in C++26
https://wg21.link/P2632R0
October 2022

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

14

https://wg21.link/P1858R2
https://wg21.link/p0565r0
https://wg21.link/p1803r0
https://wg21.link/n3761
https://wg21.link/p1858r2
https://wg21.link/p1858r2
https://wg21.link/n4235
https://wg21.link/P2632R0
https://wg21.link/N4885

	1 Abstract
	2 Revisions
	2.1 R0
	2.2 Motivation

	3 Proposal
	3.1 Syntax
	3.2 Pack Index
	3.3 Indexing a pack of types
	3.4 Type deduction
	3.5 Indexing a pack of expressions

	4 Future Evolutions
	5 Potential impact on existing code
	6 Implementation
	7 Wording
	7.1 Qualified name lookup
	7.1.1 General

	7.2 Names
	7.2.1 Unqualified names
	7.2.2 Qualified names
	7.2.3 Pack Indexing Expression
	7.2.4 Simple type specifiers
	7.2.5 Pack Indexing Specifier
	7.2.6 Decltype specifiers

	8 Classes
	8.1 Destructors

	9 Derived classes
	9.1 General

	10 Type equivalence
	10.1 Variadic templates
	10.1.1 Deducing template arguments from a type

	11 C++ and ISO C++23
	11.1 Declarations
	11.1.1 Change:

	12 Feature test macros
	13 Acknowledgments
	14 References

