
Deprecate changing kind of names in
class template specializations

Document: P2669R0

Date: 2022-10-14

Project: Programming language C++

Audience: EWG(I)

Reply-to: Bengt Gustafsson, bengt.gustafsson@beamways.com

Deprecate changing kind of names in class template specializations
Introduction
Motivation and scope

Risks
Different scopes of forbidding kind changes
Deprecate, then forbid

Technical specification
Step 1
Step 2

Acknowledgements

Introduction
In C++23 as before we have to disambiguate to type in situations like this:

This proposal forbids changing the kind of a name in class template scope between the class
template definition and explicit specializations. This allows us to omit the
typename disambiguation in the above example provided that the definition of std::vector has

been seen.

Motivation and scope
A survey of a sample of 100 typename uses produced at random by codesearch revealed that the
first disambiguation use of typename was of the form template_name<template_args>::name in

33 of the samples, while it was of the form template_par::name in nine cases. The remaining 58

samples only used typename to introduce template parameters.

This is a small sample but it indicates that around 75% of all disambiguations (78% in the sample)
can be expected to be superfluous if the compiler could rely on the kind of a name being the
same as in the class template definition for all specializations.

template<typename T> void f() {

 typename std::vector<T>::value_type* x;

}

af://n2
mailto:bengt.gustafsson@beamways.com
af://n9
af://n40
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=&search=Search

Risks

The risk with this proposal is that there exists significant amounts of code that makes good use of
explicitly specializing class templates and changing the kind of names compared to a definition
that has been seen. I have not been able to do a search for such occurances as this would require
writing a new clang-tool or similar where the class template metadata for the definition and the
explicit specializations can be compared.

I can only say from personal experience that I have never seen such a kind change in my 28 years
as a C++ programmer.

Different scopes of forbidding kind changes

This proposal can forbid kind changes from class template definition to explicit specializations on
different levels.

1. Forbidding explicit specializations that declare any name as a different kind than the
definition does is logical and easy to understand.

2. Forbid using constructs like template_name<template_args>::name if there are known

explicit specializations that declare name as a different kind than the definition does.
3. Forbid instantiating the template containing the

template_name<template_args>::name construct for explicit specializations that declare
the name as a different kind than the definition does.

The problem with the reduced scopes is that they are harder to implement and consume a bit
more CPU time to uphold. Another problem may be that mostly changing of the kind of a name is
accidental and thus we waive a way to catch bugs.

template<typename T> struct template_name {

 using name = T*;

};

// Deprecated with wide scope.

template<> struct template_name<int> {

 static const char* name = "Nisse"; // Different kind! Error in #1

};

template<typename T> int f() {

 template_name<T>::name x; // Error in #2

 return 0;

}

int a = f<int>(); // Error in #3 as the kind actually mismatches what

was assumed parsing f()

std::cout << template_name<int>::name; // Ok with #2 and #3. For #1 the

declaration is erroneous.

af://n51
af://n80

Deprecate, then forbid

If the committee thinks that there are risks of significant code breakage it is proposed to
deprecate name kind differences in a first step and then, hopefully after one three year cycle, to
be able to conclude that very little code was affected and that it is not a big problem to proceed
with forbidding such kind differences. To get this done as soon as possible it would be a good
thing to get the deprecation step into C++23.

Technical specification
This proposal can be implemented in two steps, in succeeding standard revisions. Another
approach is to gather enough code statistics using a tool before standardizing to feel confident
that no significant amounts of code breaks (this does not include buggy but untested code, which
must probably be verified manually). The advantage of this latter approach would be that its a
simpler standardization effort, at least conceptually. The advantage of the two step approach is
that it puts more pressure on implementers to actually implement a warning than just a will to
help the committee getting this done.

Step 1

The first step is to deprecate names in specializations that has different kind than in the class
definition. This only requires a writing to this effect in the standard, and enough buy-in from
compiler vendors to produce deprecation warnings in new compiler versions in a timely manner
so that organizations have time to handle any instances of problematic specializations in their
code bases. A similar warning is to be issued if a disambiguation (or lack thereof) does not leave
the name disambiguated to the kind in the class template definition.

Step 2

The second step forbids the kind changing and simultaneously starts assuming the kind from the
class template definition instead of always value for undisambiguated uses of names in class
template definitions with unknown template argument values.

Acknowledgements
Thanks to my employer ContextVision AB for supporting the author attending standardization
meetings.

#include <vector>

template<> class std::vector<MyType> {

 int value_type; // Warning here: specialization's kind differes from

class definition's.

};

template<typename T> int OnlyForMyType(std::vector<T> v)

{

 return std::vector<T>::value_type; // Warning: kind not consistent with

vector's definition

}

af://n73
af://n36
af://n92
af://n58
af://n122

	Deprecate changing kind of names in class template specializations
	Introduction
	Motivation and scope
	Risks
	Different scopes of forbidding kind changes
	Deprecate, then forbid

	Technical specification
	Step 1
	Step 2

	Acknowledgements

