
Document Number: P2701R0
Date: 2022-11-07
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Translating Linker Input Files to Module
Metadata Files

Abstract
This paper establishes a convention for the translation of linker input files to the associated
module metadata files. This translation should be useful whenever the convention described in
P2577R21 is in use. The expectation is that this translation should not be architecture-specific,
and that it can be adopted whenever the linker input files can be identified early enough in the
build process.

Interoperability Premises
This paper starts with the assumption that if a platform would allow for the linker arguments to
be translated into linker input files, we should be able to establish a set of transformation steps
that will be usable in all of those scenarios.

The main hurdle identified so far for the adoption of this convention is in mechanisms like “auto
linking” on Windows. But at that point it’s mostly because we can’t identify the input files to the
linker early enough.

Therefore this convention should be applicable in any architecture where the convention
established by P2577R2 can be implemented.

Specific architectures and specific file system implementations may introduce restrictions on the
length of the directory entries or the length of the full path to the file. This convention assumes
that the overhead introduced here, relative to the linker input file, should be negligible.
Environments where this becomes an issue will need to establish an independent mechanism to
discover those metadata files.

1 Ruoso, Daniel (2022). C++ Modules Discovery in Prebuilt Library Releases. https://wg21.link/P2577R2

1

mailto:druoso@bloomberg.net
https://wg21.link/P2577R2


Document Number: P2701R0
Date: 2022-11-07
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Translation Mechanism

No Symlink Following
The input file to the linker will be used by name, even if that is a symbolic link to a different file. It
is the role of the package manager to ensure coherency on the installation of those cases, and
therefore the build system should not attempt to resolve a realpath of the library file before
looking for the module metadata file.

This is particularly relevant in the case of shared objects in the GNU/Linux ecosystem, as the
input to the linker is frequently a symbolic link to a specific versioned filename, and the
expectation is that the metadata will be colocated with the file that was used as input to the
linker, not to the realpath of that file.

Same Directory
This convention establishes that the C++ module metadata files related to a linker input file will
be a different entry in the same directory, and only the name of the directory entry will be
different.

Directory Entry Name Translation
The basic premise of this convention is that there will be an ordered set of potential directory
entries that will be searched based on the name of the input file to the linker. Those will go from
the most specific to least specific, which will allow architecture-specific requirements to take
precedence over the more generic use cases.

The translation starts by starting with the name of the directory entry of the input file to the
linker. Each one of the following sections modifies that directory entry to resolve to the module
metadata file, or introduces new entries to the lookup. In cases where more than one criteria
adds additional lookups, they should be combined.

Strip Library File Name Extension
In architectures where it is expected that there will be a difference to how the code consuming a
module is translated depending on whether or not the library will be linked statically or
dynamically, it will be necessary to allow independent metadata for the different builds of the
same library, even if they would, in principle, be ABI-equivalent.

In those architectures (e.g.: Windows), the metadata file will use the full name of the directory
entry of the linker input file as a prefix. In architectures where that’s not the norm (e.g.:

2

mailto:druoso@bloomberg.net


Document Number: P2701R0
Date: 2022-11-07
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

GNU/Linux), the file extension of the library (.a for archives, or .so for shared libraries) will be
removed from the prefix used in the file.

Search For Specific Instruction Set Architecture (ISA)
In some architectures it is possible that a library archive contains builds for different ISAs. In
those architectures the lookup should always start with the implementation-specific ISA code,
and then fallback to the name without the ISA code. This should allow for the specific case to be
addressed, while still allowing the majority of cases to be simpler.

The way in which the ISA is encoded in the directory entry name is by appending a dot
character, followed by the implementation-specific ISA code.

Architectures where the linker input file always contains a single ISA (e.g.: GNU/Linux) will not
perform the additional lookup.

Metadata file name suffix
Finally, the suffix .module-metadata is appended to the file name to find the module
metadata file related to that particular linker input.

Tooling reuse
While the specification of the convention is enough for interoperability, it is going to be better if
build systems are not required to implement that translation independently.

This paper recommends that toolchain implementations should provide a tool that
translates linker argument fragments into the path to the related metadata files found
according to the specifics of the implementation.

This paper recommends that toolchain implementations should provide a tool that
describes what the metadata file path should be for a library, given the
implementation-defined characteristics of the library being produced.

Applying to Specific Architectures
While this paper establishes a framework for the convention to be adopted in different
architectures, it’s also important to specify what are the choices in specific well-known
environments:

3

mailto:druoso@bloomberg.net


Document Number: P2701R0
Date: 2022-11-07
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

GNU/Linux
● It is not common for different requirements in behavior between static and dynamic

versions of a library, the extension of the linker input (e.g.: .a or .so) will be stripped.
● Common practice is that different ISA or ISA extensions are deployed to different

directories, the ISA suffix is not added.

Windows
● It is common in Windows for different preprocessor requirements whether a library is

going to be linked statically, or dynamically, the library suffix is not stripped from the file
name.

● Windows does not support multi-architecture library archives, the ISA code will not be
appended to the name.

MacOS
● It is not common for different requirements in behavior between static and dynamic

versions of the library, the extension of the linker input (e.g.: .a or .so) will be stripped.
● It is common, but not a requirement, to support multi-architecture binaries. The search

will start with an ISA code, but will fallback to searching without the ISA code.

4

mailto:druoso@bloomberg.net

