
A nice placeholder with no name
Document #: P2169R3
Date: 2022-12-15
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Michael Park <mcypark@gmail.com>

Abstract

In [P1110][3] Jeffrey Yesskin and JF Bastien explore the design space of placeholders with
the goal of not naming entities for which a name would provide no additional information.
In this paper, we propose a concrete solution for the use of _ (U+005F _ LOW LINE) as such
placeholder for variable declarations and pattern matching in a fully backward compatible
manner.

Tony tables

Before After

std::lock_guard namingIsHard(mutex);
// Structured binding
[[maybe_unused]] auto [x, y, iDontCare] = f();
// Pattern matching
inspect(foo) { __ => bar; };

std::lock_guard _(mutex);
// Structured binding
auto [x, y, _] = f();
// Pattern matching
inspect(foo) { _ => bar; };

Revisions

Revision 3

• Add wording

• R2 mentioned that we could allow _ for global variables at namespace scope in module
implement units. While true, this seems to much of a weird allowance.

Revision 2

• A few more details about interactions with P2011

1

mailto:corentin.jabot@gmail.com
mailto:mcypark@gmail.com


Revision 1

• Specify that placeholders can appear as class members

• Make use of _ ill-formed once a placeholder has been declared in the same scope

Motivation

Both [P1110][3], [P1469][2] and [P0577][4] go over the motivation both for a placeholder
syntax in general and the single underscore _:

• Some variable, like locks, scope_guard and other RAII objects are only used for their side
effects.

std::lock_guard lock(mutex);

• Some structured bindings may not be used, and we would like a syntax to specify that
this is the case. Introducing names for variables that are not used to convey lessmeaning
than _, which convey the ”I don’t care meaning”. It is furthermore not possible to apply
attributes to structured bindings and as such, it is not possible to carry the developer’s
intent to the compiler. The current wording advises:

Recommended practice: For an entity marked [[maybe_unused]], imple-
mentations should not emit a warning that the entity or its structured
bindings (if any) are used or unused. For a structured binding declaration
not marked [[maybe_unused]], implementations should not emit such a
warning unless all of its structured bindings are unused.

• We need a wildcard token for pattern matching. The proposed _ is, as explained by
[P1469][2] an industry wide-standard and we believe having a single token _ for both
wildcards and placeholders contribute to make C++ more consistent with itself and with
other languages (making easier to teach, etc)

Design considerations

The design as presented in this paper takes the following design parameters into consideration

• _ is recognized as some kind of placeholder in many existing languages, including go,
python, rust, C#.

• _ is used in existing code and popular frameworks.

• _ might be defined as a macro function in some files depending on the gettext library.

• _ already carries the meaning of ”I don’t want to use this variable”. Variables that
developers care about have more meaningful names.

• _ unnamed variables cannot have linkage.

2



• _ and __ are similar enough that we should not give meaning to both.

• Tokens are rare, using a different token for placeholder may needlessly restrict the
design space for more important features.

• For consistency, we would like to use the same token as the pattern matching place-
holder.

Proposal

We propose that when _ is used as the identifier for the declaration of a variable, non static
class member variable, function parameter name, lambda capture or structured binding. the
introduced name is implicitly given the [[maybe_unused]] attribute.

[ Example:

auto _ = foo(); // equivalent to [[maybe_unused]] auto _ = f();

—end example ]

When a variable with automatic storage duration, a function parameter, a non-static class
member variable, structured binding or lambda capture is introduced by the identifier _-
it can redefine an existing declaration, [basic.scope.declarative] in the same scope. After
redeclaration, if the variable is used, the programm is ill-formed.

[ Example:

namespace a {
auto _ = f(); // Ok, declare a variable "_"
auto _ = f(); // error: "_" is already defined in this namespace scope

}
void f() {

auto _ = 42; // Ok, declare a variable "_"
auto _ = 0; // Ok, re-declare a variable "_"
{

auto _ = 1; // Ok, shaddowing
assert( _ == 1 ); // Ok

}
assert( _ == 42 ); // ill-formed: Use of a redeclared placeholder variables

}

—end example ]

In contexts where the grammar expects a pattern matching pattern, _ represents the wildcard
pattern.

inspect(i) {
0 => 0;
_ => 1; // wildcard pattern

};

3



Should declaring variables called _ be deprecated?

This paper does not propose to deprecate variables called _, as a few frameworks have
legitimate and widely deployed usages of it (see the section about google mock), and a
depreciation is not necessary for the well-behaving of this proposal. We do however think
that such depreciation may be useful to consider in a longer time frame.

Alternative Design

A previous version of this proposal suggested that _ should refer to the first declaration in
scope, but many prefered the approach in this current revision.

Pattern matching

Citing [P1371R0][1], _ can be used as a pattern matching wilcard without ambiguities

Even though _ is a valid identifier, it does not introduce a name as doing
so would result in redeclaration errors in the case where multiple wildcard
_ identifiers are used. It is possible for users to have already introduced _ as
a type or variable name in the same scope where an inspect statement is
used. As a highly-visible example, the authors are aware of the use of _ as
a name in the popular “Google Mock” library. Idiomatically this is accessed
by introducing _ into the current namespace or block scope with a using
declaration. Using the wildcard pattern in cases like this is unambiguous
since the expression pattern requires a ˆ introducer for primary expressions.
_� will always match against an existing name and _ will always represent
the wildcard pattern. An existing _ name can be used without ambiguity in
the matched statement to which control is passed. Naturally, the impact of
defining _ in the pre-processor cannot be predicted or controlled by this paper
and is thus liable to result in an ill-formed program.

Impact on P2011 and other pipeline rewrite musing

Placeholders in pipeline rewrite have a ”Bind to this” semantic rather than a ”I don’t care” se-
mantic. As such, these proposals could use a different syntax. However, there are no syntactic
ambiguities between the two features, P2169 impacts only declarations, not expressions.

Independently of P2169, P2011 makes the following ambiguous

int _ = 0; // Not a placeholder
f() |> g(_, _); // placeholder or variable ?

This is simply resolved by having _ always be a placeholder in pipeline expression, and any
_ variable can be access either through a reference or by wrapping it in parentheses.

int _ = 0; // Not a placeholder
auto & placeholder = _;
f() |> g(_, placeholder); // OK

4



f() |> g(_, (_)); // OK

And so,

• There are no adverse synergies between this proposal and pipeline rewrite

• There are no adverse synergies between this proposal and pattern matching

• This proposal and pattern matching use the _ token for similar semantics (”don’t care”),
whether the pipeline rewrite has a different semantic (”bind to this argument”). However,
both are placeholders and an argument can also be made to use the same syntax in
both context, it really boils down to what we think is less surprising.

Impact on existing code

Google Mock

Google Mock appear to constitute themost common use of the identifier. With this proposal,
GoogleMock continues towork. Variables named _may shadow the testing::_ global variable
introduced by google mock:

namespace testing {
const internal::AnythingMatcher _ = {};

}

Because the proposal limits the use of placeholder to function scope (because of linker
considerations), there is little risk that increased use of _ causes shadowing issues for users
of this framework.

It is possible to use the feature proposed in this paper along with google mock as long as the
using namespace testing; appears before any declaration of _ in that code.

Compiler explorer link

Gettext

Some projects using Gettext define _ as a function-like macro.

# define _(msgid) gettext (msgid)

It is important to know that this is not provided in any gettext header. It is also technically
undefined as the _ is reserved at global scope. But, regardless, defining this macro would
not prevent the use of the proposed syntax, as _ is only expanded by the preprocessor in this
case if followed by parentheses:

constexpr const char* gettext(int) { return nullptr;}
#define _(msgid) gettext (msgid)

int main() {
constexpr auto _ = _(42);
auto _ = 42;

5

https://godbolt.org/z/EghbHF


static_assert(_ == nullptr);
}

Compiler explorer link

Implementation

R0 of this proposal has been implemented in Clang and the implementation is available on
Compiler Explorer.

The implementation consists of ignoring existing _ variables in the same scope when declaring
placeholder variables. Note that name lookup is not affected by this proposal, some variables
are simply skipped over based on their name. The variables otherwise conserve their name
for diagnostics purposes.

The current version of this proposal can be emulaterd with the -Werror flag Compiler Explorer.

Wording

�? General [basic.scope.scope]

A declaration is name independant if its name is _, and it declares a variable with automatic
storage duration, a structured binding, a function parameter, the variable introduced by an
init-capture, or a non-static data member.

The attribute-token maybe_unused is applied to name independant declarations.

Two declarations potentially conflict if they correspond and cause their shared name to denote
different entities. The program is ill-formed if, in any scope, a name is bound to two decla-
rations A and B that potentially conflict and one A precedes the other B , unless B is name
independant.

[Note: An id-expression that denotes a name independant declaration is ill-formed when
another declaration with the same name inhabits the same scope. —end note ]

[Note: Overload resolution can consider potentially conflicting declarations found in multiple
scopes (e.g. via using-directive s or for operator functions), in which case it is often ambiguous.
—end note ] [ Example:

void f() {
int x,y;
void x(); // error: different entity for x
int y; // error: redefinition

int _;
_ = 0; // OK
int _; // OK
_ = 0; // error: id-expression '_' denoting a

redefinable underscore entity

6

https://godbolt.org/z/FRFg9-
https://godbolt.org/z/5lmnfN
https://godbolt.org/z/_C6X7L


}
enum { f }; // error: different entity for ::f
namespace A {}
namespace B = A;
namespace B = A; // OK, no effect
namespace B = B; // OK, no effect
namespace A = B; // OK, no effect
namespace B {} // error: different entity for B

—end example ]

[...]

�? Block scope [basic.scope.block]

[...]

If a declaration that is not a name independant declaration and whose target scope is the
block scope S of a

• compound-statement of a lambda-expression, function-body, or function-try-block,

• substatement of a selection or iteration statement that is not itself a selection or iteration
statement, or

• handler of a function-try-block

potentially conflicts with a declaration whose target scope is the parent scope of S, the
program is ill-formed. [ Example:

if (int x = f()) {
int x; // error: redeclaration of x

}
else {

int x; // error: redeclaration of x
}

—end example ]

[...]

�? Program and linkage [basic.link]

[Editor’s note: Modify [basic.link]/p8 as follow]

Two declarations of entities declare the same entity if, considering declarations of unnamed
types to introduce their names for linkage purposes, if any, they correspond, have the same tar-
get scope that is not a function or template parameter scope, neither is a name independant
declaration, and either

7



• they appear in the same translation unit, or

• they both declare names with module linkage and are attached to the same module, or

• they both declare names with external linkage.

[Note: There are other circumstances in which declarations declare the same entity. —end
note ]

[...]

�? The using declaration [namespace.udecl]

[...]

If a declaration A named by a using-declaration that inhabits the target scope of another decla-
ration B potentially conflicts with it , either B is not name independant or A doesn’t precedes
B, and either is reachable from the other, the program is ill-formed. If two declarations named
by using-declarations that inhabit the same scope potentially conflict, either is reachable from
the other, and they do not both declare functions or function templates, the program is ill-
formed. [Note: Overload resolution possibly cannot distinguish between conflicting function
declarations. —end note ]

Rebuttal some wilder ideas explored by P1110

[P1110] explores the different places where a placeholder may be used.

Enums

The code on the left (P1110) can be written in standard C++ in a way that expresses the intent
as clearly, if not more.

enum MmapBits {
Shared,
Private,
_,
_,
Fixed,
Rename,
//...

};

enum MmapBits {
Shared,
Private,
Fixed = Private + 3,
Rename,
//...

};

Concept-constrained declarations

The following example from P1110 is a historical artifact as C++20 uniformizes auto for this
purpose.

8



template<Integral __ N> class integral_constant { ... };
Numeric multiplyAdd(Numeric __ x, Numeric __ y, Numeric __ z) {

Numeric __ multiplied = x * y;
return multiplied + z;

}

Here is the C++20 equivalent

template<Integral auto N> class integral_constant { ... };
Numeric multiplyAdd(Numeric auto x, Numeric auto y, Numeric auto z) {
Numeric auto multiplied = x * y;
return multiplied + z;

}

Other explored areas, including placeholders for function names, type declaration, using
and concepts are not useful, either because C++ does already provide the desired facilities
such as anonymous type, or because the entity needs a name (concepts, functions and using
declarations without a name cannot be used)

Acknowledgments

Thanks to Miro Knejp and Tony Van Eerd for providing valuable feedback on R0 on very short
notice! Thanks to Davis for helping woth the wording!

References

[1] Sergei Murzin, Michael Park, David Sankel, and Dan Sarginson. P1371R0: Patternmatching.
https://wg21.link/p1371r0, 1 2019.

[2] Sergei Murzin, Michael Park, David Sankel, and Dan Sarginson. P1469R0: Disallow _ usage
in c++20 for pattern matching in c++23. https://wg21.link/p1469r0, 1 2019.

[3] Jeffrey Yasskin and JF Bastien. P1110R0: A placeholder with no name. https://wg21.link/
p1110r0, 6 2018.

[4] Zhihao Yuan. P0577R0: Keep that temporary! https://wg21.link/p0577r0, 2 2017.

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4861

9

https://wg21.link/p1371r0
https://wg21.link/p1469r0
https://wg21.link/p1110r0
https://wg21.link/p1110r0
https://wg21.link/p0577r0
https://wg21.link/N4861

	1 Abstract
	2 Tony tables
	3 Revisions
	3.1 Revision 3
	3.2 Revision 2
	3.3 Revision 1

	4 Motivation
	5 Design considerations
	5.1 Proposal
	5.2 Should declaring variables called _ be deprecated?
	5.3 Alternative Design
	5.4 Pattern matching
	5.5 Impact on P2011 and other pipeline rewrite musing

	6 Impact on existing code
	6.1 Google Mock
	6.2 Gettext

	7 Implementation
	8 Wording
	8.1 General
	8.2 Block scope

	9 Program and linkage
	10 The using declaration
	11 Rebuttal some wilder ideas explored by P1110
	11.1 Enums
	11.2 Concept-constrained declarations

	12 Acknowledgments
	13 References

