
Evaluation of Checked Contract-Checking Annotations

Document #: P2751R1
Date: 2023-2-14
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

SG21 is ready to discuss and decide how checked contract-checking annotations will be evaluated
in the Contracts MVP. We present here a thorough analysis and direction for handling all possible
results of the normal evaluation of a contract-checking annotation’s predicate. We then provide
details and motivation for deliberately making unspecified the number of evaluations of the
predicate of a checked contract; i.e., each such predicate may be evaluated zero, one, or more
times.

Contents
1 Revision History 2

2 Introduction 2

3 Proposals 2
3.1 Expressions . 3
3.2 Interpretation of Expression Results . 4
3.3 Number of Evaluations . 7

4 Wording Changes 15
4.1 Consensus Changes . 16
4.2 Deferred Changes . 16

5 SG21 Discussion History 16
5.1 February 2023, Issaquah, WA . 16

6 Conclusion 18

1

mailto:jberne4@bloomberg.net

1 Revision History
Revision 0

• Original version of the paper for discussion during an SG21 telecon in January 2023

Revision 1

• Significant clarifications on Proposals 2.3, 2.4, and 3.4

• Summarized results of SG21 discussions at the February 2023 WG21 meeting in Issaquah

2 Introduction
The Contracts MVP being developed by SG21 (see [P2521R2]), as with most other existing runtime
contract-checking facilities, allows for contract checks to be expressed in code as contract-checking
annotations and then, in certain situations, to be checked.

When a contract-checking annotation is checked and a contract violation is detected, the associated
behavior, such as invoking std::abort in the Eval_and_abort mode proposed for the MVP as
described in [P2521R2], must occur. The specifics of how the predicates of checked contract-checking
annotations are evaluated to detect a violation are the subject of the current technical discussion
and are needed for the MVP to continue on the path laid out by [P2695R0] to produce a Contracts
facility for C++26.

We propose a series of rules to govern the evaluation of predicates and thus to determine when a
contract violation has occurred. These rules include clarifying how a predicate’s evaluation detects
a violation as well as what freedoms an implementation has in choosing whether to evaluate that
predicate (at run time) for the purpose of detecting a violation.

Taken together, we assert that these rules simultaneously maximize safety, implementation freedom,
and benefits to the end user.

3 Proposals
We now present a series of discrete proposals along with motivations for each individual decision.
Note that much of this content overlaps heavily with the discussions in the MVP and [P2570R0]
and should be considered as additional reasoning and motivation for specific options outlined in
those papers.

Understand that we are concerned here with what happens when evaluating a checked contract-
checking annotation, i.e., one in which, if a contract violation occurs, then an associated observable
behavior also occurs, such as invoking std::abort. When building in the Eval_and_abort mode in
the MVP, all contract-checking annotations are checked, and hence the runtime boolean value of the
predicate must be determined. When building in the No_Eval mode, contract-checking annotations
are not checked, and their predicates are never evaluated.

2

3.1 Expressions

Proposal 1: Predicates are normal C++ expressions.

A contract-checking annotation’s predicate is a C++ expression that contextually converts to
bool and, when evaluated (including the conversion to bool), follows the normal C++ rules
for expression evaluation.

Expressing preconditions, postconditions, and assertions as evaluatable C++ expressions has been
central to all existing Contracts proposals that have been considered by WG21. The MVP currently
does not deviate from this familiar paradigm.

Normal evaluation brings with it two important points.

1. When the evaluation of a predicate occurs, that evaluation, behaving just as with other
complete expressions, will not overlap with the evaluation of any other expressions.

2. For any given subexpression of a contract check’s predicate, its defined behavior will match
that which it would have if evaluated within the body of a function.

Normal evaluation does not extend to other guarantees that might inadvertently be assumed.

• The number of times the predicate for a contract-check is evaluated, if at all, is not guaranteed.

• A predicate whose evaluation has undefined behavior results in a contract-checking annotation
whose evaluation has undefined behavior and thus is never guaranteed by the Standard.

• Behaviors that would be associated with the specific context in which a predicate is evaluated,
as opposed to those associated with the evaluation of the predicate itself, are not guaranteed
to be the same as in other contexts in which expressions are evaluated and converted to bool.
For example, as we indicate in Proposal 2.3 below, an exception escaping the evaluation of a
predicate might be handled as a contract violation rather than propagating into the enclosing
scope.

Requiring that evaluations of contract-check predicates follow the same rules as those experienced
C++ developers must already strive to know and understand for all other contexts has several
important collateral benefits:

• The use of boolean expressions for the detection of contract violations maximizes teachability
and understandability. Leveraging the existing semantics of C++ expressions fits naturally
alongside the rest of the language and avoids the need to learn a new language or understand
alternate semantics for the already complex C++ language.

• When designing APIs employing functions that have narrow contracts, we commonly observe
parallel sets of functions having wide contracts that return an error when used outside of the
narrow contract’s domain. The operator[] and at accessors of std::vector are an example of
parallel APIs such as this, where operator[] has a narrow contract and at has a wide one.

Lifting such preconditions from a contract check into the narrow function to a conditional in
a wide one must not itself, for safety’s sake, be a source of bugs. Cases in which the predicate

3

of the narrow function’s contract check evaluates having different semantics than when used
within an if are needlessly dangerous and are best avoided.

• Ideally, we want a contract-checking annotation’s predicate to be able to freely use functions
defined in external libraries, possibly those available only as binary distributions. Absent a
massive global engineering effort, safely invoking such functions where they potentially have
alternate semantics when evaluated from within the predicate of a contract check would not
be achievable.

3.2 Interpretation of Expression Results

Proposal 2: When a checked predicate fails to evaluate to true, something anomalous has
happened.

When control would return from the evaluation of the predicate of a contract-checking
annotation through the evaluation of that annotation and the result is not true, a contract
violation has occurred.

This overarching view of the meaning of the evaluation of a contract-check’s predicate guides our
proposals for handling other potential results of such predicate evaluation.

We deliberately describe interpreting these behaviors in terms of what would happen were the
predicate to be evaluated, as opposed to what happens when the predicate is evaluated. As per
Proposal 3.2, when a compiler can emit an alternate, side-effect-free method to identify the same
contract violations, the contract checking annotation can be evaluated without having to evaluate
the original predicate itself.

Note that the MVP already specifies precisely when a contract-checking annotation is evaluated;
e.g., a precondition is evaluated immediately after function parameters are initialized. We do not
propose any changes to those rules.

When evaluating the predicate of a contract-checking annotation, if the flow of control never returns
to the evaluation of the contract-checking annotation (e.g., the program is terminated or longjmp is
invoked), the anomalous control flow must not be subverted, lest we would violate Proposal 1. On
the other hand, control flow that does pass back through the point of evaluation of the annotation
yet does not produce a value (true or false) — e.g., by unwinding the stack due to an uncaught
exception — is always a coding defect and thus treated as a contract violation.

Proposal 2 is further subdivided across the many ways an expression might produce or fail to
produce a boolean value, and each method has distinct motivations for how it should be handled.

Proposal 2.1: A predicate that evaluates to true does not indicate that a contract violation
has occurred.

When a predicate of a checked contract-checking annotation would evaluate to true, no
contract violation is detected and no further action is taken.

4

Proposal 2.2: A predicate that evaluates to false indicates that a contract violation has
occurred.

When the predicate of a checked contract-checking annotation would evaluate to false, a
contract violation occurs.

Proposals 2.1 and 2.2 govern how the evaluation of a contract-check’s predicate that produces a
well-defined value should be handled.

When the predicate would evaluate to true, the contract check succeeds, and program execution
continues as normal. When the predicate evaluates to false or when it can determined that the
predicate would evaluate to false, a contract violation has been detected, and the associated action
(such as invoking std::abort and ideally issuing a diagnostic) is taken.

Proposal 2.3: A predicate that throws indicates that a contract violation has occurred.

When the predicate of a checked contract-checking annotation throws (or would throw), a
contract violation occurs.

We could consider three possibilities for handling a contract-check’s predicate that throws.

1. Allow the exception to propagate.

2. Treat the predicate as implicitly noexcept, invoking std::terminate.

3. Catch the exception, consider the contract check to have failed, and proceed just as if any
other contract violation had occurred.

Option 1, allowing the exception to propagate, can result in control-flow decisions based on the
contract check being enabled, which, in turn, would allow essential behavior to differ across distinct
build modes.1

Allowing the exception thrown by the evaluation of the predicate to propagate would also result in
the need to determine what value the noexcept operator would return for a function annotated as
noexcept that had precondition annotations attached to it. We could choose to always consider the
precondition check that is internal to the function (even when implemented as a call-side check)
and thus subject to the noexcept barrier around the function, which, in that case, would naturally
have the noexcept operator. If we choose to allow such exceptions to propagate, we would be left
with a number of decisions related to the noexcept operator.

• Return false if the build mode would evaluate the contract predicate, true otherwise. This
causes potentially (vastly) different control flows to be followed depending on the build mode.

• Return true always if the function is annotated noexcept but allow exceptions to propagate
anyway,2 potentially preventing control flow necessary to preserving exception-safety guarantees
from executing.

1Note that predicates that throw are distinct from having user-defined violation handlers that might throw, where
throwing might enable recovery from detected violations as opposed to recovery from defects in the predicate itself.

2This is also known as lying.

5

• Return false in all build modes, preserving consistency yet removing the use of potentially
improved algorithms that would rely on the exception-generating properties of the function,
which presumably would have been the reason noexcept was applied to the function in the
first place.

The possible answers come with various ramifications.

• Invoke std::terminate() as if the check had been done within the body of the function, and
return true from the noexcept operator.

• Propagate the exception, and always return false

Options 2 and 3, then, are the only potentially viable alternatives available to us. Now consider that
invoking std::terminate reduces the level of information delivered to the client when the predicate
clearly failed to validate the contract being checked. Since an uncaught exception can be locally
identified (by catching it) without any need to change the semantics of the subexpressions of the
predicate, we propose that uncaught exceptions be treated as violations of the contract-checking
annotation being evaluated. In such cases, the evaluation of the predicate neither succeeded nor
detected a contract violation and as such is likely a defective contract check; hence, identifying such
situations as a contract violation is apt.

Proposal 2.4: Predicates having UB indicate a defect.

When the predicate of a checked contract-checking annotation would have undefined behavior
(UB), a defect occurs; platforms are encouraged to treat any such UB as a contract violation.

We do not intend to redefine the abstract machine, so a predicate with UB still has UB.

On the other hand, we can recommend how such predicates are interpreted and suggest that, when
practicable, a predicate that has UB should be treated as a contract violation. Without the need
for normatively specifying this concept, compiler vendors already have ample leeway to make this
interpretation themselves since they can provide any meaning they desire to UB.

This non-normative recommendation would encourage compiler vendors to inject null pointer
detection, integer overflow detection, and any number of other checks for core-language preconditions
into the evaluation of a contract-check’s predicates. Avoiding making this recommendation into a
requirement, however, gives compilers leeway to act on this recommendation. UB within the predicate
expression itself might be easily identified or intractable, and how readily a compiler can detect
each form of UB might vary from one implementation to the next; therefore how aggressively these
defects are identified as contract violations will inevitably be a matter of quality of implementation
(QoI). When invoking functions from other translation units, altering the semantics of even a subset
of possible UB would require a bifurcation of how such invocations can take place, so we deliberately
leave compilers the leeway to invoke such functions normally.

Note that this recommendation will ideally have a strong impact on how UB in a contract-checking
predicate will “time travel” through code prior to the predicate. In general, “time-travel” UB
happens as a result of compilers inspecting a control flow graph and identifying which paths in that
graph can be discarded. Given the compilers’ active nature in leveraging UB in such a way, we are
hopeful that, in seeking good QoI, control flow paths into a contract check will be not discarded but

6

replaced by violation handler invocations. This form of UB is, generally, not the result of hidden
implicit assumptions a compiler makes about the behavior of C++ constructs.

Proposal 2.5: Other predicates that do not evaluate normally behave normally.

Other than the cases listed above, a contract-check’s predicate that fails to evaluate to a
boolean value follows the normal C++ rules for expression evaluation.

Producing a value or throwing an exception are not the only possible results of evaluating an
expression; they are simply the only ones by which we can readily control the compiler’s response
by making changes that are local to the evaluation of the predicate.

Invoking a function that does not return (e.g., one marked [[noreturn]]), invoking std::longjmp,
or entering an infinite loop are all possible ways in which an expression might have behavior we have
not covered so far, but other behaviors might occur as well. In the spirit of avoiding alteration of the
basic semantics of evaluation of a C++ expression, we propose that all such atypical or pathological
behaviors act as they would normally.

The case in which evaluation results in program termination, in particular, would be a behavior that
is especially unsafe to subvert within the evaluation of a contract-check’s predicate. For example,
having an uncaught exception within a noexcept function currently always results in the invocation of
std::terminate, and changing that guarantee should be done only with great care and consideration.

We certainly do not wish to encourage the writing of contract-checking annotations that employ
such constructs; they are actively destructive to the control flow of the program itself. Altering
the semantics of these operations within the evaluation of a contract-check’s predicate would add
complexity and reduce safety without yielding any clear overall benefit.

3.3 Number of Evaluations

Proposal 3: A predicate may be evaluated an unspecified number of times.

When determining whether a violation of a checked contract-checking annotation has occurred,
its predicate may be evaluated zero or more times; any detected contract violation may be
handled one or more times.

Proposal 3 is further subdivided into four parts, each with its own nuance and motivations.

Proposal 3.1: Evaluating a contract-check’s predicate once is allowed.

When evaluating a checked contract-checking annotation, its predicate may be evaluated
once.

The only viable route to determine if any arbitrary predicate would detect a violation is simply to
evaluate it and see if the result is not true. This behavior is familiar from <cassert> and, as far as
we know, has never proven controversial.

7

Whether zero or multiple evaluations are allowed, evaluating once at the point where the contract-
checking annotation takes effect must always remain a viable implementation strategy.

Proposal 3.2: Evaluating a contract-check’s predicate zero times is allowed.

When evaluating a checked contract-checking annotation, its predicate may be evaluated zero
times.

For a contract-check’s predicate that has no observable side effects (i.e., one that has no side effects
outside of its cone of evaluation), permission to skip evaluating the predicate is already granted
to the compiler. If the compiler can identify an equivalent expression that detects the same set of
violations, it may replace an unobservable predicate by that alternate evaluation, which is a result
of the basic as-if rule of the Standard.

Allowing zero evaluations for all predicates extends this rewriting ability to even those predicates
having observable side effects. With these rewriting rules, when the compiler can identify an
equivalent unobservable evaluation that detects precisely the same set of violations as the observable
predicate, the replacement can be made, thereby eliding the side effects without allowing any
violations to become undetected.

When a predicate’s result can be completely determined at compile time, this rewritten expression
might be as simple as true or false. In other cases, a rewritten expression might be a proper subset
of the original expression with all observable side effects removed, provided, of course, that the
compiler has determined that none of those side effects could alter whether the predicate indicates
that a contract violation has occurred.

An important property of this rewriting is that developers and the compiler can still reason locally
about the evaluation of a contract-check’s predicate, i.e., any given subexpression of a contract-
check’s predicate behaves the same way it would outside of a contract-checking predicate if it does
get evaluated. For each evaluation of a contract-checking annotation, either all side effects of the
predicate will be observed or none of them will be.

Allowing zero evaluations even for predicates that would otherwise be observable has beneficial
properties.

• Allowing essential behavior to depend on the side effects of evaluating a contract-check’s
predicate is destructive. Yet, as [P2712R0] explains, disallowing all side effects in such predicates
is unduly limiting because so many algorithms that would be essential to implementing a
contract check might involve allocation, modifying mutable members to cache computational
results, or logging for debugging purposes. Hence, anything that discourages affecting essential
behavior in a contract-check predicate is a worthy design goal.

For example, some poorly designed libraries with destructive contract checks or with contract
checks whose evaluation is needed for essential behavior might work for a particular client only
with contracts always on or always off . When building a complete program in which one library
works only with contracts on and one library works only with contracts off , a developer is left
with an impossible choice, and the Contracts facility is blamed. This unfortunate situation
can result in the inability to adopt or upgrade certain libraries, greatly impeding the adoption
of the use of the Contracts facility itself.

8

To actively discourage dependency of any essential behavior on the evaluation of any contract-
check predicates, we propose granting permission for the compiler to optionally elide all side
effects of any predicate in much the same way as supposedly superfluous copies can sometimes
be elided in the name of runtime performance. The result of the predicate must still be
determined by what does get evaluated, but either all side effects happen or none happen.

• Encouraging any dependence on side effects of a contract-check’s predicate occurring discour-
ages future evolutionary paths that might allow mixed builds in which one contract-checking
annotation is checked and a consecutive one might not be. Many of the use cases gathered
by SG21 in [P1995R1] require this ability, such as disabling the checking of postconditions or
labeling expensive contract checks with a label such as audit.

• This rule enables at least one form of symbolic evaluation, in which consecutive contract-
checking annotations having functionally identical predicates can be checked once, even when
they invoke opaque functions:

bool f(); // defined elsewhere
void g()
{

[[assert : f()]]; // #1
[[assert : f()]]; // #2

}

Here, a single evaluation of f() can be used to infer one of two possibilities.

1. The evaluation returning true proves that both #1 and #2 have been validated.

2. The evaluation returning false proves that #1 has been violated.

Although identical consecutive assertions are rare, this same flow happens more frequently in
two scenarios:

1. When a function forwards to another function having the same preconditions

2. When the postconditions of one function are the preconditions of another function invoked
immediately after

When we can obtain additional performance, we increase the likelihood of a checked build
being usable in a production environment, though performance for checked contract-checking
annotations is not the goal of the design of any contract-checking facility. When checked
builds are used in production, we see increased safety delivered directly to the end users of
the software we build.

This elision of consecutive contract-checking annotations having similar (e.g., identical) predi-
cates is limited in significant ways because we have little leeway to expand the elision when
anything that cannot be reordered happens between the contract-checking annotations. Such
expansion to enable more symbolic evaluations could be the subject of future proposals but
brings with it the risk of missing a case and allowing a contract violation to go undetected.
We assert that having a hundred superfluous contract checks go unelided is better than having
one valid one go unchecked.

9

Proposal 3.3: Evaluating a contract-check’s predicate more than once is allowed.

When evaluating a checked contract-checking annotation, its predicate may be be evaluated
multiple times.

When evaluating a contract-check’s predicate multiple times, any one of those evaluations failing
to successfully evaluate to true indicates that a contract violation has occurred. When multiple
invocations of the same predicate fail to agree on whether a contract violation has occurred, the
safest interpretation is to always consider the contract violation to have occurred.

After any evaluation that does detect a contract violation is performed, any violation handling
routine should immediately follow. In the context of the MVP, with no checked build mode that
allows continuation, no more than one failed evaluation of a contract-check’s predicate will occur.
Should violation handling modes that support continuation be added, detecting the same violation
multiple times would then be possible.

Allowing multiple evaluations also brings a few beneficial properties.

• As with evaluating zero times, evaluating a contract-check’s predicate having no observable
effects multiple times is completely within the allowed behavior of the compiler under the as-if
rule. In general, compilers do not take advantage of the leeway; doing so is considered poor
QoI, but this proposal extends that same leeway to predicates with observable side effects.

• For contract-checking annotations with predicates having observable side effects, all of the
concerns related to discouraging any dependency on side effects that we raised in the discussion
of Proposal 3.2, with respect to zero evaluations, apply as much (if not more) to allowing
multiple evaluations. Side effects that are needed for the essential behavior of a function will
typically fare poorly if evaluated multiple times; we argue that such discouragement is not a
bug but a welcome feature of this proposal.

• In general, having a contract-checking facility apply blame to the source of a defect as accurately
as possible is hugely beneficial. Any group that has supported a library that makes heavy use
of macro-based assertions to check preconditions knows that, in the vast majority of cases,
problems get assigned first to the owner of the library, even when the problem stems from a
client invoking that library’s functions with invalid input.

Enabling compilers to place precondition-checking code on the caller side of a function
invocation assists greatly toward allowing simple implementation strategies (e.g., that don’t
require passing the source location of the caller to the function) to nonetheless produce the
caller’s identity (file and line number) on precondition violations. A Contracts facility that
enabled just that and little else would be a welcome improvement over many macro-based
facilities.

On the other hand, such checking on the caller side becomes difficult to implement when
a function is invoked indirectly, such as through a function pointer. Allowing any checked
contract-checking annotation to go unchecked would violate the most essential requirement we
have for a contract-checking facility; hence precondition checks might often be best placed
inside the invoked function, not at the call site.

10

Implementation strategies can alleviate some of these conflicts, and a subset of these strategies
might do so by sometimes checking a contract both on the caller side (for improved diagnostics)
and the callee side (to guarantee that checks are never skipped). The viability of these
implementation strategies might hinge largely on the ability and desire to change calling
conventions and ABIs to facilitate contract checking, and we expect the desire to make
substantial ABI changes to be minimal to nonexistent with an initial MVP.

Allowing multiple evaluations enables platforms to experiment with different implementation
strategies to maximize diagnostic quality while still always guaranteeing that violations of
checked contracts are detected.

• Though the MVP does not currently provide great flexibility in specifying the preconditions
and postconditions of virtual functions, that is one case in which it will potentially be possible
in the future for callers to be aware of a distinct contract from the callee, and both of those
lists of contract checks will need to be evaluated. When a caller invokes a virtual function
through a base-class pointer or reference, the contract the caller is aware of and upon whose
postconditions it depends is the contract on the base class’s virtual function. When a virtual
function is invoked, the particular function depends on its own preconditions, i.e., those on
the function declared in the dynamic type of the object.

Today, when these contract checks are the same, the distinction does not matter. When evolving
the MVP into one that meets more of the known use cases for contracts, however, callers
and callees can have multiple possibly distinct (but also possibly identical) contract-checking
annotations to evaluate on any given virtual function invocation. Leaving the number of
evaluations unspecified allows a compiler to check on both sides when the runtime type is
unknown but check only once when a virtual dispatch is devirtualized.

• Mixed-build modes is another area for which the MVP does not currently allow but which
is nonetheless required for many of the known use cases. To guarantee desired checks get
evaluated when a caller might be built in an unknown mode, the compiler of, for example,
a library function might wish to always check preconditions — even when that check might
be redundant. Once again, allowing multiple evaluations enables the generation of redundant
checks to guarantee that no build inadvertently ends up not checking a checked contract-
checking annotation at all.

• Since the MVP is intended to lay the foundation of a feature that can evolve to satisfy many
more of the use cases the community has for a Contracts facility, we would be wise not to
overconstrain the design at this early stage in its development. Once it is released, we will begin
to gain implementation experience and build toward consensus on a more complete feature
with the MVP as its core. If we adopt the most relaxed specification allowing zero or more
evaluations, i.e., Proposals 3.2 and 3.3, and then later we find that no implementation issues
or user-scenarios require such flexibility, we can always consider tightening the specification.
Obviously, going the other way — from more restrictive to less — is not even a remote
possibility; hence, our strong preference is to at least start with zero or more evaluations and
see where that takes us.

11

Proposal 3.4: Extra evaluations of consecutive predicates may be reordered.

When a sequence of contract-checking annotations are evaluated consecutively, additional
checks of each annotation (allowed by previous proposals) may be inserted anywhere after
the first check of that annotation within the sequence. Note: These additional checks may
but are not required to involve a non-zero number of evaluations.

With Proposal 3.3, any single contract-checking annotation might involve multiple evaluations of
that annotation’s predicate and violation handling. (Note again that the MVP’s violation handling
always invokes std::abort and thus necessarily occurs only once.) Consider, though, a function with
multiple precondition checks:

void f1()
[[pre : p1()]]
[[pre : p2()]];

To check preconditions at both the call site and at the start of the body of f1, simply allowing multiple
evaluations is insufficient. To have this implementation freedom, compilers need to have the ability
to invoke p1() and then p2() at the call site and then invoke them again in the implementation of
f1. To facilitate that implementation flexibility, we must allow reordering of the repeated evaluation
of the predicates.

To understand why we would constrain this reordering, consider the simple case of preconditions
where undefined behavior in one precondition is guarded by an earlier precondition:

void f(int *p)
[[pre : p != nullptr]] // #1
[[pre : *p != 5]]; // #2

Reordering #1 to occur after #2 would prevent catching the violation when f(nullptr) is invoked.
On the other hand, repeating the entire sequence of checking #1 and #2 would be fine as would
partially repeating the sequence after the first invocation. By requiring that checks be performed
only after lexically (and possibly logically) prior enabled checks have been performed (at least once),
we match the natural expectations a developer might reasonably assume are guaranteed.

Rather than limit this reordering to just single batches of preconditions or postconditions, we
propose extending this flexibility to any sequence of consecutive contract checks. Formally, this
proposal would consist of two parts:

• A vacuous operation is one that should not, a priori, be able to alter the state of a program
which a contract could observe, and thus could not induce a contract violation. Two contract-
checking annotations shall be considered consecutive when they are separated only by vacuous
operations Examples of such vacuous operations include

– doing nothing, such as an empty statement

– performing trivial initialization, including trivial constructors and value-initializing scalar
objects

– performing trivial destruction, including destruction of scalars and invoking trivial
destructors

12

– initializing reference variables

– invoking functions as long as none of the function parameters require a nonvacuous
operation to initialize

Consecutive evaluations will occur in a number of common places, which include but are not
limited to

– all precondition checks on a single function when invoking that function

– all postcondition checks on a single function when that function returns normally

– the preconditions of a function (f1) and the preconditions of the first function invoked by
f1 (f2), when preparing the arguments to the invoked function (f2) involves no non-trivial
operations

– the postconditions of a function (f1) and the preconditions of the next function invoked
immediately after f1 returns (f2), when the destruction of the arguments of the first
function (f1) and the preparation of the arguments of the second function (f2) involve
no non-trivial operations

• A natural ordering occurs among all contract-checking annotations based on where they
appear lexically within a function declaration and the normal ordering of function invocations
themselves. When one contract-checking annotation is sequenced before another, at least one
evaluation of the first annotation must happen before a check of the second may begin.

Allowing reordering of evaluations of contract-checking annotations having predicates that would
otherwise be observable also has beneficial properties.

• As with allowing zero or multiple evaluations of a predicate, the compiler can already, under
the as-if rule, perform this same reordering when the predicates of a contract check have no
observable effects. This form of reordering is a frequent target of aggressive optimizations.

• Consider a simple function with two preconditions:
void f()

[[pre : f()]] // #1
[[pre : g()]]; // #2

To allow for the possibility of evaluating the contract-checking annotations in both the caller
and the callee, we want to allow these checks to be run in the sequence #1, #2, #1, and then
finally #2. Proposals 3.1, 3.2, and 3.3 would allow us to expand this only to sequences such as
#1, #1, #2, and then #2.

Allowing the redundant checks enabled by Proposal 3.3 to be placed anywhere later within
the full sequence of evaluations enables us to insert a second check of #1 at the end of the
sequence, followed by a second check of #2, resulting in the repetition of the full set of checks
that can be done in the caller of f() and within f() itself.

• The ability to insert duplicates of a check that has been confirmed allows for the elision of
different but equivalent checks. Consider a nested set of functions with some related and some
unrelated preconditions:

13

bool f();
bool g();
bool h();

void inner()
[[pre : f()]] // #1
[[pre : h()]]; // #2

void outer()
[[pre : f()]] // #3
[[pre : g()]] // #4

{
inner();

}

With no repetition, we would expect the checks when calling outer() to evaluate #1, #2, #3,
and then #4. Ideally, we want to allow for the freedom to remove the check #3, which is a
redundant check of f(). Doing so, however, would not be valid without a reordering guarantee
that avoids the need to confirm that the call to g() made by checking #2 does not invalidate
the truth of f() — something that may well be impossible if g() is defined in a different
translation unit.

Repetition within the sequence enables us to insert a second check of #1 immediately prior
to the check of #3. We can then use that #1 has already been evaluated by that time and
determined to be true to evaluate f() zero times to validate the second check of #1. The
result of this check then confirms that we need not evaluate f() a second time to check the
immediately following check of f() within #3.

The sequence of annotation checks is then #1, #2, #1, #3, #4. The sequence of annotation
predicates evaluated, however, is just #1, #2, and then #4.

Larger systems with well-connected chains of postconditions and preconditions can then leverage
this rule to remove verifiably redundant checks in a wide variety of scenarios.

• Enabling arbitrary reordering of an unspecified number of evaluations further encourages
users to treat each individual contract-checking annotation as independent, particularly with
respect to any side effects contract predicates might have.

The freedom to apply Proposal 3.2 depends on not having an expectation that the side effects
of blocks of contract-checking predicates may be treated as a single unit. Consider, for example,
a function that is written making this bad assumption:

void f()
[[pre : d_mutex.lock(), true]] // #1
[[pre : check_state()]]
[[pre : d_mutex.unlock(), true]]; // #2

A compiler may, for various reasons, be capable of concluding that #2 always returns true but
not come to the same conclusion for #1, resulting in failure to unlock a mutex that has been
locked. This situation would be likely if, for example, the definition of unlock were inlined and
visible while the implementation of lock were hidden within a different translation unit.

14

Enabling users to depend on paired side effects of distinct contract-checking annotations
would also prevent future evolutionary paths that allow for fine-grained control of individual
contract-checking annotations.

• Independence of distinct contract-checking annotations is also crucial because different trans-
lations of the same function might be able to optimize more or less effectively when looking at
a set of contract checks. Consider, for example, the situation where both a caller and callee
compiler emit evaluations of a sequence of preconditions, the two compilers might have different
levels of success analyzing the predicates being compiled and replacing evaluations with side
effects with ones that are not observable. One could expect to encounter this disparity with
relative frequency since compilation of a function’s definition will often have more visibility
into other function definitions within the same library than compilations that see only the
library’s declarations.

We could structure this reordering in other equivalent ways, each of which allows for different
understanding of the evaluations we will allow, leading to the reordering rule we have proposed.

• The original wording for this proposal was “When multiple contract-checking annotations are
evaluated consecutively, any extra evaluations of each predicate may be reordered with respect
to each other.” The reasoning behind this rewording was that all the proposed transformations
described above would be enabled by repeating the checks of each annotation the desired
number of times and following that up with shuffling, which continued to meet the constraint
on the ordering of initial checks. Our current wording does not fundamentally deviate from
that original wording.

• Another view would be to extend the duplication to allow repetition of entire sequences of
checks, followed by arbitrary elision of redundant checks or the tail of one of the sequences.
With a sufficient number of repetitions and elisions, an arbitrary sequence of checks could be
emitted.

To see this, consider 5 checks named A, B, C, D, and E. To produce the sequence ABABCDEAD, we
perform the following steps:

ABCDE
ABCDE ABCDE ABCDE ABCDE
AB AB ABCDE ABCDE <-- drop tails
AB AB CDE A D <-- elide redundant checks

ABABCDEAD <-- final sequence of checks

• A different formulation for the reordering restriction is that the sequence of first checks of
each annotation is the complete original sequence, in the original order:

ABABCDEAD
AB CDE <-- first checks

4 Wording Changes
The current MVP (i.e., [P2521R2]) does not contain suggested wording, somewhat by design. A
previous paper, [P2388R4], contains standard wording for an earlier iteration of the MVP, and the
final wording for the MVP can be expected to evolve from that.

15

4.1 Consensus Changes

As of this publication, some proposals in this paper have received consensus approval (implicitly
or explicitly) from SG21. Proposals 1, 2.1, and 2.2 reflect the status quo within [P2521R2] and
[P2388R4].

Proposal 2.5 is not directly addressed by [P2521R2]. In [P2388R4], we need to remove one new form
of undefined behavior addded in [dc.correct.test]:

• Remove “If the evaluation exits via a call to longjmp (17.13.3) the behavior is undefined”.

Proposal 3.1 reflects the status quo in both papers. Proposals 3.2, 3.3, and 3.4 clarify an explicit
choice and semantics for the controversial topic covered by [P2521R2] in section {con.eff}. The
wording currently in [P2388R4] allows for zero evaluations or two evaluations of batches of predicates.
Proposal 3, including its subproposals, would allow a strict superset of the implementations that
[P2388R4] enables. In particular, the number of evaluations may be greater than two and consecutive
allocations may be reordered somewhat more arbitrarily. A wording implementation of our proposals
would likely remove the concept of a test sequence and instead define consecutive correctness tests
along with a reordering rule to match the one described in Proposal 3.4. Complete wording for
our proposed approach can be assembled at a later date and will likely involve some restructuring
alongside a more thorough core wording review.

4.2 Deferred Changes

The rest of the proposals in this paper have not (yet) had consensus to adopt.

Proposal 2.3 is a change from the current MVP. In [P2521R2], sections {pro.ord} and {pro.end}
would require updating to include our proposal’s recommendation on handling a predicate that
throws. In [P2388R4], modifications would be needed to [dcl.correct.test]p4:

• Remove “If the evaluation exits via an exception, std::terminate() is called.”

• Change “where the evaluation of P returns false” to “where the evaluation of P exits via an
exception or returns false.”

Proposal 2.4 is not mentioned in either paper. In [P2388R4], add a recommended practice to
[dcl.correct.test]:

• “Recommended practice: Implementations should consider treating undefined behavior in the
evaluation of a contract predicate as a contract violation.”

5 SG21 Discussion History

5.1 February 2023, Issaquah, WA

This paper was reviewed at the February 2023 WG21 meeting in Issaquah, Washington. A number
of polls related to this paper were taken.

Two polls related to Proposal 3.

16

• Poll: Do we want to allow that a contract-checking predicate is evaluated zero or more times
in eval_and_abort mode?
SF F N A SA
14 10 0 1 2

3

Result: Consensus.

• Poll: We want to adopt the rules on reordering the evaluation of contract-checking predicates
as described in P2751R0 proposal 3.4, contingent on a clarification that this reordering can
be equivalently formulated in terms of elision of evaluations inside repetitions of the given
sequence of predicates.

SF F N A SA
12 5 3 1 0

Result: Consensus.

We interpret these results together as direction to move forward with Proposal 3 as is, with the
clarifications to Proposal 3.4 present in this revision of this paper.

Three polls related to Proposal 2.3.

• Poll: In case the evaluation of a contract-checking predicate throws an exception, we want
std::terminate to be called.
SF F N A SA
0 2 5 14 8

Result: Consensus against.

• Poll: In case the evaluation of a contract-checking predicate throws an exception, we want this
to be treated as a contract violation.
SF F N A SA
7 7 3 3 7

Result: No consensus.

• Poll: In case the evaluation of a contract-checking predicate throws an exception, we want to
propagate that exception out of the contract check.

SF F N A SA
5 5 4 3 10

Result: No consensus.

We interpret these results as leaving on the table a choice between Proposal 2.3 and propagating
exceptions instead. Additional discussion on this point has been added to this revision of this paper,
and we envision revisiting this result when discussing the forthcoming [P2811R0].

One poll related to Proposal 2.5.
3WG21 subgroup polls are taken of all participants in the room with potential responses of strongly favor (SF),

weakly favor (F), neutral (N), weakly against (A), and strongly against (SA). See [SD4].

17

• Poll: When the evaluation of a contract-checking predicate exits the control flow other than
by returning or throwing (for example, abort or longjmp), the behaviour is as if it were not in
a contract-checking predicate.

SF F N A SA
19 11 0 1 0

Result: Consensus.

We take this result to indicate strong acceptance of Proposal 2.5.

One poll related to Proposal 2.4.

• Poll: We would like to non-normatively state the recommended practice that implementations
should consider treating undefined behavior in the evaluation of a contract predicate as a
contract violation.
SF F N A SA
5 11 5 2 8

Result: No consensus.

We interpret this result as no desire to move ahead with guidance on handling UB in contract
predicates. We hope to in the future offer reasonable proposals to improve behavior related to this
topic.

6 Conclusion
SG21 is seeking to produce an MVP that can evolve to meet the many use cases gathered for a
C++ contract-checking facility. To achieve an MVP for C++26, the decisions we make today must
maximize the flexibility for evolution while pinning down behaviors that are not points of conflicting
demands from those use cases.

We have made three primary proposals with those goals in mind.

1 Predicates are C++ expressions and follow the normal C++ rules for expression evaluation.

2 A checked predicate fails to evaluate to true, something anomalous has happened; if control
comes back to the point of evaluation of such a check, a contract violation occurs.

3 When determining whether a contract-checking annotation has been violated, its predicate
may be evaluated zero or more times.

Defining clearly the precise semantics of evaluating the predicate for each individual contract-
checking annotation builds a strong foundation for future evolution. Other interpretations and
specifications seem to invite confusion.

Allowing elision and multiple evaluations of the predicate of each individual contract-checking
annotation enables a robust range of implementation strategies for the MVP, including those that
explore conforming extensions that satisfy many of the not-yet-met SG21 use cases. To pin down
too early the precise number of evaluations allowed would block many of those strategies and
evolutionary paths, with no clear benefit. Note that, given more implementation experience, we can

18

choose to remove the permission for zero or multiple evaluations without breaking existing software,
yet enabling those evaluations later would run the risk of breaking (already questionable) software.

We hope that the discussion in this paper, along with the closely related but broader-focused
[P2570R1], will facilitate consensus and thus help move the specification of our Contracts MVP
toward a successful C++26 delivery.

Bibliography
[P1995R1] Joshua Berne, Andrzej Krzemieński, Ryan McDougall, Timur Doumler, and Herb

Sutter, “Contracts — Use Cases”, 2020
http://wg21.link/P1995R1

[P2388R4] Andrzej Krzemieński and Gašper Ažman, “Minimum Contract Support: either No_-
eval or Eval_and_abort”, 2021
http://wg21.link/P2388R4

[P2521R2] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan McDougall,
and Caleb Sunstrum, “Contract Support — Working Paper”, 2022
http://wg21.link/P2521R2

[P2570R0] Andrzej Krzemieński, “On side effects in contract annotations”, 2022
http://wg21.link/P2570R0

[P2570R1] Andrzej Krzemieński, “Contract predicates that are not predicates”, 2022
http://wg21.link/P2570R1

[P2695R0] Timur Doumler and John Spicer, “A proposed plan for contracts in C++”, 2022
http://wg21.link/P2695R0

[P2712R0] Joshua Berne, “Classification of Contract-Checking Predicates”, 2022
http://wg21.link/P2712R0

[P2811R0] Joshua Berne, “Contract Violation Handlers”, 2023
http://wg21.link/P2811R0

[SD4] “Practices and Procedures: The "How We Work" Cheat Sheet”
https://wg21.link/sd4

19

http://wg21.link/P1995R1
http://wg21.link/P2388R4
http://wg21.link/P2521R2
http://wg21.link/P2570R0
http://wg21.link/P2570R1
http://wg21.link/P2695R0
http://wg21.link/P2712R0
http://wg21.link/P2811R0
https://wg21.link/sd4

	1 Revision History
	2 Introduction
	3 Proposals
	3.1 Expressions
	3.2 Interpretation of Expression Results
	3.3 Number of Evaluations

	4 Wording Changes
	4.1 Consensus Changes
	4.2 Deferred Changes

	5 SG21 Discussion History
	5.1 February 2023, Issaquah, WA

	6 Conclusion

