
P2638

Intel response to P1915R1 std::simd
(Issaquah 2023 – P2807R0)
Daniel Towner

Intel PublicIssaquah Meeting Feb ‘23 2

Summary
Intel supports the std::simd proposal and thinks it is a welcome addition to C++

We have made some detailed suggestions for alterations and additions:

• P2638R1 – General comments

• P2663R1 – Proposal to add complex-value support

• P2664R1 – Proposal to add permutation support

This feedback is based on our experience and that of partners for writing network and signal processing
code.

Intel has an example implementation of std::simd boost for gcc/llvm. We are using this to evaluate std::simd
in real-world code.

Excellent support for arithmetic operators and functions, but a theme which will emerge is that std::simd
should have better permutation operations.

Intel PublicIssaquah Meeting Feb ‘23 3

Comments addressed in P1928R2

• New names for deduce, compatible, etc. Agreed.

• Default ABI tag shouldn’t be `compatible’. Fixed by changing the
default to native.

• Memory flags don’t have a default – fixed to element_aligned.

• Simd_cast and implicit conversions can be confusing and inconsistent
–fixed

• simd_mask didn’t allow cast – Fixed by removing simd_cast.

• Generator missing for simd_mask constructor – Added.

• Use constexpr everywhere - Added

Intel PublicIssaquah Meeting Feb ‘23 4

Issues addressed in P1928R3

• simd_mask reduction naming (e.g., popcount, count[lr]_[zero/one])

• Removed simd_mask::some_of

• Removed `where’ and replaced with mask-overloaded/renamed
functions and possible conditional operator.

• Added <bit> header for popcount, byteswap, count[lr]_[zero/one]

• Added conversion to and from std::bitset

Intel PublicIssaquah Meeting Feb ‘23 5

Insert/extract
Proposal to add:

• resize_simd_t<End-Begin> std::extract<Begin,End>(v)

• simd<> std::insert<Begin>(v, child)
• Returns new simd of compile-time size.
• Original simd inputs are unchanged
• Compile-time checking of boundaries.

Why?

Using split and concat is too verbose:
auto [t0, throwaway, t1] = split<Begin, End-Begin, Pad>(v);
updatedSimd = concat(t0, newData, t1);

It has tricky behaviour at the boundaries too.

Open questions:

• Names

• Runtime behaviour – next slide

Intel PublicIssaquah Meeting Feb ‘23 6

Insert/extract open question
Should insert/extract allow run-time offset?

• resize_simd_t<End-Begin> std::extract<_Size>(v, offset)

• simd<> std::insert(v, child, offset)

Pros:

• General purpose interface potentially widens scope of use

• Compiler isn’t prevented from using an efficient code sequence if the offset is known at compile-time, but it isn’t
guaranteed.

Cons:

• Intel’s library doesn’t have this and no-one has asked for it. Too general purpose for no reason?

• std::simd is a performance library. Introducing a potential inefficiency might be the wrong thing to do.

• The simd library is generally working with compile-time sizes (e.g., fixed_size, native_size, concat, split_by) – why are
insert/extract different?

• Harder to handle boundary checking – would run-time checks be needed which throw exceptions, and does this impact
generated code performance of what is a performance library?

Suggested polls:

Std::insert/extact or simd_insert, simd_extract?

Should insert/extract handle run-time offsets?

Intel PublicIssaquah Meeting Feb ‘23 7

Direct resizing of simd

Proposal:

• Change the static element count of a simd or simd_mask:

• std::resize<N>(v, value=T())

Truncate to the new size or insert new supplied value to grow

Why?

• Resizing is a common operation in real code, particularly when interfacing to compiler builtins or
intrinsics (for unusual instructions).

Open questions:

• Should we use an interface which matches that of vector, list ,etc, and allow silent truncation and
insertion?

• Or, disallow a truncating resize and replace with extract instead to make it explicit that data is being
removed. In that case, should this be called grow instead?

Intel PublicIssaquah Meeting Feb ‘23 8

iota

Proposal:

• Add a function (or constant?) which returns a simd initialised with
sequentially ascending values:

• simd<T,A>::iota() // T(0), T(1), T(2), …

Why?

• iota can be used to help build lookup-tables, or constants, especially when
tied to constexpr:

• constexpr auto multiplesOf3 = mysimd::iota() * 3;

• Alternatively a generator could be used, but is quite verbose for something
that is common:

• constexpr auto multiplesOf3 =
simd<T,A>([](auto ix) { return idx * 3; });

Intel PublicIssaquah Meeting Feb ‘23 9

Interleaved fused-multiply add/sub

Proposal:

• Allow explicit interleaved fused addition/subtraction of simd:
• fmaddsub(a, b, acc); // Odds add, evens subtract

• fmsubadd(a, b, acc); // Evens add, odds subtract

Why?

• No concise way to represent this in simd.
• auto r = conditional_operator(evenMask, fma(a, b, c), fma(, b, -c));

• No need for fnmadd, fmsub, etc. Can be easily peepholed.

• Less need for this with complex support

Intel ConfidentialDepartment or Event Name 10

P2663 – Support for complex simd

Intel PublicIssaquah Meeting Feb ‘23 11

Summary

std::simd currently supports vectorisation of all arithmetic types, excluding bool.

We propose that complex types should also be permitted:

simd<std::complex<float>>

fixed_size_simd<std::complex<double>, 8>

This will map to native processor support where it exists in instruction sets (e.g., Intel
AVX-512, ARM Helium).

We also propose to provide overloads to match the behaviour of std::complex API.

Intel PublicIssaquah Meeting Feb ‘23 12

Storage of complex numbers

Complex numbers are pairs of real and
imaginary values.

This format is used in many languages and
software libraries, and is industry standard
layout.

In memory or vector register storage each
complex value is an atomic unit, so the real and
imaginary elements are essentially interleaved.

Complex values could also be stored
separately, which is equivalent to
std::complex<simd<float>>, but that is
beyond the scope of this proposal.

real imagstd::complex<float>

real imag_Complex float

0 1float[2]

r iStruct myComplexFloat

real imag real imag real imag real imag

[0] [1] [2] [3]

real imagreal imagreal imagreal imag

[0] [1] [2] [3] [0] [1] [2] [3]

Intel PublicIssaquah Meeting Feb ‘23 13

Implementation

• Both ARM and Intel have
complex-valued vector instruction
support. Other DSPs have support
too.

• On targets which don’t have native
support, interleaved simd complex
value can be almost entirely
implemented in terms of the base
simd implementation.

Intel PublicIssaquah Meeting Feb ‘23 14

Main complex-simd proposal

Proposal:

• Allow std::complex<T> as a value type for simd<>

• Support all arithmetic and compound-assignment operators.

• Operators like multiply and divide would do the per-element equivalent of their std::complex
counterparts.

• All resize, split, concat, subscript, permute or other element access operations would work on
complete std::complex<> granular elements.

• simd_mask of complex simd would have one mask bool per complex element.

• Overloads and operators which made no sense for complex values would be removed using
concepts (e.g., relational operators like <, >=, etc..

Why?

• Provide base support for simd values which allows easy access to the underlying hardware support
where it exists.

constexpr friend mask_type operator<(const simd& lhs, const simd& rhs)
requires std::totally_ordered<_Tp>;

Intel PublicIssaquah Meeting Feb ‘23 15

Proposal to adopt complex API
Proposal:

• Adopt the API from std::complex<>

• Add complex methods to std::simd:
• simd<T, ABI> simd<std::complex<T>,ABI>::real()
• void simd<std::complex<T>,ABI>::imag(simd<T, ABI> v)
• simd<std::complex<T>,ABI>::conj()

• Add maths function overloads:
• sin/cos/log/exp/sqrt/etc

• Return a simd<complex<T>>
• arg/norm/abs

• Return a simd<T> (i.e., real-valued simd with same number of elements)

Why?

Allow users to write generic code which works on either scalar or simd complex
values interchangeably.

	Slide 1: P2638 Intel response to P1915R1 std::simd (Issaquah 2023 – P2807R0)
	Slide 2: Summary
	Slide 3: Comments addressed in P1928R2
	Slide 4: Issues addressed in P1928R3
	Slide 5: Insert/extract
	Slide 6: Insert/extract open question
	Slide 7: Direct resizing of simd
	Slide 8: iota
	Slide 9: Interleaved fused-multiply add/sub
	Slide 10: P2663 – Support for complex simd
	Slide 11: Summary
	Slide 12: Storage of complex numbers
	Slide 13: Implementation
	Slide 14: Main complex-simd proposal
	Slide 15: Proposal to adopt complex API

