
Input Files Are Source Files
Clearing up some core vocabulary

Document #: P3556R1
Date: 2025-05-19
Project: Programming Language C++
Audience: Core Working Group, SG16
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Lori Hughes
<lori@lorihughes.com>

Contents
Abstract 1

Revision History 2

1 Introduction 3

2 Categories of Files 4
2.1 What is a source file? . 4
2.2 What is an input file? . 5
2.3 What is a physical source file? . 5
2.4 What does a source file contain? . 5

3 Proposed Solution 6

4 Feedback from SG16 and Core 7
4.1 SG16 Review: May 14, 2025 . 7
4.2 Response to SG16 review . 7
4.3 Future Work . 8

5 Wording 9

6 Acknowledgements 14

7 References 14

Abstract
The C++ Standard uses the term input file without definition and appears to use the defined term source file
for the same purpose. This paper examines the history of this wording to understand its intent, proposes a new
term, source text, to represent the source of a program during translation, and then unifies the terms input file
and source file as just source file.

1

mailto:ameredith1@bloomberg.net
mailto:lori@lorihughes.com

Revision History
R1 May 2025 (pre-Sofia mailing)

— Added alternative wording with
— a clear definition for source text
— normative guarantees about the content of source text at the end of phase 1

— Incorporated SG16 feedback
— Added the “Feedback from SG16 and Core” section
— “UTF-8 codepoints” was changed to “UTF-8–encoded code points”

R0 March 2025 (post-Hagenberg mailing)

Initial draft of this paper

2

1 Introduction
The act of translating C++ code is broken down into nine phases in 5.2 [lex.phases]. The origin of this paper
was an editorial pull request changing the undefined term input file to the clearly specified term source file in
translation phase 1.

The CWG chair raised concerns that the existing terminology, having been extensively reviewed in the process of
adopting [P2295R6], should not be changed lightly and suggested that a paper be written to persuade the Core
Working Group that a change would be helpful and is necessary. Subsequent research suggests that, at that time,
wider concerns regarding which parts of our specification directly consume the input passed into the translator
and which parts are acting on the source that has been input into translation were not actively addressed but
seem to be the basis for confusion of the input file vs. source file terminology.

This proposal is intended to have no functional change but to directly address the question of when the specifi-
cation is dealing with the immutable (to the translator) source file that is fed into translation and when it is in
the process of consuming and manipulating its copy of those inputs during the act of translation.

3

https://wg21.link/lex.phases

2 Categories of Files
2.1 What is a source file?
The Standard very clearly defines the term source file in [lex.separate]p1:

The text of the program is kept in units called source files in this document.

Consider the example program, posted to Stack Overflow1 by James McNellis, that highlights that source files
need not be text files. McNellis claims, correctly, that the following image is a well-formed C++ program and
complains that all his compilers reject it.

Figure 1: Hello World!

In McNellis’s example, the source file is a piece of paper containing handwritten code, an image of which he
posted. Is this piece of paper a valid source file? I posit the answer is yes.

Imagine a curious college student from the maker community2 takes up the challenge of implementing a C++
compiler that accepts source files written on paper. The student feeds those programs into a physical machine
that is the translator, which then scans the supplied source file (i.e., a sheet of paper storing a program), runs
the scanned image through some OCR algorithms (influenced by current AI trends to better handle ambiguous
characters such as o, O, and 0), and turns the processed image into a sequence of translation character-set
elements, representing end-of-line indicators as new-line characters, thus completing the implementation-defined
source-file mapping of translation phase 1. This resulting sequence of translation-set characters is fed directly
into phase 2 of an open-source compiler, such as a fork of Clang. Note that this source-to-translation-character-
set mapping is one way; the translator is not expected to issue diagnostics in the author’s handwriting. An
automated form feed would allow the consumption of programs comprising multiple sheets of paper, reinventing
punch cards for the twenty-first century.

� handwritten program

paper (source file)

scanner translation

compiler
compiled
program

User tells the compiler
to start the process
and feeds the paper
into the scanner

Figure 2: Process
1https://stackoverflow.com/questions/5508110
2Wikipedia states, “The maker culture is a contemporary subculture representing a technology-based extension of DIY culture.”

Note that Wikipedia references are likely to change over time.

4

https://en.wikipedia.org/wiki/Maker_culture

At no point in this hypothetical pipeline are the contents of the paper source file turned into a text file on disk;
all traces of the data throughout the whole process are stored in working memory by the translation process.

In this scenario, the text of the program is clearly stored in a source file that is scrawled in McNellis’s handwriting
onto a piece of paper and, using the maker’s machine and with the correct implementation-defined mapping from
the paper source file to the translation character set, is input as a stream of UTF-8–encoded code points for the
translator to process, completing phase 1 of translation. It is a valid and well-formed program.

2.2 What is an input file?
Input files are fed to the translator in phase 1 of translation. The term is never defined by the Standard but
was introduced relatively recently in C++23 by paper [P2295R6] as a replacement for the similarly undefined
adjective physical when appended to the term source file, i.e., physical source file.

CWG discussed, at length, the introduction of this new term, and that conversation formed the majority of the
review of [P2295R6] at CWG’s virtual meetings on 2022-02-25 and 2022-03-11. CWG failed to reach a consensus
on the terminology. Perhaps surprisingly, when the paper was next reviewed on 2022-07-01, the topic was not
raised, and the paper was promptly approved.

No clear connection exists between source files and input files, although input files seem to be some unspecified
subset of source files; if input files do not hold programs, then what are they feeding to the translator?

2.3 What is a physical source file?
Physical source file is an obsolete term no longer used by the Standard. C++20 is the last Standard to use it,
and the term is used only as the input to the start of phase 1 of translation and in an Annex C compatibility
note describing how we changed phase 1 compared to a previous Standard.

However, closer examination shows that the term used by phase 1 is not simply physical source file, but rather
the larger, compound term physical source file character, which appears to be the intended term since the index
includes physical source file character and references only this clause and omits physical source file.

2.4 What does a source file contain?
Regardless of the terminology being source file or input file, the file’s contents are mapped in an implementation-
defined manner to a sequence of translation character set elements, representing end-of-line indicators as new-line
characters. However, how should we describe its contents? Should we even try, if we want to support an open
set of representations of programs?

The current wording presumes the contents of an input file are characters, whereas this proposal suggests we
use the less prescriptive term contents, which allows for arbitrary initial representation, such as images that are
mapped to characters during phase 1.

5

3 Proposed Solution
For the purposes of the Standard, I believe we are dealing with two artifacts: first, the source file that is
the immutable source of truth where programs are stored and that cannot be manipulated or updated by the
translator and, second, the source text that is mapped from the source file into memory and then repeatedly
processed and manipulated during translation phases 1–6 before emitting a token stream in phase 7.

The current wording has the notion of input file and source file, which appear to be indistinguishable in this
context, and treats source file according to my notion of source text above; the current wording makes no
distinction between the file that is read and the contents of that file.

I propose that input files are source files and that we rename them accordingly. We would then define source
text as the sequence of translation character-set elements produced at the end of phase 1.

With the new vocabulary established, review every occurrence of source file in the Standard and either affirm
the term is used correctly or replace file with text if the contents are being manipulated or the specification in
question is clearly referring to processing text after translation phase 1.

The other defining characteristic of a source file is that many source files — but not all, i.e., only those that are
included or imported — have names by which include directives and import statements locate them. No clear
method exists to name source text, so any specification referring to a name is clearly referring to a source file,
not source text.

6

4 Feedback from SG16 and Core
4.1 SG16 Review: May 14, 2025
This paper was reviewed by SG16, the text processing study group with strong representation from the Core
Working Group in attendance.

The group strongly objected to describing anything about this paper as editorial in nature. The group also
referenced an extensive discussion on the Core reflector, and this discussion was not included in the meeting
minutes used to research the introduction of the current terms.

Additional concerns were raised about the existing term physical source line that is this paper does not mention.
Two terms in the Standard describe lines of source code:

A physical source line is the text between two new-line characters introduced in translation phase 1 before
line splicing occurs in phase 2. This term is implicitly defined by the specification for the __LINE__ macro
(15.7 [cpp.line]).

A logical source line is the text between new-line characters after line splicing occurs in phase 2 of translation,
and is a term of power defined in 5.2 [lex.phases] phase 2. Phase 4 of translation acts on preprocessing
directives that comprise the preprocessing tokens of a logical source line.

The Standard also uses the term source line, which is never explicitly defined, where the distinction between
physical and logical source lines does not matter, e.g., when skipping lines through conditional inclusions (#if).

It is not clear to the authors why the use of the word source raises confusion with our underlying paper, but the
review requested that we address clarity in either this terminology or its use if we were to continue to pursue
this paper.

4.2 Response to SG16 review
The message conveyed from Core is that the current draft deliberately does not define the term input file and
uses it to mean whatever source is fed into the compiler and that the term source file is used to describe the
text after phase 1 of translation. The problem that this paper set out to solve is that the current words in the
standard do not support that reading and the term source file is overused and has several meanings.

In the current Standard, the term of power source file is defined in the very first sentence of [lex.separate]p1 as
the place where the text of the program is stored, rather than the text itself. That clearly does not match the
intended meaning conveyed to us but does strongly match the notion of input file. SG16 also conveyed a strong
desire to retain the term input file, so we will revise our wording to adopt that term instead of retaining source
file for that purpose.

While SG16 expressed a strong preference for retaining source file to mean the text of the program, the authors
prefer to retain our proposed term, source text, to further avoid confusion that the parts of the specification that
use that term are, in fact, referring to text to be processed that is now disconnected from any file that stored it.

Most appearances of source file therefore become source text. However, the preprocessor does expect to interact
with actual files when resolving include directives, and that usage appears to clearly rely on input files since
it feeds them directly into phase 1 of translation rather than picking up the preloaded text in phase 2. Hence,
several uses of source file around the preprocessor will become input file. These are the places that were marked
as not being transformed in R0 of this paper.

It was also observed that the simpler renaming deployed here still did not define the term source text, so the
text between specifying processing of UTF8 input files vs. any other input files was extracted to the end of that
phase where it can both provide that definition and consistently apply the new-line translation for UTF8. Note
that this makes the problem identified by [CWG1655] larger, but more consistent. This paper does not attempt
to resolve that issue, but could be extended to reverse that mapping in phase 4 if needed.

7

https://wg21.link/cpp.line
https://wg21.link/lex.phases

4.3 Future Work
The guarantees that source text is a sequence of translation character-set elements takes us a step closer to
unifying the translation character set, the basic translation character set, and specifying that they comprise the
Unicode repertoire. That change would be a significantly larger than the one proposed by this paper but might
be a desirable simplification of a future Standard.

8

5 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5008], the latest draft at
the time of writing.

In addition to the usual insert and remove markup, I will use bold to indicate uses of input file that remain
unchanged.

All paragraphs of the Core Language part of the Standard that use the term source file or input file are cited,
even if no changes are made, to provide context and a consistent audit. However, almost all occurrences of source
file in the Standard Library’s clauses are unaffected by this paper (after audit), so only the one paragraph that
is worth exploring is quoted. Note that some paragraphs are quoted only to include a footnote that uses the
term source file.

5.1 [lex.separate] Separate translation
1 The text of the program is kept in units called sourceinput files in this document. An sourceinput file together

with all the headers (16.4.2.3 [headers]) and sourceinput files included (15.3 [cpp.include]) via the preprocessing
directive #include, less any source lines skipped by any of the conditional inclusion (15.2 [cpp.cond]) prepro-
cessing directives, as modified by the implementation-defined behavior of any conditionally-supported-directives
(15.1 [cpp.pre]) and pragmas (15.9 [cpp.pragma]), if any, is called a preprocessing translation unit.

[Note 1: A C++ program need not all be translated at the same time. —end note]

5.2 [lex.phases] Phases of translation
1 An implementation shall support input files that are a sequence of UTF-8 code units (UTF-8 files). It may

also support an implementation-defined set of other kinds of input files, and, if so, the kind of an input file
is determined in an implementation-defined manner that includes a means of designating input files as UTF-8
files, independent of their content.

[Note 1: In other words, recognizing the U+FEFF BYTE ORDER MARK is not sufficient. —end note]

If an input file is determined to be a UTF-8 file, then it shall be a well-formed UTF-8 code unit sequence and it
is decoded to produce a sequence of Unicode scalar values. A sequence of translation character set elements (5.3.1
[lex.charset]) is then formed by mapping each Unicode scalar value to the corresponding translation character
set element. In the resulting sequence, each pair of characters in the input sequence consisting of U+000D
CARRIAGE RETURN followed by U+000A LINE FEED, as well as each U+000D CARRIAGE RETURN not
immediately followed by a U+000A LINE FEED, is replaced by a single new-line character. For any other kind of
input file supported by the implementation, charactersthe contents are mapped, in an implementation-defined
manner, to a sequence of translation character set elements, representing end-of-line indicators as new-line
characters.

The resulting sequence of translation character-set elements is the initial source text of the translation unit. Each
pair of characters in the source text consisting of U+000D CARRIAGE RETURN followed by U+000A LINE
FEED as well as each U+000D CARRIAGE RETURN not immediately followed by a U+000A LINE FEED is
replaced by a single new-line character.

2 If the first translation character is U+FEFF BYTE ORDER MARK, it is deleted. Each sequence of a backslash
character (\) immediately followed by zero or more whitespace characters other than new-line followed by a
new-line character is deleted, splicing physical source lines to form logical source lines. Only the last backslash
on any physical source line shall be eligible for being part of such a splice.

[Note 2: Line splicing can form a universal-character-name (5.3.1 [lex.charset]). —end note]

A source fileSource text that is not empty and that (after splicing) does not end in a new-line character shall be
processed as if an additional new-line character were appended to the filetext.

3 The source filetext is decomposed into preprocessing tokens (5.5 [lex.pptoken]) and sequences of whitespace
characters (including comments). A source fileSource text shall not end in a partial preprocessing token or in a

9

https://wg21.link/lex.separate
https://wg21.link/headers
https://wg21.link/cpp.include
https://wg21.link/cpp.cond
https://wg21.link/cpp.pre
https://wg21.link/cpp.pragma
https://wg21.link/lex.phases
https://wg21.link/lex.charset
https://wg21.link/lex.charset
https://wg21.link/lex.pptoken

partial comment.3 Each comment (5.4 [lex.comment]) is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of whitespace characters other than new-line is retained or
replaced by one space character is unspecified. As characters from the source filetext are consumed to form
the next preprocessing token (i.e., not being consumed as part of a comment or other forms of whitespace),
except when matching a c-char-sequence, s-char-sequence, r-char-sequence, h-char-sequence, or q-char-sequence,
universal-character-names are recognized (5.3.2 [lex.universal.char]) and replaced by the designated element of
the translation character set (5.3.1 [lex.charset]). The process of dividing a source filetext’s characters into
preprocessing tokens is context-dependent.

[Example 1: See the handling of < within a #include preprocessing directive (15.3 [cpp.include]). —end example]
4 The source filetext is analyzed as a preprocessing-file (15.1 [cpp.pre]). Preprocessing directives (Clause 15) are

executed, macro invocations are expanded (15.6 [cpp.replace]), and _Pragma unary operator expressions are
executed (15.12 [cpp.pragma.op]). A #include preprocessing directive (15.3 [cpp.include]) causes the named
header or sourceinput file to be processed from phase 1 through phase 4, recursively. All preprocessing directives
are then deleted.

7 Each preprocessing token…

…

…are required to be available.

[Note 4: SourceInput files, translation units and translated translation units need not necessarily be stored as
files, nor need there be any one-to-one correspondence between these entities and any external representation.
The description is conceptual only, and does not specify any particular implementation. —end note]

5.6 [lex.header] Header names

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char h-char-sequenceopt

h-char:
any member of the translation character set except new-line and U+003E GREATER-THAN SIGN

q-char-sequence:
q-char q-char-sequenceopt

q-char:
any member of the translation character set except new-line and U+0022 QUOTATION MARK

1 The sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external sourceinput names as specified in 15.3 [cpp.include].

[Note 1: Header name preprocessing tokens appear only within a #include preprocessing directive, a
__has_include preprocessing expression, or after certain occurrences of an import token (see 5.5 [lex.pptoken]).

—end note]

10.3 [module.import] Import declaration
5 A module-import-declaration that specifies a header-name H imports a synthesized header unit, which is a trans-

lation unit formed by applying phases 1 to 7 of translation (5.2 [lex.phases]) to the sourceinput file or header
nominated by H, which shall not contain a module-declaration.

[Note 2: A header unit is a separate translation unit with an independent set of defined macros. All declarations
within a header unit are implicitly exported (10.2 [module.interface]), and are attached to the global module

3[FN 9] A partial preprocessing token would arise from a source filetext ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would
arise from a source filetext ending with an unclosed /* comment.

10

https://wg21.link/lex.comment
https://wg21.link/lex.universal.char
https://wg21.link/lex.charset
https://wg21.link/cpp.include
https://wg21.link/cpp.pre
https://wg21.link/cpp.replace
https://wg21.link/cpp.pragma.op
https://wg21.link/cpp.include
https://wg21.link/lex.header
https://wg21.link/cpp.include
https://wg21.link/lex.pptoken
https://wg21.link/module.import
https://wg21.link/lex.phases
https://wg21.link/module.interface

(10.1 [module.unit]). —end note]

An importable header is a member of an implementation-defined set of headers that includes all importable
C++ library headers (16.4.2.3 [headers]). H shall identify an importable header. Given two such module-import-
declarations:

—(5.1) if their header-names identify different headers or sourceinput files (15.3 [cpp.include]), they import distinct
header units;

—(5.2) otherwise, if they appear in the same translation unit, they import the same header unit;
—(5.3) otherwise, it is unspecified whether they import the same header unit.

[Note 3: It is therefore possible that multiple copies exist of entities declared with internal linkage in an im-
portable header. —end note]

[Note 4: A module-import-declaration nominating a header-name is also recognized by the preprocessor, and
results in macros defined at the end of phase 4 of translation of the header unit being made visible as described
in 15.5. Any other module-import-declaration does not make macros visible. —end note]

15 [cpp] Preprocessing directives

15.1 [cpp.pre] Preamble
1 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following constraints:

At the start of translation phase 4, the first preprocessing token in the sequence, referred to as a directive-
introducing token, begins with the first character in the source filetext (optionally after whitespace containing
no new-line characters) or follows whitespace containing at least one new-line character, and is

—(1.1) a # preprocessing token, or
—(1.2) an import preprocessing token immediately followed on the same logical source line by a header-name, <,

identifier, string-literal, or : preprocessing token, or
—(1.3) a module preprocessing token immediately followed on the same logical source line by an identifier, :, or

; preprocessing token, or
—(1.4) an export preprocessing token immediately followed on the same logical source line by one of the two

preceding forms.

The last preprocessing token in the sequence is the first preprocessing token within the sequence that is imme-
diately followed by whitespace containing a new-line character.

7 The implementation can process and skip sections of source filestext conditionally, include other sourceinput
files, import macros from header units, and replace macros. These capabilities are called preprocessing, because
conceptually they occur before translation of the resulting translation unit.

15.2 [cpp.cond] Conditional inclusion
4 The header or sourceinput file identified by the parenthesized preprocessing token sequence in each contained

has-include-expression is searched for as if that preprocessing token sequence were the pp-tokens in a #include
directive, except that no further macro expansion is performed. If such a directive would not satisfy the syntactic
requirements of a #include directive, the program is ill-formed. The has-include-expression evaluates to 1 if the
search for the sourceinput file succeeds, and to 0 if the search fails.

15 … If none of the conditions evaluates to true, and there is a #else directive, the group controlled by the #else
is processed; lacking a #else directive, all the groups until the #endif are skipped.4

15.3 [cpp.include] Source file inclusion
1 A #include directive shall identify a header or sourceinput file that can be processed by the implementation.
3 A preprocessing directive of the form

4[FN 125] As indicated by the syntax, a preprocessing token cannot follow a #else or #endif directive before the terminating
new-line character. However, comments can appear anywhere in a source filetext, including within a preprocessing directive.

11

https://wg21.link/module.unit
https://wg21.link/headers
https://wg21.link/cpp.include
https://wg21.link/cpp
https://wg21.link/cpp.pre
https://wg21.link/cpp.cond
https://wg21.link/cpp.include

include " q-char-sequence " new-line

causes the replacement of that directive by the entire contents source text of the sourceinput file identified by the
specified sequence between the " delimiters. The named sourceinput file is searched for in an implementation-
defined manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read
include < h-char-sequence > new-line

with the identical contained sequence (including > characters, if any) from the original directive.
6 A #include preprocessing directive may appear in a source filetext that has been read because of a #include

directive in another file, up to an implementation-defined nesting limit.
8 [Note 1: An implementation can provide a mechanism for making arbitrary sourceinput files available to the < >

search. However, using the < > form for headers provided with the implementation and the " " form for sources
outside the control of the implementation achieves wider portability. For instance:
#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

—end note]

15.5 [cpp.import] Module directive
3 If a pp-import is produced by sourceinput file inclusion (including by the rewrite produced when a #include

directive names an importable header) while processing the group of a module-file, the program is ill-formed.

15.6.5 [cpp.rescan] Rescanning and further replacement
1 After all parameters in the replacement list have been substituted and # and ## processing has taken place, all

placemarker preprocessing tokens are removed. Then the resulting preprocessing token sequence is rescanned,
along with all subsequent preprocessing tokens of the source filetext, for more macro names to replace.

3 If the name of the macro being replaced is found during this scan of the replacement list (not including the rest of
the source filetext’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements encounter
the name of the macro being replaced, it is not replaced. These nonreplaced macro name preprocessing tokens
are no longer available for further replacement even if they are later (re)examined in contexts in which that
macro name preprocessing token would otherwise have been replaced.

15.7 [cpp.line] Line control
2 The line number of the current source line is the line number of the current physical source line, i.e., it is one

greater than the number of new-line characters read or introduced in translation phase 1 (5.2 [lex.phases]) while
processing the source filetext to the current preprocessing token.

4 A preprocessing directive of the form
line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the sourceinput file to be the contents
of the character string literal.

15.11 [cpp.predefined] Predefined macro names
1 The following macro names shall be defined by the implementation:

__DATE__

12

https://wg21.link/cpp.import
https://wg21.link/cpp.rescan
https://wg21.link/cpp.line
https://wg21.link/lex.phases
https://wg21.link/cpp.predefined

The date of translation of the sourceinput file: a character string literal of the form "Mmm dd yyyy", where the
names of the months are the same as those generated by the asctime function, and the first character of dd is a
space character if the value is less than 10. If the date of translation is not available, an implementation-defined
valid date shall be supplied.
__FILE__

The presumed name of the current sourceinput file (a character string literal).5

__LINE__

The presumed line number (within the current source filetext) of the current source line (an integer literal).
__TIME__

The time of translation of the sourceinput file: a character string literal of the form "hh:mm:ss" as in the time
generated by the asctime function. If the time of translation is not available, an implementation-defined valid
time shall be supplied.

19.3.3 [assertions.assert] The assert macro
1 If NDEBUG is defined as a macro name at the point in the source filetext where <cassert> is included, the assert

macro is defined as
#define assert(...) ((void)0)

5[FN 131] The presumed sourceinput file name can be changed by the #line directive.

13

https://wg21.link/assertions.assert

6 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to James McNellis for the most excellent example and to Corentin Jabot for the original work specifying
UTF-8 as a portable file format for C++.

7 References
[CWG1655] Mike Miller. 2013-04-26. Line endings in raw string literals.

https://wg21.link/cwg1655

[N5008] Thomas Köppe. Working Draft, Programming Languages — C++.
https://wg21.link/n5008

[P2295R6] Corentin Jabot, Peter Brett. 2022-07-01. Support for UTF-8 as a portable source file encoding.
https://wg21.link/p2295r6

14

https://wg21.link/cwg1655
https://wg21.link/n5008
https://wg21.link/p2295r6

	Abstractabstract
	Revision Historyrevision-history
	Introduction
	Categories of Files
	What is a source file?
	What is an input file?
	What is a physical source file?
	What does a source file contain?

	Proposed Solution
	Feedback from SG16 and Core
	SG16 Review: May 14, 2025
	Response to SG16 review
	Future Work

	Wording
	Acknowledgements
	References

