
Constness and locking
Document #: P3703R0
Date: 2025-05-18
Project: Programming Language C++
Audience: Concurrency Study Group
Reply-to: Yaodan Zhang

<katherinezh@uchicago.edu>
Alec Cepeda
Alexander Buzanis
Aushveen Vimalathas
Charlie Sabino
Cory Turnbaugh
Guanduo Mu
Hongli Zhao
Joneskim Kimo
Matthias Zajdela
Mitch Verhelle
Pierre-Yves Sojic
Steven Arellano
Roshan Surabhi
Wei Cai
Mike Spertus
<spertus@uchicago.edu>

Contents
1 Abstract 1

2 Existing code 2
2.1 GitHub findings: . 2
2.2 Experience from other languages . 2

3 Comparisons 3

4 Arguments against 6
4.1 Inadvertently enabling unsafe operations . 6
4.2 Programmers may incorrectly believe that const mutexes are ROMable 6
4.3 ABI breakage . 6
4.4 Should this apply to just shared_mutex? . 6

1 Abstract
Class definitions commonly contain a std::shared_mutex or std::mutex field to support concurrent access to
objects of that class. Such mutexes are inevitably declared mutable so that logically const methods can lock
or unlock them—an idiom the C++11 community dubs the “Mutable comes with Mutex” M & M Rule1. In
effect, the mutex protects the object’s value rather than contributes to it, which can confuse newcomers and
make mutable feel like a const‐circumventing hack rather than a safety feature.

1See “Considering Threadability,” in C++ Best Practices, lefticus.gitbooks.io: https://lefticus.gitbooks.io/cpp-best-
practices/content/07-Considering_Threadability.html

1

Beyond mutexes, other standard library types hint at controlled interior mutation in const contexts: for example,
atomic<T>::load() is always const even though it may acquire locks associated with the data (h/t Hans Boehm),
and shared_ptr(const shared_ptr&) noexcept and shared_ptr& operator=(const shared_ptr&) noexcept modify
a reference count under the hood while preserving a const shared_ptr& interface.

This paper investigates the implications of promoting mutex locking methods to const methods, examining how
such a change interacts with existing const‐correctness idioms and C++’s model of thread safety.

Before After

struct BankAccount {
double getBalance() const {
shared_lock lck(mtx);
return balance;

}

void setBalance(double d) {
unique_lock lck(mtx);
balance = d;

}
mutable shared_mutex mtx;
double balance;

};

struct BankAccount {
double getBalance() const {
shared_lock lck(mtx);
return balance;

}

void setBalance(double d) {
unique_lock lck(mtx);
balance = d;

}
shared_mutex mtx;
double balance;

};

While simple, this change feels easier for typical programmers and we feel better aligns with intent. We also
consider several variations, including its impacts on comparison operators.

2 Existing code
2.1 GitHub findings:

— mutable is widely used to avoid removing const qualifiers even when interior mutation is needed, which
can be confusing for new C++ programmers and sometimes leads developers to remove const altogether
(a dangerous workaround).

— There are 42.2k files that have declared std::shared_mutex on GitHub, and among which, 17.4k (41.2 %)
declare with a mutable keyword, highlighting the prevalence of this pattern.2

— In a representative examination, we did not observe any examples where we felt making locking const
would be harmful to the code (and some would be improved by eliminating the “dangerous workaround”
mentioned above). We would be very interested in feedback from the committee on scenarios where the
proposed changes would hurt code correctness or safety. See Arguments against for more on this.

2.2 Experience from other languages
2.2.1 Rust

In Rust, neither Mutex::lock() nor RwLock::read()/write() requires &mut self. You call them on an immutable
reference (&self), and they perform the lock‑state mutation entirely behind the scenes, concurring with our
proposal that locking operations on mutexes should be regarded as const. We did not find any criticism regarding
this as weakness of Rust.

2Empirical survey of public C++ repositories on GitHub (GitHub Code Search, May 2025).

2

2.2.2 Go

Go has no explicit notion of const methods, yet its sync.Mutex similarly treats the lock as an invisible, non‑value
field.

3 Comparisons
Early in the <=> design discussions there was considerable debate over whether the automatically generated
comparisons should ignore mutable fields—precisely due to the intuition that const operations should not change
the value of an object. In particular, it seems especially intuitive that locking an object to examine its value
should not in itself change the value of the object. In this sense, mutexes do not contribute to the “value” an
object but rather protects the object’s value, existing purely for side‑effects on thread‑safety rather than any
change in the value of the host object.

It was ultimately decided that the default spaceship operator should not exclude mutable objects as all members
should be consistently compared 3. We do not disagree with this decision but it does provide insight into how
to handle the particular case of mutex comparison. Currently, mutexes have no comparison operators. The
M & M rule indicates that mutex operations should not be regarded as changing the value of the object the
mutex belongs to, in which case, defining the spaceship operator for mutex types to unconditionally return
std::strong_ordering::equal would make the default spaceship operator for the containing class more usable.

3Sutter, “Consistent Comparison,” 2017. http://wg21.link/p0515r3

3

4

Before After

Before After

class Account {
public:

CustomerId = getCustomerId() const {
shared_lock lck(mtx);
return id;

}

void setCustomerId(CustomerId const &i) {
unique_lock lck(mtx);
id = i;

}

AccountType getAccountType() const {
shared_lock lck(mtx);
return type;

}

void setAccountType(AccountType t) {
unique_lock lck(mtx);
type = t;

}

double getBalance() const {
shared_lock lck(mtx);
return balance;

}

void setBalance(double d) {
unique_lock lck(mtx);
balance = d;

}
mutable shared_mutex mtx;
std::strong_ordering

operator<=>(const Account &a) const {
if (auto cmp = id <=> a.id; cmp != 0)

return cmp;
if (auto cmp = type <=> a.type; cmp != 0)

return cmp;
return balance <=> a.balance;

}

private:
CustomerId id;
double balance;
AccountType type;

};

void f(Account &a, Account &b) {
lock l(a, b);
if (a == b) return;
// Do stuff

}

class Account {
public:

CustomerId = getCustomerId() const {
shared_lock lck(mtx);
returnid;

}

void setCustomerId(CustomerId const &i) {
unique_lock lck(mtx);
id = i;

}

AccountType getAccountType() const {
shared_lock lck(mtx);
return type;

}

void setAccountType(AccountType t) {
unique_lock lck(mtx);
type = t;

}

double getBalance() const {
shared_lock lck(mtx);
return balance;

}

void setBalance(double d) {
unique_lock lck(mtx);
balance = d;

}

shared_mutex mtx;
std::strong_ordering
operator<=>(const Account &a) const = default;

private:
CustomerId id;
double balance;
AccountType type;
std::strong_ordering

};

void f(Account &a, Account &b) {
lock l(a, b);
if (a == b) return;
// Do stuff

}

5

Before After

4 Arguments against
4.1 Inadvertently enabling unsafe operations
During the spaceship operator discussions, it was discussed whether it should be opt-in or always-on, with the
decision that it should be opt-in to avoid implicitly creating unexpected behaviors on complex types but rather
gating it with an explicit programmer choice. While our proposal provides support for classes with mutexes to
leverage the default comparison operator, programmers still have to explicitly opt-in to using it, so the gate is
still there.

Indeed, we would feel uncomfortable generating this comparison without an opt-in because examples like those
above do require the programmer to lock the objects. However, we believe that if they explicitly request the
comparison, having the additional inconvenience of writing out an equivalent comparison manually is less safe.
Note that there is no breakage to existing code as the default equality operator does not currently work for
classes with mutex members.

4.2 Programmers may incorrectly believe that const mutexes are ROMable
Some early reviewers mentioned that some programmers may erroneously confuse constness with ROM As this
is already false for many types, such as atomics, classes with mutable members (including but not limited to
mutexes), etc., we do not see much value in trying to draw a slightly narrower perimeter

4.3 ABI breakage
As constness is part of the signature of a method, the signature changes proposed in this paper could result in
ABI breakage in existing code. We propose addressing this serious concern for existing mutex types by defining
both const and non-const variants of the locking methods. (New mutex types would only need the const ones).
This would still have the potential breakage in that &mutex:lock would become ambiguous in some circumstances.

Fortunately, code that would be impacted by this overload is both extremely rare and readily fixable. A
GitHub search reveals 3 distinct files with &std::mutex::lock. However, two continue to work unchanged with
this overload added because they the result of &std::mutex::lock is assigned to a specific function type that
resolves the ambiguity, leaving only a single impacted file. The affected file is a Python wrapper for a C++
library that uses pybind114 to create a binding for &std::mutex::lock, which would need to be replaced with
static_cast<void (std::mutex::*)()>(&std::mutex::lock). This same fix could be applied to any other non-
public files, which we expect would be similarly rare.

4.4 Should this apply to just shared_mutex?
While our proposal grew out of observing that std::shared_mutex is overwhelmingly used for “logical reads” in
const methods, the underlying rationale is far more general: any mutex that serves solely to protect data rather
than contribute to it carries no observable value. In C++ today, you must mark a std::mutex (or any of its
variants) mutable in order to lock it from a const context—yet this is purely a technical workaround, not a
reflection of logical state changes.

4https://github.com/pybind/pybind11

6

	Abstract
	Existing code
	GitHub findings:
	Experience from other languages

	Comparisons
	Arguments against
	Inadvertently enabling unsafe operations
	Programmers may incorrectly believe that const mutexes are ROMable
	ABI breakage
	Should this apply to just shared_mutex?

