
ISO/IEC JTC 1/SC 22/OWGV N0050

22 November 2006

Contribution from:
Derek Jones, Expertise: Discussion of guideline related issues, 28 August 2006.

Expertise
Discussion of guideline related issues

Derek M. Jones
derek@knosof.co.uk

2 What is expertise?

1 Introduction
The following are some of the ways in which expertise is of relevance to coding guidelines:

• Amount of expertise that users of the guidelines (i.e., software developers) are assumed to have.

• Amount of expertise required to decide whether a deviation to a particular guideline is appropriate.

• How is expertise to be measured...

2 What is expertise?
It is a commonly held belief that experts have some innate ability or capacity that enables them to do what
they do so well. Research over the last two decades has shown that while innate ability can be a factor in
performance (there do appear to be genetic factors associated with some athletic performances), the main
factor in acquiring expert performance is time spent in deliberate practice.[7]

Deliberate practice is different from simply performing the task. It requires that people monitor their
practice with full concentration and obtain feedback[9] on what they are doing (often from a professional
teacher). It may also involve studying components of the skill in isolation, attempting to improve on particular
aspects. The goal of this practice being to improve performance, not to produce a finished product.

Studies of the backgrounds of recognized experts, in many fields, found that the elapsed time between
them starting out and carrying out their best work was at least 10 years, often with several hours of deliberate
practice every day of the year. For instance, a study of violinists[8] (a perceptual-motor task), by age 20 those
at the top level had practiced for 10,000 hours, those at the next level down 7,500 hours, and those at the
lowest level of expertise had practiced for 5,000 hours. They also found similar quantities of practice being
needed to attain expert performance levels in purely mental activities (e.g., chess).

People are referred to as being experts, in a particular domain, for several reasons, including:

• Well-established figures, perhaps holding a senior position with an organization heavily involved in
that domain.

• Better at performing a task than the average person on the street.

• Better at performing a task than most other people who can also perform that task.

• Self-proclaimed experts, who are willing to accept money from clients who are not willing to take
responsibility for proposing what needs to be done.[11]

There are domains in which those acknowledged as experts do not perform significantly better than those
considered to be non-experts.[3] For instance, in typical cases the performance of medical experts was not
much greater than those of doctors after their first year of residency, although much larger differences were
seen for difficult cases.

2.1 Creating experts
To become an expert a person needs motivation, time, economic resources, an established body of knowledge
to learn from, and teachers to guide.

One motivation is to be the best, as in chess and violin playing. This creates the need to practice as much
as others at that level. Ericsson found[8] that four hours per day was the maximum concentrated training that
people could sustain without leading to exhaustion and burnout. If this is the level of commitment, over a
10-year period, that those at the top have undertaken, then anybody wishing to become their equal will have
to be equally committed. The quantity of practice needed to equal expert performance in less competitive
fields may be less. One should ask of an expert whether they attained that title because they are simply as
good as the best, or because their performance is significantly better than non-experts.

An established body of knowledge to learn from requires that the domain itself be in existence and
relatively stable for a long period of time. The availability of teachers requires a domain that has existed long

2 v 0.1 November 25, 2006

2 What is expertise?

enough for them to have come up through the ranks; and one where there are sufficient people interested in it
that it is possible to make as least as much from teaching as from performing the task.

The domains in which the performance of experts was not significantly greater than non-experts lacked
one or more of these characteristics.

2.1.1 Transfer of expertise to different domains
Research has shown that expertise within one domain does not confer any additional skills within another
domain.[1] This finding has been duplicated for experts in real-world domains, such as chess, and in
laboratory-created situations.

2.2 Knowledge components of expertise
A distinction is often made between different kinds of knowledge. Declarative knowledge are the facts;
procedural knowledge are the skills (the ability to perform learned actions). Implicit memory is defined as
memory without conscious awareness— it might be considered a kind of knowledge.

2.2.1 Declarative knowledge
This consists of knowledge about facts and events. For instance, the keywords used to denote the integer types
are char, short, int, and long. This kind of knowledge is usually explicit (we know what we know), but
there are situations where it can be implicit (we make use of knowledge that we are not aware of having[15]).
The coding guideline recommendations in this book have the form of declarative knowledge.

It is the connections and relationships between the individual facts, for instance the relative sizes of
the integer types, that differentiate experts from novices (who might know the same facts). This kind of
knowledge is rather like web pages on the Internet; the links between different pages corresponding to the
connections between facts made by experts. Learning a subject is more about organizing information and
creating connections between different items than it is about remembering information in a rotelike fashion.

One study[16] found that developers with greater experience with a language organized their knowledge of
language keywords in a more structured fashion. Education can provide the list of facts, it is experience that
provides the connections between them.

2.2.2 Procedural knowledge
This consists of knowledge about how to perform a task; it is often implicit.

Knowledge can start off by being purely declarative and, through extensive practice, becomes procedural;
for instance, the process of learning to drive a car.

Experiments have shown[24] how subjects’ behavior during mathematical problem solving changed as they
became more proficient. This suggested that some aspects of what they were doing had been proceduralized.

2.2.3 Education
What effect does education have on people who go on to become software developers?

Page 206 of Hol-
land et al.[10]Education should not be thought of as replacing the rules that people use for understanding the world but rather

as introducing new rules that enter into competition with the old ones. People reliably distort the new rules in
the direction of the old ones, or ignore them altogether except in the highly specific domains in which they were
taught.

Education can be thought of as trying to do two things (of interest to us here)— teach students skills
(procedural knowledge) and providing them with information, considered important in the relevant field,
to memorize (declarative knowledge). To what extent does education in subjects not related to software
development affect a developer’s ability to write software?

Some subjects that are taught to students are claimed to teach general reasoning skills; for instance,
philosophy and logic. There are also subjects that require students to use specific reasoning skills, for
instance statistics requires students to think probabilistically. Does attending courses on these subjects
actually have any measurable effect on students’ capabilities, other than being able to answer questions

November 25, 2006 v 0.1 3

3 Guideline related expertise

in an exam. That is, having acquired some skill in using a particular system of reasoning, do students
apply it outside of the domain in which they learnt it? Existing studies have supplied a No answer to this
question.[17, 21] This No was even found to apply to specific skills; for instance, statistics (unless the problem
explicitly involves statistical thinking within the applicable domain) and logic.[4]

Good education aims to provide students with an overview of a subject, listing the principles and major
issues involved; there may be specific cases covered by way of examples. Software development does require
knowledge of general principles, but most of the work involves a lot of specific details: specific to the
application, the language used, and any existing source code, while developers may have been introduced to
the C language as part of their education. The amount of exposure is unlikely to have been sufficient for the
building of any significant knowledge base about the language.

2.2.4 Learned skills
Education provides students with learned knowledge, which relates to the title of this subsection learned
skills. Learning a skill takes practice. Time spent by students during formal education practicing their
programming skills is likely to total less than 60 hours. Six months into their first development job they
could very well have more than 600 hours of experience. Although students are unlikely to complete their
education with a lot of programming experience, they are likely to continue using the programming beliefs
and practices they have acquired. It is not the intent of this book to decry the general lack of good software
development training, but simply to point out that many developers have not had the opportunity to acquire
good habits, making the use of coding guidelines even more essential.

3 Guideline related expertise
Given the observation that in some domains the acknowledged experts do not perform significantly better
than non-experts, we need to ask if it is possible that any significant performance difference could exist in
software development. The following discussion breaks down expertise in software development into five
major areas.[23]

1. Knowledge (declarative) of application domain. Although there are acknowledged experts in a wide
variety of established application domains, there are also domains that are new and still evolving
rapidly. The use to which application expertise, if it exists, can be put varies from high-level design
to low-level algorithmic issues (i.e., knowing that certain cases are rare in practice when tuning a
time-critical section of code).

2. Knowledge (declarative) of algorithms and general coding techniques. There exists a large body of
well-established, easily accessible, published literature about algorithms. While some books dealing
with general coding techniques have been published, they are usually limited to specific languages,
application domains (e.g., embedded systems), and often particular language implementations. An
important issue is the rigor with which some of the coding techniques have been verified; it often
leaves a lot to be desired, including the level of expertise of the author.

3. Knowledge (declarative) of programming language. The C programming language is regarded as an
established language. Whether 25 years is sufficient for a programming language to achieve the status
of being established, as measured by other domains, is an open question. There is a definitive document,
the ISO Standard, that specifies the language. ... we cannot expect any established community of
expertise in the C language to be very large.

4. Ability (procedural knowledge) to comprehend and write language statements and declarations that
implement algorithms. Procedural knowledge is acquired through practice. While university students
may have had access to computers since the 1970s, access for younger people did not start to occur
until the mid 1980s. It is possible for developers to have had 10 years of software development practice.

5. Development environment. The development environment in which people have to work is constantly
changing. New versions of operating systems are being introduced every few years; new technologies

4 v 0.1 November 25, 2006

3 Guideline related expertise

are being created and old ones are made obsolete. The need to keep up with development is a drain on
resources, both in intellectual effort and in time. An environment in which there is a rapid turnover in
applicable knowledge and skills counts against the creation of expertise.

Although the information and equipment needed to achieve a high-level of expertise might be available, there
are several components missing. The motivation to become the best software developer may exist in some
individuals, but there is no recognized measure of what best means. Without the measuring and scoring of
performances it is not possible for people to monitor their progress, or for their efforts to be rewarded. While
there is a demand for teachers, it is possible for those with even a modicum of ability to make substantial
amounts of money doing (not teaching) development work. The incentives for good teachers are very poor.

Given this situation we would not expect to find large performance differences in software developers
through training. If training is insufficient to significantly differentiate developers the only other factor is
individual ability. It is certainly your author’s experience— individual ability is a significant factor in a
developer’s performance.

Until the rate of change in general software development slows down, and the demand for developers falls
below the number of competent people available, it is likely that ability will continue to the dominant factor
(over training) in developer performance.

3.1 Level of developer expertise
How much knowledge are software developers assumed to have? If they had sufficient knowledge then
coding guidelines would not be needed (coding guidelines might be viewed as nuggets of expertise), while if
they have very little then training rather than guidelines would probably be more appropriate.

Economic incentives driving hiring practices
Factors driving developers to improve their level of expertise
The culture of information technology appears to be one of high staff turnover[19] (with reported annual

turnover rates of 25% to 35% in Fortune 500 companies).
It can be argued that a regular turnover of staff creates the need for coding guidelines so that source code

software does not require a large investment in upfront training costs. While developers do need to be familiar
with the source they are to work on, companies want to minimize familiarization costs for new staff while
maximizing their productivity. Source code level guideline recommendations can help reduce familiarization
costs in several ways:

• Not using constructs whose behavior varies across translator implementations means that recruitment
does not have to target developers with specific implementation experience, or to factor in the cost of
retraining— it will occur, usually through on-the-job learning.

• Minimizing source complexity helps reduce the cognitive effort required from developers trying to
comprehend it.

• Increased source code memorability can reduce the number of times developers need to reread the
same source.

• Visible source code that follows a consistent set of idioms can take advantage of people’s natural
ability to categorize and make deductions based on these categorizes.

It is your author’s experience that very few companies use any formally verified method for measuring
developer characteristics, or fitting their skills to the work that needs to be done. Project staffing is often
based on nothing more than staff availability and a date by which the tasks must be completed.

3.2 Is computer language expertise worth acquiring?
People often learn a skill for some purpose (e.g., chess as a social activity, programming to get a job) without
the aim of achieving expert performance. Once a certain level of proficiency is achieved, they stop trying to
learn and concentrate on using what they have learned (in work, and sport, a distinction is made between

November 25, 2006 v 0.1 5

4 Measuring software developer expertise

training for and performing the activity). During everyday work, the goal is to produce a product or to
provide a service. In these situations people need to use well-established methods, not try new (potentially
dead-end, or leading to failure) ideas to be certain of success. Time spent on this kind of practice does not
lead to any significant improvement in expertise, although people may become very fluent in performing
their particular subset of skills.

Many developers are not professional programmers any more than they are professional typists. Reading
and writing software is one aspect of their job. The various demands on their time is such that most spend a
small portion of their time writing software. Developers need to balance the cost of spending time becoming
more skillful programmers against the benefits of possessing that skill. Experience has shown that software
can be written by relatively unskilled developers. One consequence of this is that few developers ever become
experts in any computer language.

When estimating benefits over a relatively short period of time, time spent learning more about the
application domain frequently serves one than honing programming skills.

3.3 Deviation creation expertise
How much expertise, if any, over and above that expected of a developer is considered to be needed to create
a deviation? The situations under which a deviation might be proposed include:

• It is not possible to perform a needed operation using any other construct.

• The cost (e.g., runtime performance) of using all other constructs is not acceptable.

The expertise needed is a knowledge of language constructs and knowledge of the application domain.
Small project are much less likely than large projects to have local access to a developer with a great deal

of language knowledge. Having possible deviations documented along side a guideline gives developers
access to the expertise of the authors of that guideline....

Deviation agreed after code review, more input increases likelihood that more possibilities will be
considered, better decision???

A study of workers producing cigars by Crossman[5] showed performance improving according to the
power law of practice for the first five years of employment. Thereafter performance improvements slow;
factors cited for this slow down include approaching the speed limit of the equipment being used and the
capability of the musculature of the workers.

4 Measuring software developer expertise
Having looked at expertise in general and the potential of the software development domain to have experts,
we need to ask how expertise might be measured in people who develop software. Unfortunately, there are
no reliable methods for measuring software development expertise currently available. However, based on
the previously discussed issues, we can isolate the following technical competencies (social competencies[20]

are not covered here, although they are among the skills sought by employers,[2] and software developers
have their own opinions[14, 22]):

• Knowledge (declarative) of application domain.

• Knowledge (declarative) of algorithms and general coding techniques.

• Knowledge (declarative) of programming languages.

• Cognitive ability (procedural knowledge) to comprehend and write language statements and declara-
tions that implement algorithms (a specialized form of general analytical and conceptual thinking).

• Knowledge (metacognitive) about knowledge (i.e., judging the quality and quantity of ones expertise).

A study at Bell Labs[6] showed that developers who had worked on previous releases of a project were much
more productive than developers new to a project. They divided time spent by developers into discovery time

6 v 0.1 November 25, 2006

4 Measuring software developer expertise

(finding out information) and work time (doing useful work). New project members spent 60% to 80% of
their time in discovery and 20% to 40% doing useful work. Developers experienced with the application
spent 20% of their time in discovery and 80% doing useful work. The results showed a dramatic increase
in efficiency (useful work divided by total effort) from having been involved in one project cycle and less
dramatic an increase from having been involved in more than one release cycle. The study did not attempt to
separate out the kinds of information being sought during discovery.

Another study at Bell Labs[18] found that the probability of a fault being introduced into an application,
during an update, correlated with the experience of the developer doing the work. More experienced
developers seemed to have acquired some form of expertise in an application that meant they were less likely
to introduce a fault into it.

A study of development and maintenance costs of programs written in C and Ada[25] found no correlation
between salary grade (or employee rating) and rate of bug fix/add feature rate.

There is a group of people who might be expected to be experts in a particular programming languages—
those who have written a compiler for it (or to be exact those who implemented the semantics phase of
the compiler, anybody working on others parts [e.g., code generation] does not need to acquire detailed
knowledge of the language semantics). Your author knows a few people who are C language experts and
have not written a compiler for that language. Based on your author’s experience of implementing several
compilers, the amount of study needed to be rated as an expert in one computer language is approximately 3
to 4 hours per day (not even compiler writers get to study the language for every hour of the working day;
there are always other things that need to be attended to) for a year. During that period, every sentence in the
language specification will be read and analyzed in detail several times, often in discussion with colleagues.
Generally developer knowledge of the language they write in is limited to the subset they learned during
initial training, perhaps with some additional constructs learned while reading other developers’ source or
talking to other members of a project. The behavior of the particular compiler they use also colors their view
of those constructs.

Expertise in the act of comprehending and writing software is hard to separate from knowledge of the
application domain. There is rarely any need to understand a program without reference to the application
domain it was written for. When computers were centrally controlled, before the arrival of desktop computers,
many organizations offered a programming support group. These support groups were places where customers
of the central computer (usually employees of the company or staff at a university) could take programs they
were experiencing problems with. The staff of such support groups were presented with a range of different
programs for which they usually had little application-domain knowledge. This environment was ideal for
developing program comprehension skills without the need for application knowledge (your author used to
take pride in knowing as little as possible about the application while debugging the presented programs).
Such support groups have now been reduced to helping customers solve problems with packaged software.
Environments in which pure program-understanding skills can be learned now seem to have vanished.

Ability to estimate the effort needed to implement the specified functionality.[12]

A study by Jørgensen and Sjøberg[13] looked at maintenance tasks (median effort 16-work hours). They
found that developers’ skill in predicting maintenance problems improved during their first two years on the
job; thereafter there was no correlation between increased experience (average of 7.7 years’ development
experience, 3.4 years on maintenance of the application) and increased skill. They attributed this lack of
improvement in skill to a lack of learning opportunities (in the sense of deliberate practice and feedback on
the quality of their work).

Job advertisements often specify that a minimum number of years of experience is required. Number of
years is known not to be a measure of expertise, but it provides some degree of comfort that a person has had
to deal with many of the problems that might occur within a given domain.

November 25, 2006 v 0.1 7

4 Measuring software developer expertise

References
Citations added in version 1.0b start at 1449.

1. J. R. Anderson. Cognitive Psychology and its Implications.
Worth Publishers, fifth edition, 2000.

2. J. L. Bailey and G. Stefaniak. Industry perceptions of the
knowledge, skills, and abilities needed by computer program-
mers. In Proceedings of the 2001 ACM SIGCPR Conference
on Computer Personnel Research (SIGCPR 2001), pages
93–99. ACM Press, 2001.

3. C. F. Camerer and E. F. Johnson. The process-performance
paradox in expert judgment: How can the experts know so
much and predict so badly? In K. A. Ericsson and J. Smith,
editors, Towards a general theory of expertise: Prospects and
limits. Cambridge University Press, 1991.

4. P. Cheng, K. J. Holyoak, R. E. Nisbett, and L. M. Oliver.
Pragmatic versus syntactic approaches to training deductive
reasoning. Cognitive Psychology, 18:293–328, 1986.

5. E. R. F. W. Crossman. A theory of the acquisition of speed-
skill. Ergonomics, 2:153–166, 1959.

6. J. W. Davison, D. M. Mand, and W. F. Opdyke. Understand-
ing and addressing the essential costs of evolving systems.
Bell Labs Technical Journal, 5(2):44–54, Apr.-June 2000.

7. K. A. Ericsson and N. Charness. Expert performance. Ameri-
can Psychologist, 49(8):725–747, 1994.

8. K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer. The role
of deliberate practice in the acquisition of expert performance.
Psychological Review, 100:363–406, 1993. also University
of Colorado, Technical Report #91-06.

9. R. M. Hogarth, C. R. M. McKenzie, B. J. Gibbs, and M. A.
Marquis. Learning from feedback: Exactness and incentives.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 17(4):734–752, 1991.

10. J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard.
Induction. The MIT Press, 1989.

11. S. A. J. The seer-sucker theory: The value of experts in fore-
casting. Technology Review, pages 16–24, June-July 1980.

12. M. Jørgensen. A review of studies on expert estimation of
software development effort. Journal of Systems and Soft-
ware, 70(1-2):37–60, 2004.

13. M. Jørgensen and D. I. K. Sjøberg. Impact of experience on
maintenance skills. Journal of Software Maintenance: Re-
search and Practice, 14(2):123–146, 2002.

14. T. C. Lethbridge. What knowledge is important to a software
professional? IEEE Computer, 33(5):44–50, May 2000.

15. P. Lewicki, T. Hill, and E. Bizot. Acquisition of procedural
knowledge about a pattern stimuli that cannot be articulated.
Cognitive Psychology, 20:24–37, 1988.

16. K. B. McKeithen, J. S. Reitman, H. H. Ruster, and S. C. Hir-
tle. Knowledge organization and skill differences in computer
programmers. Cognitive Psychology, 13:307–325, 1981.

17. J. McMillan. Enhancing college student’s critical thinking: A
review of studies. Research in Higher Education, 26:3–29,
1987.

18. A. Mockus and D. M. Weiss. Predicting risk in software
changes. Bell Labs Technical Journal, Apr.-June 2000.

19. J. E. Moore and L. A. Burke. How to turn around ’turnover
culture’ in IT. Communications of the ACM, 45(2):73–78,
2002.

20. K. M. Nelson, H. J. Nelson, and M. Ghods. Understanding
the personal competencies of IS support experts: Moving
towards the E-business future. In 34th Annual Hawaii Inter-
national Conference on System Sciences (HICSS-34)-Volume
8. IEEE, Jan. 2001.

21. R. S. Nickerson, D. N. Perkins, and E. E. Smith. The Teaching
of Thinking. Erlbaum, Hillsdale NJ, 1985.

22. S. Sonnentag. Excellent software professionals: experience,
work activities, and perception by peers. Behaviour & Infor-
mation Technology, 14(5):289–299, 1995.

23. T. R. Stewart and C. M. Lusk. Seven components of judgmen-
tal forecasting skill: Implications for research and improving
forecasts. Journal of Forecasting, 13:579–599, 1994.

24. J. Sweller, J. F. Mawer, and M. R. Ward. Development of
expertise in mathematical problem solving. Journal of Exper-
imental Psychology: General, 112(4):639–661, 1983.

25. S. F. Zeigler. Comparing development costs of C and
Ada. Technical report, Rational Software Corporation, Mar.
1995.

8 v 0.1 November 25, 2006

