ISO/IEC JTC 1/SC 22/OWGV N 0101

OWG: Vulnerability, presentation to conference associated with SC 22 plenary, 28 September 2007

Date 15 October 2007 Contributed by John Benito

 $\begin{array}{ll} \textbf{Original file name} & owg_v\text{-}Singapore_V2.pdf \\ \end{array}$

Notes

A new type of Working Group used for a new SC22 Working Group

OWG: Vulnerability

John Benito

JTC 1/SC 22 WG14 Convener INCITS CT 22 Vice Chairman JTC 1/SC 22 OWG:V Convener

The Problem

- Any programming language has constructs that are imperfectly defined, implementation dependent or difficult to use correctly.
- As a result, software programs sometimes execute differently than intended by the writer.
- In some cases, these vulnerabilities can be exploited by hostile parties.
 - – Can compromise safety, security and privacy.
 - Can be used to make additional attacks.

Complicating Factors

- The choice of programming language for a project is not solely a technical decision and is not made solely by software engineers.
- Some vulnerabilities cannot be mitigated by better use of the language but require mitigation by other methods, e.g. review, static analysis.

An example

- While buffer overflow examples can be rather complex, it is possible to have very simple, yet still exploitable, stack based buffer overflows:
- An Example in the C programming language:#define BUFSIZE 256

```
int main(int argc, char **argv) {
  char buf[BUFSIZE];

  strcpy(buf, argv[1]);
}
```

Example

- Buffer overflows generally lead to the application halting or crashing.
- Other attacks leading to lack of availability are possible, that can include putting the program into an infinite loop.
- Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy.

OWG: Vulnerability Status

- Response to NP Ballot comments is completed, see SC 22 N4027
- Project is organized and on schedule to produce a document in 2009
- Current draft is ready for it's first SC 22 ballot
- The project has two officers
 - Convener/Project Editor, John Benito
 - □ Secretary, Jim Moore

OWG: Vulnerability Status

- Five meetings have been held, hosted by
 - US
 - Italy
 - Canada
 - □ UK
- Meetings planned through 2008, hosted by
 - Netherlands
 - US
 - Germany
- E-Mail reflector, Wiki and Web site are used during and between meetings
- More information
 - http://aitc.aitcnet.org/isai/

OWG: Vulnerability Status

- The body of Technical Report describes vulnerabilities in a generic manner, including:
 - Brief description of application vulnerability
 - Cross-reference to enumerations, e.g. CWE
 - Categorizations by selected characteristics
 - Description of failure mechanism, i.e. how coding problem relates to application vulnerability
 - Points at which the causal chain could be broken
 - Assumed variations among languages
 - Ways to avoid the vulnerability or mitigate its effects
- Annexes will provide language-specific treatments of each vulnerability.

Meeting Schedule for OWG:V

- Meeting #6 2007-10-1/3 INCITS/Plum Hall, Kona, Hawaii, USA
- Meeting #7 2007-12-12/14 INCITS/SEI, Pittsburgh, PA, USA
- Meeting #8 2008-04-09/11 NEN/ACE, Amsterdam, NL
- Meeting #9 2008-07 INCITS/Blue Pilot, Washington DC, USA
- Meeting #10 2008-10 Stuttgart, Germany

OWG: Vulnerability Participants

- Canada
- Germany
- Italy
- Japan
- France
- United Kingdom
- USA CT 22
- SC 22/WG 9
- SC 22/WG14
- MDC (Mumps)
- SC 22/WG 5, INCITS J3 (Fortran)
- SC 22/WG 4, INCITS J4 (Cobol)
- ECMA (C#, C++CLI)
- RT/SC Java
- MISRA C/C++
- CERT

OWG: Vulnerability Progress

- A document suitable for registration has been completed.
- A template for vulnerability descriptions has been completed.
- An initial set of vulnerabilities has been proposed for treatment.

OWG: Vulnerability Product

- A type III Technical Report
 - A document containing information of a different kind from that which is normally published as an International Standard
- Project is to work on a set of common mode failures that occur across a variety of languages
 - Not all vulnerabilities are common to all languages, that is, some manifest in just a language
- The product will not contain normative statements, but information and suggestions

OWG: Vulnerability Product

- No single programming language or family of programming languages is to be singled out
 - As many programming languages as possible should be involved
 - Need not be just the languages defined by ISO Standards

Approach to Identifying Vulnerabilities

- Empirical approach: Observe the vulnerabilities that occur in the wild and describe them, e.g. buffer overrun, execution of unvalidated remote content
- Analytical approach: Identify potential vulnerabilities through analysis of programming languages
 - This just might help in identifying tomorrows vulnerabilities.

Audience

- Safety: Products where it is critical to prevent behavior which might lead to human injury, and it is justified to spend additional development money
- Security: Products where it is critical to secure data or access, and it is justified to spend additional development money
- Predictability: Products where high confidence in the result of the computation is desired
- Assurance: Products to be developed for dependability or other important characteristics

Measure of Success

- Provide guidance to users of programming languages that:
 - Assists them in improving the predictability of the execution of their software even in the presence of an attacker
 - Informs their selection of an appropriate programming language for their job
- Provide feedback to programming language standardization groups, resulting in the improvement of programming language standards.

OWG: Vulnerability Summary

- We are making progress!
 - meetings scheduled out over a year
 - Participation is good and is made up of a wide variety of technical expertise.
- Have a document that is ready for the first SC 22 ballot (registration).
- On track to publish in 2009.