ISO/IEC JTC 1/SC 22/OWGV N0160

The revision at meeting #9 of …
ISO/IEC JTC 1/SC 22/OWGV N 0157
6.17
Unchecked Pointer Arithmetic in Buffer Access (XYX)

6.17.0
Status and history

2008-07-12 – Changes from Editorial Meeting.

2008-02-13, Edited by Derek Jones

2007-12-14, edited at OWGV meeting 7

2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.17.1
Description of application vulnerability

A buffer underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithmetic results in an access to storage that occurs before the beginning of the intended buffer object. A buffer overwrite condition occurs when an array is indexed outside its upper bounds, or pointer arithmetic results in an access to storage that occurs after the end of the intended buffer object. This vulnerability description deals with the case of incorrect use of pointer arithmetic; the case of incorrect array indexing is considered in 6.18, name and [XYZ]. The general case of pointer arithmetic is considered in number, name and [RVG].
6.17.2
Cross reference

CWE:

124. Boundary Beginning Violation (‘Buffer Underwrite’)

129. Unchecked Array Indexing

JSF AV Rule: 25

MISRA C 2004: 21.1

CERT/CC guidelines: ARR30-C, ARR32-C, and ARR38-C

6.17.3
Mechanism of failure

There are failures due to invalid read or write operations (in both cases an exception may be raised if the accessed location is outside the intended buffer object):

· A read access will return a value that has no relationship to the intended value, e.g., the value of another variable or of uninitialized storage.

· An out-of-bounds read access may be used by an attacker to obtain information that is intended to be confidential.

· A write access may result in the value of an unrelated object (that happens to occupy the given storage location) being modified.

· When the array has been allocated storage on the stack, an out-of-bounds write access may be used by an attacker to modify internal runtime housekeeping information (e.g., a return address) which might change the control flow of the program.

Malicious exploitation of the vulnerability is very easy to accomplish and may alter both targeted data values and the executed program code.

6.17.4
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that allow pointer iterations or general pointer arithmetic to access array elements and do not detect and prevent an array from being accessed outside of its declared bounds.

· Languages that do not automatically allocate storage when accessing an array element for which storage has not already been allocated.

6.17.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Use of implementation-provided functionality to automatically check array element accesses and prevent out-of-bounds accesses.

· Use of static analysis to verify that all array accesses are within the bounds of the array. Such analysis may require that source code contain certain kinds of information, e.g., that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be specified.

· Use of array indexing in lieu of pointer iteration.

<< The following really belongs more to 6.18>>
The implementation of array bounds checking has sometimes incurred what has been considered in the past to be a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators to perform sophisticated analysis which significantly reduces the runtime overhead (because runtime checks are only made when it cannot be shown statically that no bound violations can occur).

6.17.6
Implications for standardization

Languages that use pointer types should consider specifying a standard for a pointer type that would enable array bounds checking, if such a pointer is not already in the standard.

6.17.7
Bibliography

[None]

