WG 23 N0187
	Template for comments and secretariat observations
	Date:
	Document:

	1
	2
	(3)
	4
	5
	(6)
	(7)

	MB1

	Clause No./
Subclause No./
Annex
(e.g. 3.1)
	Paragraph/
Figure/Table/Note
(e.g. Table 1)
	Type of com-ment2
	Comment (justification for change) by the MB
	Proposed change by the MB
	Secretariat observations
on each comment submitted

	

	ISO/IEC JTC 1/SC 22/WG 9 N 0181

	Disposition of WG9 comments in [N0174] performed during Meeting #10

	

	Submitted by WG 23 Secretary

	19 April 2009

	These are liaison comments from SC 22/WG 9 on the first PDTR ballot of ISO/IEC TR 24774.

	UK
	Cover page
	title
	ge
	The title on the cover says "Guidelines ... vulnerabilities in language selection and use". But the title on page i is "Guidance ... Vulnerabilities in Programming Languages through Language Selection and Use"
	Make them the same.
	See UK-1

	UK
	Blank page
	
	ed
	There should be a blank page following the cover page so that page i is a recto page.
	Add blank page after cover.
	See UK-2

	CA
	Whole document
	
	Te
	Need Programming Language Annexes
	The document cannot move forward until annexes for C, C++, Fortran, COBOL, Ada, Java, and EcmaScript are finished.
	Please feel free to solicit the standardization group responsible for these languages to furnish WG 23 with text for an Annex.

	IT
	Introduction
	1
	Ed
	Term “vulnerability” is introduced with only an implicit correlation to its interpretation in the report: use of an explicit definition is preferable.
	All programming languages contain constructs that exhibit undefined behavior, are implementation-dependent, or are difficult to use correctly. The use of those constructs may therefore give rise to vulnerabilities, as a result of which, software programs can execute differently than intended by the writer.
	Agreed

	UK
	Introduction
	para 1
	ge
	"All programming languages" is maybe too severe. One can conceive of a simple language that did not have the quoted properties. But maybe Gödel says that it would be too simple to be useful.
	Change to "All practical programming languages" or "All serious programming languages" perhaps.
	See UK-3

	UK
	Introduction
	para 2
	ge
	The title of this standard says " ...through language selection and use". But the introduction implies that the language has been chosen since it says "... in their chosen language". This is a serious inconsistency.
	Clarify the purpose of this document. Is it to aid language selection or not?
	See UK-4

	UK
	general
	
	te
	This document does not seem to discuss problems caused by parallelism at all.
	Add material on the problems of parallel programming.
	See UK-5

	UK
	1.1
	para 1
	ed
	Is this a list of three of four items? It is not clear.
	If it is a list of three then write "security-critical, safety-critical, and mission and business critical".

If it is a list of four then write ""security-critical, safety-critical, mission-critical, and business-critical".
	See UK-6

	UK
	1.2
	para 1
	ed
	It would read better if it said "... use configuration management tools, ..."
	Add "tools" after "configuration management"
	See UK-7

	CA
	1.3
	P1
	Ed
	First two sentences do not read well, “The impact ... are likely to affect ... more people ... that worked on them”
	The goal of this Technical Report is to provide guidelines that have a broad scope for usage and have the potential for larger savings at a smaller cost.
	See CA-59

	UK
	1.4
	para 4
	ed
	There is a current trend in the misuse of English by inserting "would" everywhere. It's probably some sort of wimpish political correctness. There is no condition in this sentence for the would to apply to. Be positive -tell the truth. Do not hide behind an implied condition.
	Change to "It is hoped .that such developers will use this document..."
	See UK-8

	CA
	1.4
	P4
	Ed
	It may not be possible to remove all vulnerabilities, so perhaps even improving an application would justify this document.
	Replace :”are removed” with “are removed or at least minimized”
	See CA-60

	BE
	1.4.2
	Bullet 2
	ed
	Availability can be required while integrity is not.
	". integrity, and"
→
". integrity, or".
	

	UK
	1.4.3
	
	ge
	I was expecting this section to be followed by a section entitled Business critical applications to match my understanding of the list in the first sentence of section 1.1
	Either delete Business critical from 1.1 or add a section explaining it after 1.4.3.
	See UK-9

	BE
	1.5
	
	te
	One way frequently used to ensure that coding standards and coding rules are really applied is to use tools to check rules and standards.
	Add a sentence in the last paragraph:

“The best way to insure that selected coding rules and standards are applied is to use a tool which performs automatic source code checking.”
	Accept in principle: “Source code checking tools can be used to automatically enforce some coding rules and standards.”

	CA
	General
	3.1

5. title

5, para 1

6, par 1 line2
	Ge
	The term Vulnerability should follow the custom in use now and refer to Application Vulnerability.
	Change the title to ISO/IEC PDTR 24772, Information technology – Programming languages –

Guidelines to avoiding application vulnerabilities through programming language selection and use
	See CA-1

	IT
	3
	All
	Ed
	A note is missing on typographical convention that represent programming language keyword: the report seems to use the courier font for all terms that may be keywords or syntactic tokens in programming languages. The report is also ambivalent in the correct or only exemplary use of such terms (for example, it uses inout instead of in out). The conventions in use in this regard should be declared explicitly.
	
	Agreed

	IT
	3.1
	1
	Ed
	Term “property” does normally have a mathematical connotation, which is too rigid for the meaning intended in this report.
	Replace property by feature.
	Property is defined in the Note:

	UK
	3.1
	Note
	te
	Another vulnerability that occurs because of the absence of a garbage collector is the simple one of running out of storage.
	add at the end "... or, on the other hand, by not freeing storage can result in the program failing by running out of storage."
	See UK-10

	CA
	Pervasive
	3.1 title
3.1 note
	Te
	The term Vulnerability should follow the custom in use now and refer to Application Vulnerability.
	Change the term “language vulnerability” to “language weakness” and “programming language vulnerability” to “programming language weakness” as noted.
	See CA-1

	UK

BE
	3.2
	
	ed
	This definition introduces the terms "security vulnerability", "safety hazard", and "defect". The first two are then defined in 3.3 and 3.4 but "defect " is not defined.

In our opinion Application Vulnerability is more related to weaknesses of an application in performing its required tasks.
	Define "defect".
	See UK-11

	UK
	3.4
	second Note
	ed
	Spelling error "materiel".
	Change to "material".
	See UK-12

	IT
	3.4
	1
	Ed
	Incorrect spelling of reference to IEC 61508-4. Subsequent uses of the reference should be corrected likewise.
	IEC 61508-4 defines
	

	UK
	3.5
	sentence 1
	ed
	Saying "human injury or death" seems to imply that death is not an injury.
	Change to "such as human injury and even death".
	See UK-13

	UK

CA

FR

BE
	3.5
	Note
	ed
	Typo:

is some domains, a distinction is make
	in some domains, a distinction is made
	See UK-14, CA-61.

	IT
	3.5
	Note
	Ed
	Various typos and poor structure of paragraph.
	Notwithstanding that in some domains a distinction is made between safety-related (may lead to any harm) and safety-critical (life threatening), this Technical Report uses the term safety-critical for all vulnerabilities that may result in safety hazards.
	Agreed

	CA
	3.6
	P1
	Te
	This definition does not seem to be complete. A program can fully meet the requirements, yet be poorly written and unmaintainable with inherent security vulnerabilities. Not to mention that the requirements themselves may be poorly written or vague.
	Replace “by its specification” with “by its specification and by the degree to which the software is maintainable, understandable, and free from undesirable behaviours and vulnerabilities.”
	Agreed, see CA-62

	BE
	3.6
	
	te
	Software quality is not only related to its requirements.

See for example Wikipedia's definition http://en.wikipedia.org/wiki/Software_quality. There is quality of design (how well the software is designed) and quality of conformance (how well the software conforms to that design). This also corresponds to what is written in the first paragraph of section 5.
	
	Accept in principle. Change definition to “software quality

degree to which the characteristics of a software product fulfils its requirements”
[adapted from ISO 9000]

	UK
	3.7
	Note 1
	ed
	Here is another pointless "would". Use present indicative.
	Change to "this raises issues...".
	See UK-15

	UK

CA
	3.7
	Note 2
	ed
	This reads better with "to" inserted before "approach". Or maybe "in approaching" or "to move towards". The last is best. However, maybe the whole sentence is weird. The programmer doesn't have predictable execution it's the program that the programmer has written.
	Change to ""a reasonably competent programmer to move towards the ideal of creating programs with predictable execution".
	See UK-16, CA-63

	UK
	3.7
	Note 3, bullet 1
	ed
	It would be preferable not to mention particular languages
	Change to "in an expression in many languages".
	See UK-17

	UK
	3.7
	Note 3, bullet 2
	ed
	Use subjunctive "be" after "that"
	Change to "that this choice be documented".
	See UK-18

	IT
	3.7
	Note (4)
	Ed
	Poor phrasing. The latter part (in yellow background in the proposed change) reads so unclear that it may possibly be taken off altogether.
	This notion is related to neither unspecified behaviour, which is a characteristic of an application, nor the language used to develop the application.
	Agreed

	BE
	5
	
	ge
	There are many more possible vulnerability issues than the 4 currently specified. We propose a few examples of new sub-clauses.
	Add the following sub clauses:

5.5 Issues arising from language intrinsic paradigms that may enforce programming techniques that are not suitable in some application domains

The use of OOP language features may well be highly appropriate for implementing a GUI but at the same time, dynamic memory management, heap utilization, inefficient data representation, dynamic polymorphism etc. are very unsuitable for implementing a hard real-time safety-critical system. If a language is so intrinsically bound to OOP, it is sensible to seek an alternative language for implementing some applications. Conversely, if the problem domain is GUI development, it will often (although not always) be advisable to use a language that has OOP features.

5.6 Issues arising from inadequate language intrinsic support for a given problem domain

For example, a language being used to implement a real-time, multi-thread system may be missing key features that are needed – e.g. a way of enforcing mutual exclusion. Such features can of course be provided by the programming environment in the form of libraries, but the definition of such libraries may be proprietary and inclined to change in later releases. A vendor may even decide to withdraw support entirely for such a library. Also, such a library may not be verified and validated to the same standard as the compiler and the application being developed.

5.7 Issues arising from language features that are prone to erroneous use

Syntactic language features that are not intolerant of common typo errors can produce some problems that are notoriously difficult to find.

The most famous example of this is that C permits an unintentional assignment to be performed in a Boolean expression by the accidental use of a single “=” (assignment) instead of the intended “==” test for equality. It then allows the resulting value to be treated as a Boolean (this specific vulnerability example is mentioned in sub clause 6.32 “Likely Incorrect Expression”).

5.8 Issues arising from inter-language operability

Languages need to acknowledge the existence of other languages. Support for inter-language operability permits the implementation of large heterogeneous systems (systems which consist of a mixture of hardware platforms running software implemented using a mixture of compilers/languages).

Some languages define methods of binding to object code written in other common programming languages. Without considering interoperability, problems are encountered such as how to call a C function from Ada where the C function writes to one of its arguments – something that is not permitted in an Ada function because Ada has the concept of parameter modes and functions may only be “in” mode parameters where as procedure parameters may be “in” mode, “out” mode or “in out” mode – Ada solves this problem by treating a C function as if it were a procedure with an extra “out” mode parameter – the return value. Without such provision, it wouldn’t be possible for Ada to interface with C libraries.”
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	BE
	5
	
	ge
	Sub clause 5.1 and subsequent sub clauses throughout this document refer to the use of coding standards to prevent the use of undesirable language features. Where coding standards are not automatically enforced, it is unlikely that they will be universally followed on a project of any size.
	Add the following sub clause:

5.9 Issues arising from coding standard specification and enforcement

Coding standards need to be both complete and consistent. If they are not defined as a standard, completeness and consistency may not be trivial requirements so the coding standards themselves are vulnerable.

Coding standards need to be automatically enforceable or they are vulnerable to undocumented non-conformity resulting simply from human error or ignorance.

It is probably better to enforce coding standards within the language by removing ambiguities rather than relying on even an automated coding standard.
	Reject.

	BE
	5
	
	ge
	What we are missing in this chapter is a paragraph on maintenance vulnerabilities. Some languages are weak when it comes to preventing failure insertion in a maintenance phase.
	
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	UK
	5
	para 1
	ed
	Many will be aware of the danger of the use of the word sophisticated with its original meaning of adulterated. I guess that a clearer alternative would be cumbersome.
	
	See UK-19

	UK
	5
	para 1
	te
	It's not always so much that programmers fail to understand the requirements but that the requirements are incomplete.
	Rephrase to cover the possibility that the requirements are incomplete or wrong. This might need a new paragraph. It is an important issue.
	See UK-20

	UK
	5
	para 5
	ed
	Rephrase first sentence
	Change to "which can result in the use of a complex sequence...".
	See UK-21

	UK
	5.1
	para 1
	ed
	This paragraph shows an instance of the fact that this document does not seem to address real-time or parallel programming much if at all. The third sentence says "Programming involves selecting and sequentially combining features...". This ignores the possibility of the combination being in parallel. Just omit "sequentially".
	Change to "Programming involves selecting and combining...".
	See UK-23

	UK
	5.1
	para 1
	ed
	The last sentence leads into the thought that difficulties are usually about the properties of a particular program rather than the world of all possible programs.
	Incorporate this thought at the end.
	See UK-24

	UK
	5.1
	para 2
	ed
	The phrase "to be an inconsistency" in the last sentence might perhaps be phrased more strongly. The word "wart" comes to mind.
	
	See UK-25

	UK
	5.1.1
	para 1
	ed
	The mention of "digital signature" seems unnecessary. The point is that the source has to be trusted. Moreover, compilers should be developed according to agreed standards. A reference to 7.4.4 would be a good idea.
	Rewrite thus "..., unless coming from a trusted source and developed according to agreed standards, should ..."

Add at end of paragraph "See 7.4.4".
	See UK-27

	UK
	5.1.1
	para 2
	ed
	The verb "get" should be avoided in serious text. Use the passive.
	Change to "After the source has been compiled...".
	See UK-28

	UK
	5.1.1
	para 3
	ed
	Here is another unnecessary mention of "digital signature"
	Delete "with a digital signature".
	See UK-29

	UK
	5.1.1
	
	te
	Compilers often have multiple options. If a compiler has 40 options say, then it may well be that the options used for a specific critical project have never been used by the compiler vendor for regression testing.
	Add new paragraph

"If a compiler has many options then developers should check with the vendor that the compiler has been validated with the combination of options to be used for a specific project. The vendor should supply the user with evidence that this is so."
	See UK-30

	UK
	5.1.2
	para 1
	ed
	The third sentence uses "translator" whereas everywhere else it has been "compiler". One wonders why. Did the author have interpreters in mind?
	Change "translators" to "compilers". Or explain why it says translators in this instance.
	See UK-31

	UK
	5.1.2
	para 1
	ed
	The fourth sentence might read better if it said "to specify one particular behaviour" at the end.
	Change to "... one particular behaviour."
	See UK-32

	BE
	5.1.2
	
	ge
	This sub-clause on the topic of compiler behaviour lacks mentioning the need for compiler validation in order to ensure software to work throughout its life span even when different compilers and/or underlying operating systems are used.
	
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	BE
	5.1.2
	
	te
	The present sub-clause silently assumes that non-open standard proprietary software libraries have the same level of integrity as the compiler – that is not necessarily a valid assumption and thus environmental libraries, frameworks and even the operating system are vulnerabilities.
	At the end of 5.1.2 add:

“Proprietary environment subsystems such as libraries, frameworks, operating systems, bindings, databases etc. may or may not be verified and validated to the same standard as the compiler and the application under development.”
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	UK
	5.1.3
	para 1
	ed
	Maybe "a range of behaviours for a given language feature". We talk about a range of mountains with plural.
	Change to " a range of behaviours for a given language feature".
	See UK-33

	UK
	5.1.3
	para 3
	ed
	Probably "variations" in first sentence.
	Change "variation" to "variations".
	See UK-34

	UK
	5.1.3
	para 3
	ed
	In second sentence "code-checking tools" seems mundane. Code analysis sounds posher
	Change to "code analysis tools".
	See UK-35

	BE
	5.1.3
	
	te
	The sub-clause does not point out that there are languages that are able to enforce specific data representation formats. This is useful for portability and in heterogeneous system environments (e.g. where two communicating systems are implemented using different compilers on different hardware architectures).
	Insert the following before the final paragraph:

Some languages provide a mechanism whereby data-representation uncertainties can be completely eliminated. Such languages can support portability and determinate data representation without the need for coding standards. Languages without such a feature are vulnerable to representation issues.
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	UK
	5.1.4
	para 2
	te
	It is not clear whether the phrase "has not yet been assigned" means assigned to or assigned from. More pedantic wording might help.
	Change to "the use of the value of a variable to which there has not yet been an assignment".
	See UK-36

	BE
	5.1.4
	
	te
	The sub-clause does not point out that a common cause of undefined behaviour is when a variable is assigned an illegal / meaningless value. The enforcement of strong typing rules inherent in a language can prevent this.
	Insert the following:

Some languages permit variables to take illegal values whilst others implement a stronger type model that prevents this.

For example, if a Boolean is simply an integer for which two constants, true and false have been defined to be 1 and 0 respectively, assigning a value of 2 to such a Boolean will be allowed but does not make any sense.

Another example is that not all integers are necessarily arithmetically compatible with each other. An integer that is holding a “count of oranges” cannot be meaningfully added to an integer that is holding a “count of apples” (at least not unless the total is of the type “count of fruits” and the other two types are merely subtypes of “count of fruits”). Some languages permit the developer to define such types and the result is that meaningless arithmetic operations are prevented. Languages without such user defined types have an unnecessary vulnerability.
	Reject. However, some items will be placed on a list of items to be considered in a future version of the TR. Also, the overall content of Clause 5 will be reconsidered at Meeting #11 with this comment in mind.

	UK
	5.3
	
	ed
	This whole discussion is a bit strange. Although the general idea is clear, the phrase "state of a program" sounds more like the dynamic behaviour than the lexical understanding. Perhaps it would be clearer if it simply said "intent of a program" everywhere.
	Change "state" to "intent" perhaps.
	See UK-38

	UK
	5.3
	para 2
	ed
	In the last line "interpreted" has a strange flavour. It is being used here in a linguistic understanding sense but in computer science an interpreter has a specific technical meaning which is not that required here. I would use the word "understood" again. And rephrase to get only out of parens.
	Change to "It is only to a first approximation that code is read and understood line by line."
	See UK-39

	BE
	5.3
	
	ge
	Some languages offer better support in controlling the initialization of static and dynamic objects. Languages that support these features are less vulnerable to accidentally using uninitialized objects (i.e. variables or threads).
	
	Reject. No action proposed.

	UK
	5.4
	para 1
	ed
	fixed point does not have a hyphen but floating-point does. Please treat them the same.
	Put hyphen in "fixed-point".
	See UK-40

	UK
	5.4
	para 3
	ed
	Third sentence needs restructuring.
	Change to "...other sources and these are..." or perhaps "...other sources – these are ...".
	See UK-41

	UK

BE
	5.4
	para 4
	ed
	Third sentence, second bit in parentheses, delete "the" before "implemented"
	Change to " ..may not have implemented ...".
	See UK-42

	CA
	6 title
	
	Te
	Title should reflect “weakness”
	Change title to

Weaknesses and Vulnerabilities
	See CA-3

	CA
	Section 6
	
	Te
	Needs section on concurrency
	Will be supplied
	See CA-6

	BE
	6
	
	ge
	Use of language specific terminology should reference the specific language (quite often “C”). There is lots of this throughout the document...
	
	Reject. We already do this in many cases, but have omitted them when it makes sense. Specific comments on this subject will be considered on individual merit.

	BE
	6.1.1
	
	te
	Paragraph 6.1.1 is very brief and ought to be expanded.
	Consider adding the following at the end of the paragraph:

“The use of OOP features may be very useful when developing a GUI but they can make a hard real-time application impossible to implement if memory management is not defined by the language.”
	Reject. OO is not inherently obscure.

	CA
	6.1.1
	
	Te
	The paragraph does not describe an application vulnerability
	Add another paragraph

The most obvious vulnerabilities are those associated with misunderstood code – erroneous results, exceptions or traps, timing difficulties, but can also result in more classic vulnerabilities such as arbitrary code execution or buffer overruns.
	See CA-8

	UK
	6.1.2
	
	ed
	This remark applies to all these cross reference sections. There seems to be no proper list of the documents being referenced. The first three might be documents 5, 15, 20, of the Bibliography. But what is the fourth CERT/CC?

It is interesting to note that there is no reference to such a document for Ada. That is presumably partly because one is less likely to go astray in Ada, and if one uses Spark then most unlikely to go astray. Would the Ada 95 Quality and Style guide be relevant?
	Add proper references.
	See UK-43

	BE
	6.1.2
	
	te
	ISO WG9 has already studied Ada vulnerabilities providing the “Guide for the use of the Ada Ravenscar Profile in high integrity systems", so we need to cross reference this document.
	Add line:

“ISO/IEC TR 15942:2000: 5.4.2, 5.6.2 and 5.9.3”.
	Accept. Also add to bibiiography..

	BE
	6.1.2,

6.2.2 etc.
	
	ge
	Add cross references to SPARK and Ravenscar (?)
	
	Reject, but we are willing to add cross-references as provided by knowledgeable sources.

	BE
	6.1.6
	
	te
	The given bullet point is not the only possible approach.
	Add a new bullet point:

“Language designers could require that obscure language features could be optionally disabled by the developer via a pragma or compiler switch.”
	Accept in principle. “Language designers could provide language directives that optionally disable obscure language features.

	BE
	6
	Between 6.1 and 6.2
	ge
	After sub-clause 6.1 and before sub-clause 6.2, more sub-clauses similar to 6.1 could be inserted.
	New sub-clauses to be inserted after 6.1:

“Badly designed Language Features

For example the already mentioned composite assignment / boolean test using “=” in a Boolean condition rather than “==” in the C language (this specific vulnerability example is mentioned in sub clause 6.32 “Likely Incorrect Expression”).

Potentially Complex Language Features

The use of features such as the calling of procedures via their address adds complexity to an application and is frequently unnecessary. “Call-backs” are sometimes a neat approach but they are not always necessary – e.g. when the call-back registration sequence is always exactly the same.”
	Reject. “Badly-designed” is pejorative. We think that these two categories are covered by existing sub-clauses.

	CA
	6.2.1
	
	Te
	The only paragraph in this section does not specify that unspecified behaviour can result n different results each time a program is rebuilt using different tool options, such as optimization level,, different tools, or different versions of the same tool set.
	Change The external behaviour of a program whose source code contains one or more instances of constructs having unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

To

The external behaviour of a program whose source code contains one or more instances of constructs having unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked. The program can show different behaviour when built with different tool options, such as optimization level,, different tools, or different versions of the same tool set.
	See CA-9

	BE
	6.2.6
	
	te
	In the implications for standardization, no examples are given.
	Add an example to the bullet point at the end of sub clause 6.2.6:

“e.g. language designers should specify languages to support strong typing to prevent variables being assigned illegal values – an example of this is that if the type Boolean is simply implemented as an integer for which two constants FALSE=0 and TRUE=1 are defined, then clearly there is nothing to stop such a Boolean variable being set to the illegal value 2 and such an assignment cannot be prevented at either compile time or run time.”
	Reject. It is simply not feasible for strong typing to be tacked onto many existing languages. Furthermore, the proposed example is subsumed by the existing text.

	CA
	6.6

6.3.6
	
	Te
	Undefined or unspecified behaviours should be treated with even more caution
	Add a bullet to each section that language designers should make these behaviours implementation-defined behaviours (if they cannot eliminate them) to force them to be documented.
	See CA-10

	BE
	6.3.6
	
	te
	Implications for standardization are not complete.
	Add a 3rd bullet at the end of sub clause 6.3.6:

“Language specifiers could require that compilers provide pragmas or compiler switches to permit a developer to disable features prone to undefined behaviour.”
	Accept in principle. “Language designers could provide language directives that optionally disable …

	BE
	6.4.2
	
	te
	ISO WG9 has already studied Ada vulnerabilities providing the “Guide for the use of the Ada Ravenscar Profile in high integrity systems", so we need to cross reference this document.
	Add line:

“ISO/IEC TR 15942:2000: 5.9”.
	Accept

	BE
	6.4.5
	Bullet 5
	te
	Documenting non-conformance is a manual process. Thus it is vulnerable to human error. This needs to be addressed when it is suggested as a way of mitigating the vulnerability due to compiler implementation-defined behaviour.
	To the 5th bullet in sub clause 6.4.5 append:

“Checking of conformance to this document should be automated – for example using annotations in the source code that are referenced in the document. Any non-documented implementation defined constructs that are not annotated should be detected by the conformance checker.”
	Reject. We don’t want to provide advice at this detailed level.

	BE
	6.4.5
	
	te
	One way frequently used to reduce implementation dependency issues is to compile source code using at least two compilers from 2 different providers.
	Add a bullet:

“Verify code behaviour using two different compilers with two different technologies.”
	Accept

	BE
	6.4.6
	
	te
	Implications for standardization are not complete.
	Add a 3rd bullet at the end of sub clause 6.4.6:

“Language specifiers could require that compilers provide pragmas or compiler switches to permit a developer to disable or select specific implementation–defined behaviour.”
	Accept in principle. “Language designers could provide language directives that optionally disable …

	BE
	6.5
	
	ge
	What should also be included is behaviour change of existing (but not deprecated) features in a new version of the language. Perhaps this should even be a new paragraph 6.6?
	
	Reject. However a contribution of a new vulnerability description on this subject is invited.

	BE
	6.5.6
	
	te
	Implications for standardization are not complete.
	Add a 3rd bullet at the end of sub clause 6.5.6:

“Language specifiers should require compilers to provide pragmas or compiler switches to suppress the use of deprecated language features.”
	Accept in principle. “Language designers could provide language directives that optionally disable …

	CA
	6.6
	
	Te
	An issue that has been missed is that preprocessor directives are often included in a number of files, may augment or replace a directive with another one
	Give direction to application (6.6.4) that directives should always test to see if a variant has already been defined, should not rely upon symbols defined outside of the file being processed.
	See CA-11

	CA
	6.6.1
	P3
	Ed
	Feels like there is a missing preposition at the end of the sentence, and there shouldn't be on there in the first place.
	Replace “in the programming language that the code is written” with “in a given programming language”
	See CA-64

	CA
	6.6.1
	P3
	ed
	Avoid using the technical term "regular expressions" in this context.
	Change "from the regular expressions programmers expect" with "from the expressions programmers regularly expect"
	See CA-65

	CA
	6.6.3
	P1
	Te
	The assertion that macros greatly decrease readability and maintainability is not a true statement. While it is true that macros may greatly decrease readability/maintainability, it is also true that macros can greatly increase readability/maintainablity. A macro is functionally similar to a function call in that it can create an abstraction for a grouping of statements. The wording should be more to the effect that macros are dangerous and more error prone because they can present a view of the source code that is very different from the view of the source code that the compiler sees. For the case of macros and the purpose of increased efficiency by avoiding a function call, we should recommend instead that languages provide mechanisms to inline functions and procedure calls, since that is a safer view, and because the compiler can check rules for such a construct. For the case of conditional compiling, I see the problem being that this is not scalable. The more conditional switches embedded in the code, the more unreadable and unmaintainable the code becomes. Another important point is that by having one source for multiple targets, a change to the source for one target could inadvertently break a compilation for another target. Such a change would ideally need to be tested for every combination of switches. Instead, having the build environment select where to pull source from, it is possible to make a change for a target, without affecting other targets, providing a large cost savings.
	Change “maintainability is greatly” with “maintainability may be greatly”

Add another sentence “Macros are error prone and dangerous to use because they can make the source code look very different from the preprocessed code that the compiler sees. Text substitutions are applied without regard to the syntax rules of the language, and a macro substitution may create a substitution that is legal for the compiler, but different than what the programmer had intended. Such errors may be difficult to detect in code reviews or at run time.”

Add “Conditional compilation directives do not scale well, as the more such switches exist in a software application causes the application to be more and more unreadable and unmaintainable. Making a software change for one target has the potential to break a compilation for another target. To fully test such a change would involve examining the effects of generating executables for every possible combination of switches. If instead separate copies of the source are maintained for each target, then it becomes possible to make a change for a target without having to worry about the effects for other targets, thus creating large savings in cost and time. Further, the code for a particular target is easier to understand and maintain.”
	See CA-65

	CA
	6.6.3
	P2
	Te
	While pre-processor can cause problems for static analysis tools, we should note that it should be possible to run the static analysis tools on the pre-processed source code.
	Replace “analysis tools.” with “analysis tools, although it should be possible to apply the static analysis tools to to the intermediate pre-processed source code.”
	See CA-66

	CA
	6.6.3
	
	Ed
	Missing brackets in source code line
	Replace "#define CD(x, y) ((x) + (y) - 1) / (y)" with "#define CD(x, y) (((x) + (y) - 1) / (y))"

Note: This allows CD(x, y) to be used in an expression.
	See CA-67

	CA
	6.6.4
	3rd bullet
	Ed
	What is an “improperly nested language construct”?
	Suggest deleting this bullet or provide a better explanation or example of an improperly nested language construct.
	See CA-68

	CA
	6.6.5
	
	Te
	Add a bullet to describe that where separate versions of the source are needed to support multiple targets, that such code should be isolated and a wrapper provided to minimize maintenance costs.

Add a bullet that suggests if a language supports inlining functions that should be used if possible rather than creating a preprocessed macro.
	Add to first bullet, “One way to do this is to use the build environment to manage multiple versions of the source, one for each intended target, rather than try to have one source version that contains preprocessor switches to support all targets.”

Add a bullet, “Where multiple versions of code must exist to support multiple targets, the code should be isolated, and a wrapper provided to better decouple the conditional code from the application”

Add a bullet, “If a language supports inlining of functions and procedure calls, those features should be used instead of creating preprocessor macros, if possible.”

	See CA-86

	CA
	6.6.6
	
	Te
	Should mention providing support for inlining capabilities
	Add “Standards should consider providing capabilities to inline functions and procedure calls, to reduce the need for preprocessor macros.”
	See CA-69

	CA
	6.7.1
	
	Te
	Does not specify an actual vulnerability
	Add near the beginning the following:

Name confusion can lead to the application executing different code or accessing different objects than the writer intended, or than the reviewers understood. This can lead to outright errors, or leave in place code that may execute some time in the future with unacceptable consequences.
	See CA-12

	CA
	6.7.1
	1st bullet
	Te
	Should mention that this sort of problem could also apply to linking errors. C for example typically puts an underscore in front of global symbols. There is potential that an application written in another language will not understand such a convention, or may simply link to a similar name other than the expected global symbol. This could be a difficult to detect problem.

Are there other problems than linking problems related to this issue? Should we be more specific here and mention the problem with linkage?
	Replace bullet with; “Large projects often have mixed languages and global symbols exported to the linker may have language specific prefixes, suffixes, or mangling applied. It is possible that the name of a symbol being imported into another part of the program may map to a different global symbol than the intended symbol. This may lead to unexpected software behaviour that could be difficult to detect or diagnose.”
	See CA-70

	CA
	6.7.1
	P4
	Ed
	The second sentence starts with an opening square bracket, “[“, but there is no closing bracket.
	Replace “computer languages.” with “computer languages.]”
	See CA-71

	CA
	6.7.1
	P5
	Te
	This whole paragraph is confusing and has questionable value. It says there are similar situations, but doesn't say what they are, only what they are not. Either there should be some examples of these other “similar situations” or this paragraph should be deleted.
	Possibly delete this paragraph, or provide examples of these “similar situations”
	See CA-72

	CA
	Cross References
	
	ge
	There are no cross-references for Ada, yet C, C++, Java have references all throughout this document. Should there be an Ada cross-reference, such as the Ada style guide, Ada RM, etc?
	Consider adding cross-references to Ada-style guide or other Ada related documents throughout this document.
	See CA-73

	CA
	6.8 (all)
	
	
	This is a mess. May not even belong here.
	
	See CA-13

	CA
	6.8.5
	
	Te
	Should also add that the programmer should avoid creating names longer than the minimal length supported by potential ports of the application to various operating systems.
	Add a new bullet, “Avoid creating resource names that are longer than the minimal unique length of all potential target platforms.”
	See CA-74

	CA
	6.9.1
	
	Te
	Unused variable – app vulnerability,

This does not give a vulnerability
	Add:

Unused variables by themselves are innocuous, but can be combined with other vulnerabilities such as index bounds errors and buffer overflows and may mask errors or provide hidden channels
	See CA-14

	CA
	6.9.3
	P3
	Te
	Ignoring the return status of a function call is one common cause of an unused variable. The call may require a variable to be declared, but if the status is not checked, this could lead to erroneous behaviour. E.g., Not checking the return status of a memory allocation call. The programmer may feel that a memory allocation is not likely to fail, so don't bother writing code to handle that case. This should be made more explicit in the wording.
	Replace, “coding error;” with “coding error such as ignoring the return status of a function call;”
	See CA-75

	CA
	6.9.5
	
	Te
	Add suggestion to provide handling of all function call results, or output values from a procedure call.
	Add a bullet, “Add handling for any return status of a function call, or any output values from a procedure call.
	See CA-76

	CA
	6.10.1
	P1
	Ed
	Typo
	Replace “being issues” with “being issued”
	See CA-77

	CA
	6.10.1
	
	Te
	Identify reuse – does not give an actual application vulnerability.
	Add a paragraph:

When human do not recognize which identifier is being used, the program will behave in ways that were not predicted by reading the code. This is usually found quickly in test, but circumstances can arise (such as the values of the same-named objects being mostly the same) where harmful consequences occur. This weakness can also lead to vulnerabilities such as hidden channels where humans believe that important objects are being rewritten or overwritten when in fact other objects are being manipulated.
	See CA-15

	CA
	6.10.4
	3rd last para
	Te
	It states that the situation only occurs in languages that allow multiple declarations of the same identifier. This is true for the example given involving global symbols, but its a bigger problem if you have a nested scope using local variables. In this case the situation occurs in languages that support nested scopes.

 eg.

 int a_long_symbol_definition_lookup_table_a = 3;

 {

 int a_long_symbol_definition_lookup_table_b;

 a_long_symbol_definition_lookup_table_b = 4;

 }

if the second variable declaration is removed, the second assigment may still assign the value to the first variable, even though the name is different. This is bad.
	Suggest adding this example, because it applies to more languages than the first example.
	See CA-78

	CA
	6.10.4
	
	Te
	Missing notion that systems with different ranges for names (ex compiler vs linker) need a guide
	Add:

Languages where unique names can be transformed into non-unique names as part of the normal tool chain.
	See CA-16

	CA
	6.10.5
	
	Te
	Missing guidance for reduced name length situations
	Develop or use tools that identify name collisions or reuse when truncated versions of names cause conflicts.
	See CA-17

	CA
	6.11.3
	2nd last para
	Ed
	The use of the term “coder” is inconsistent with “software programmer” used elsewhere in the document.
	Replace “coder” with “software programmer” or just “programmer'
	See CA-79

	CA
	6.11.5
	5th bullet
	Ed
	Typo
	Replace “further analysis a cast;” with “further analysis;”
	See CA-80

	CA
	6.12.1
	
	Te
	This is not a statement of an application vulnerability
	Move the discussion of 6.12.1 into 6.12.3.

New 6.12.1:

Interfacing with hardware, other systems and protocols often requires access to to one or more bits in a single computer word, or access to bit fields that cross computer words for the machine in question. Mistakes can be made as to what bits are to be accessed because of the “endianness” of the processor (see below) or because of miscalculations. Access to those specific bits may affect surrounding bits in ways that compromise their integrity. This can result in the wrong information being read from hardware, incorrect data or commands being given, or information being mangled, which can result in arbitrary effects on components attached to the system
	See CA-18

	CA
	6.12.1
	P1
	te
	The sizes of the integer bit sets supported is more often related to the target platform and the implementation of the compiler rather than the language itself.
	Replace "by a particular language" with "by a particular target platform".
	See CA-81

	UK

CA
	6.13.1
	para 1
	te
	In the first sentence, the proportion mentioned is zero! So better reverse the sense to say that most cannot.
	Change to "Most real numbers cannot be represented exactly in a computer."

Add a paragraph:

Floating point suffers from inexactness of representation and inprecision (the precision depends upon the relative size of the number). As a result, algorithms that use floating can have anomalous behaviour when used with certain values. The most common results are erroneous results or algorithms that never terminate for certain segments of the numeric domain, or for isolated values.
	See UK-47

	UK
	6.13.3
	para 2
	te
	The third sentence is dubious and encourages the view that avoiding equality of floating-point values solves the problem which it does not.
	Delete third sentence.
	See UK-48

	CA
	6.13.3
	Para 2
	Te
	Floating point is rarely used as a loop counter
	Change sentence 1 to say:

Using a floating point value as the loop termination condition can propagate rounding ...
	See CA-21

	CA
	6.13.3
	
	te
	The choice of using a particular floating point precision representation may also affect the choice of algorithm used.
	The choice of using a particular floating point precision representation may affect the choice of algorithm used. For example, a 32-bit floating point number, regardless of implementation, has a 6-digit precision. This is insufficient for the arc-cosine term near the zeros in a great circle calculation when the law of cosines algorithm is used. The Haversine algorithm is used in this case without the need for an arc-cosine term.

Reference: R.W. Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no. 2, 1984, p. 159.
	See CA-82

	UK
	6.13.5
	bullet 1
	te
	This bullet item makes no sense from the point of view of numerical analysis. For a given algorithm and accuracy of the floating-point system, the acceptable tolerance will vary.
	Replace by "Unless the use of floating-point is very simple an expert in numerical analysis should check the stability and accuracy of the algorithm employed."
	See UK-49

	CA
	6.13.5
	
	Te
	Lacking recommendations for algorithms that are iterative
	Add a bullet:

- for algorithms that perform floating point calculations that depend upon small deltas for termination, provide analysis that the algorithm terminates under all possible inputs
	See CA-22

	CA
	6.13.5
	
	te
	new bullet
	Understand the implication of an algorithm when different precision floating point representations are used.
	See CA-83

	CA
	6.13.6
	
	Te
	It seems that it would be desirable to have a compiler issue warnings for attempts to test equality for floating point values.
	Add a bullet, “Languages should consider providing a means to generate warnings for code that attempts to test equality of two floating point values”
	See CA-84

	CA
	6.13.6
	Bullet 1
	Te
	IEEE 754:2008 is now a standard
	Remove the reference to IEEE 754R, and discussion of the revision.
	See CA-23

	UK
	6.13.7
	
	
	The references given, although useful, do not provide the best detailed practical advice.
	Add a further reference "N J Higham, Accuracy and stability of numerical algorithms, Siam, 1996".
	See UK-50

	CA
	6.14.1
	2nd Para
	Ed
	Typo
	Replace “have the wrong maps.” with “have the wrong mappings.”
	See CA-83

	CA
	6.14.3
	P3
	te
	Does "lost material" mean "unreachable memory" here? There is the possibility of creating large array objects in this scenario.
	Clarify "lost material", or add " possibility of creating large array objects" to the list.
	See CA-84

	BE
	6.14.3
	Paragraph 4, last sentence
	ed
	The use of the word “structures” implies a data structure but it looks like the author is talking about a case (e.g. Pascal) or switch (e.g. C) statement.
	“Subsequent indexing or switch/case structures”
→
“Subsequent indexing or switch/case statements”
	Agreed

	CA
	6.14.4
	1st bullet
	Te
	Part of this bullet should be moved to 6.14.5. It is more about how to avoid the vulnerability than a language characteristic. I also don't think the issue is correctly captured. The real issue is that some languages do not require full coverage of an enumeration in a switch/case statement. This is a problem because values can be added to the enumeration, but the software programmer may fail to add handling for the new value in every switch/case statement, which may lead to erroneous behaviour. The current wording suggests that Ada is unique in that it has a problem in this area, whereas in fact other languages are worse in this regard. The optional use of “others” in Ada at least provides full coverage for the enumeration, as does the “default” keyword in C, C++, etc. The interesting point is that languages that require full coverage should avoid having a default choice, since it improves maintainability (adding a new value to the enumeration causes the compilation to break and points out where changes need to be made), whereas languages that do not require full coverage should recommend using a default choice, because at least that gives you full coverage.
	Replace the first bullet with;

“Languages that do not require full coverage of an enumeration in a switch/case statement”

Add, “Languages that provide a default choice in a switch/case statement.”
	See CA-85

	CA
	6.14.4
	Bullet 4
	Te
	This is not a bullet, but the rest of bullet 3
	Make part of bullet 3
	See CA-24

	CA
	6.14.5
	
	Te
	Add a bullet to describe issues pointed out above in 6.14.4
	Add a new bullet, “When a language requires full coverage of an enumeration in a switch/case statement, a default choice should not be provided. For languages that do not require full coverage, then a default choice should be provided to ensure that there is full coverage”
	See CA-86

	CA
	6.15.1
	
	Te
	This section does not give an application vulnerability
	Add a paragraph:

Type conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array bounds errors, and arbitrary program execution.
	See CA-25

	CA
	6.15.4
	1st para after bullets
	Ed
	Sentence can be misread
	Replace “Verifiably in range operations” with “Verifiably in-range operations”
	See CA-87

	CA
	6.15.5
	Last Para
	Te
	The discussion is too C-specific for this part of the document
	Move paragraph to the C language Annex
	See CA-26

	CA
	6.15.6
	2nd bullet
	Te
	Suggest the alternative of at least generating compiler warnings.
	Replace “explicit.” with “explicit, or at least generating warnings for implicit conversions.”
	See CA-88

	FR
	6.16
	
	te
	This vulnerability is applicable to the general technique of having a sentinel value to mark the end of a table, of which C-like strings are just a (frequent) special case.
	Broaden the scope of the vulnerability to all sentinel-terminated structures, take strings as an example.
	Reject. FR is invited to write a proposal.

	CA
	6.16.1
	
	Te
	Section missing application vulnerability
	Add a sentence:

The results of an exploitation can be buffer overflows, data corruption, unplanned program termination, and arbitrary code execution.
	See CA-27

	FR
	6.16.3
	
	ed
	Unclear formulation:

String termination errors occur when the termination character is solely relied upon to stop processing on the string when the termination character is not present
	… and the termination character is not present
	Reject, words already present.

	FR
	6.16.5
	2nd bullet
	te
	This is too language specific
	Move to the C language annex.
	Reject

	FR
	6.17

6.18

6.19

6.20
	
	te
	These four clauses describe the same vulnerability. 6.17 (XYX) addresses access outside an array from the "low" end, while 6.18 (XYZ) is general, and 6.19 (XYW) addresses improper access through some library functions peculiar to C.

6.17 is the only one to assess that the vulnerability "may modify internal runtime housekeeping information". This assumes that the array is pushed on the stack on top of other information, and that the lower bound of the array is the end that is closest to the internal information. This is both language and implementation dependent, and is no reason to treat underflows differently from overflows.

6.19 is peculiar to the C family of languages. Most high level languages use simple assignment to copy arrays.

It is hard to tell how 6.20 differs from the preceding clauses.
	Merge the three clauses, move C peculiarities to the C language annex.
	Reject

	CA
	6.17.1
	
	Te
	This section does not give an application vulnerability
	Add:

As for all out-of-bounds accesses, this can result in corrupted data, premature program termination, non-terminating algorithms and arbitrary code execution.
	See CA-28

	FR
	6.17.3
	
	ed
	(in both cases …

There are more than two bullets following this phrase.
	(in all cases
	See FR-5

	FR
	6.17.3
	4th bullet
	ed
	when the array …
	when an array…
	See FR-6

	FR
	6.17.4
	1st bullet
	ed
	Remind how it can happen
	add at the end of the sentence:

(either by means of an index or by pointer arithmetic).
	See FR-7

	FR
	6.17.5
	
	te
	The first paragraph after the bullets (Some guideline document…) talks about a non-recommended way of avoiding the vulnerability, and is therefore useless. Moreover, it is applicable only to the C family of languages, since other languages may have arbitrary bounds, including negative values.
	Delete paragraph, or move to the C language annex.
	See FR-8

	FR
	6.17.5
	
	te
	The second paragraph after the bullets (In the past…) is about language implementation, not avoiding the vulnerability
	The paragraph should be moved to "language standardization" if necessary to justify a recommendation that all bounds should be checked, or removed.
	See FR-9

	CA
	6.18.1
	
	Te
	This section does not give an application vulnerability
	Add:

As for all out-of-bounds accesses, this can result in corrupted data, premature program termination, non-terminating algorithms and arbitrary code execution.
	See CA-29

	FR
	6.18.3
	1st paragraph
	ed
	The whole paragraph is very confused, and addresses various issues
	Restructure and make the various mechanisms clearer, by using bullets for example.
	See FR-11

	CA
	6.19.1
	
	Te
	This section does not give an application vulnerability
	Add:

This can result in corrupted data, premature program termination, non-terminating algorithms and arbitrary code execution.
	See CA-30

	FR
	6.19.3
	2nd paragraph
	ed
	Missing period after first sentence
	The arguments to these library functions include the addresses of the contents of the two storage areas and the number of bytes (or some other measure) to copy. Passing the…
	See FR-12

	FR
	6.19.6
	2nd bullet
	te
	The canary technique does not provide bounds checking, it detects (some) buffer overflows after the fact.
	Remove improper recommendation.

Recommend that languages provide true assignment for arrays.
	See Fr-13

	CA
	6.20.1
	
	Te
	This section does not give an application vulnerability
	Add:

As for all out-of-bounds accesses, this can result in corrupted data, premature program termination, non-terminating algorithms and arbitrary code execution.
	See CA-31

	FR
	6.20.3
	
	te
	"Overwriting adjacent data (or data at arbitrarily computed locations) outside the area allocated for an array leads to value failures of the application."

is the term "value" the intended one ? all failure mechanisms described in the previous clauses are also applicable.
	
	See FR-14

	CA
	6.20.4
	
	Te
	Missing applicability to languages that permit check suppression
	Add a bullet:

- Languages that provide bounds checking but permit the check to be suppressed
	See CA-32

	CA
	6.21.1
	Para 1
	Te
	Missing an application vulnerability
	Add before the final sentence:

Improper access via a function or method pointer can result in program termination or in in arbitrary code execution.
	See CA-33

	FR
	6.21.3
	
	te
	The vulnerability described here is more about pointer types, not values.
	If a pointer’s type or value is not appropriate for the data or function being accessed,
	See FR-15

	FR
	6.21.4
	3rd bullet
	te
	This has nothing to do with casting and is covered in the next vulnerability
	Remove
	See FR-17

	FR
	6.21.4
	4th bullet
	te
	This has nothing to do with casting and is covered in the next vulnerability
	Remove
	See FR-18

	CA
	6.21.6
	
	Te
	Missing implications for standardization
	Add:

Languages should consider creating a mode that provides a runtime check of the validity of all accessed objects before the object is read, written or executed.
	See CA-34

	CA
	6.22.1
	
	Te
	Section does not provide sufficient application vulnerability.
	Delete the last portion of the sentence (after the comma) and replace with:

..., which in turn can cause corrupted data, unplanned application termination, and arbitrary code execution.
	See CA-35

	FR
	6.22.1
	
	te
	The view that pointer arithmetic is used to index buffers is purely C-centric
	Change to:

… can lead to miscalculations that can result in addressing arbitrary locations …
	See FR-19

	FR
	6.22.3
	3rd and 4th bullet
	te
	Buffer overflows and underflows are just special cases of addressing arbitrary memory locations (the 3rd bullet)
	Remove
	See FR-20

	FR
	6.22.5
	1st bullet
	te
	The recommendation should be inverted, since languages that allow pointer arithmetic to access array elements also have a proper syntax
	Use proper indexing for accessing array elements rather than pointer arithmetic
	See FR-21

	FR
	6.22.5
	
	te
	Pointer arithmetic is justified only when addressing raw memory is needed (memory mapped devices for example)
	Add a bullet:

Use pointer arithmetic only when addressing raw memory is necessary
	See FR-22

	FR
	6.22.5
	2nd bullet
	te
	The recommendation is not clear. It should state what is forbidden rather than what is allowed.
	
	See FR-23

	FR
	6.23
	
	te
	It is very strange to have a clause for null pointer dereference, and not for the general case of invalid pointer (as can result from an uninitialized pointer variable), although the description states that "this is a special case of accessing storage via an invalid pointer"
	Rewrite the clause for the general case of invalid pointer values
	See FR-24

	FR
	6.23.3
	
	te
	Many languages do not initialize pointers to null
	Remove the sentence that states that "pointers are typically are initialized to null".
	See FR-25

	FR
	6.23.3
	
	te
	Null dereference can also access random memory places (typically at address 0) without causing runtime errors
	Add at the end of the last sentence:

or accessing arbitrary memory locations
	See FR-26

	FR
	6.23.4
	2nd bullet
	te
	All languages with pointers allow "the use of the null pointer". How could it be otherwise?
	Remove
	See FR-27

	FR
	6.23.6
	
	te
	The recommendation makes little sense if the language does not automatically initialize all pointers to null
	Change the beginning of the bullet to:

Pointers could be initialized automatically to null, and checked for the null value…
	See FR-28

	FR
	6.24.1
	3rd paragraph
	te
	A pointer is not necessarily an address
	Change the end of the first sentence to:

… twice on the same pointer value
	See FR-29

	FR
	6.25.1
	1st paragraph
	te
	Generics can be parameterized by other elements than types. For example, in Ada, they can be parameterized by values, objects, subprograms, packages and interfaces.

Constructs other than objects and functions can be generic (procedures and packages in Ada).
	Change the first sentence to:

Many languages provide a mechanism that allows language constructs to be parameterized by other language constructs.

(there are also other mentions of types as parameters in other subclauses)
	See FR-30

	FR
	6.25.3
	4th paragraph
	ed
	typo
	In the second sentence:

a generic class defines a series …
	See FR-31

	FR
	6.25.3
	5th and 6th paragraphs
	te
	These paragraphs are specific to C++
	Move to the C++ language annex
	See FR-32

	FR
	6.25.4
	1st bullet
	te
	The vulnerability applies only to languages that do not enforce a contract model for generics at compile time.

Parameterization is not limited to types.
	change bullet to:

Languages that permit definitions of constructs that can be parameterized without enforcing the consistency of the use of the parameters at compile time

Remove Ada from the list, since the properties of generic parameters are checked at compile time

(To be verified: case of Java)
	See FR-33

	FR
	6.25.5
	2nd bullet
	te
	This is a recommendation for language design, not for software developers
	Move to 6.25.6
	See FR-34

	FR
	6.25.6
	
	te
	Add recommendation to enforce the contract model at compile time or run time.
	Add a bullet:

Language specifiers should design generics in such a way that any attempt to instantiate a generic with constructs that do not provide the required capabilities results in a compile-time error.

For properties that cannot be checked at compile time, language specifiers should provide an assertion mechanism for checking properties at run-time. It should be possible to inhibit assertion checking if efficiency is a concern.
	See FR-35

	DE
	6.26.1
	
	ge
	The description is rather opinionated. Even though I share this opinion, I can easily see an OOP fan argue that inheritance considerably simplifies complexity (and he would be right in opining so).
	There are very concrete vulnerabilities caused by inheritance. It is not (just) a general complexity argument. The holes created allow significant attacks. The text ought to be rewritten to be focused on these concrete dangers
	Reject. Not actionable but 6.26 will be reconsidered as a whole.

	DE
	6.26.1
	1
	ed
	forth sentence, second part: sentence no verb.
	Add: “are more complicated or even impossible”
	Reject, 6.26 being reconsidered.

	DE
	6.26.1
	1
	ed
	last sentence does not parse in multiple ways.
	Should read: “A child class that resides … is … and has …
	Reject, 6.26 being reconsidered.

	DE
	6.26.1
	2
	ed
	last sentence. who is “it”?
	2.s.: .. “can be verified”. 3.s. “for a virtual”
	Reject, see previous sentence.

	DE
	6.26.1
	2
	te
	It is hardly a question of deciding what is a unit, because late binding in OOP challenges the very notion that there is a closed and testable unit. It is a question of dealing with the potential execution of unknown code at the time any test of any portion of the final system is conducted.
	Rephrase it somehow.
	Reject. Not actionable but 6.26 will be reconsidered as a whole.

	DE
	6.26.3
	
	te
	This is very and unnecessarily vague. The very concrete mechanisms of failure, namely execution of malicious redefinitions, accidental redefinition, accidental failure of redefinition, the breaking of class invariants … all can be described clearly, rather than resorting to some general statements of a more complicated SW development process. The failures caused specifically by multiple inheritance are presently not identified.
	back to committee for a more precise rewrite
	Reject. Not actionable but 6.26 will be reconsidered as a whole.

	DE
	6.26.5
	
	te
	The advice may eliminate the conceptual complexity of inheritance, but it creates problems of its own, due to copying. Also, it does not eliminate the mechanisms of failure, but merely attempts to minimize their occurrence.
	back to committee for a more precise rewrite
	Reject. Not actionable but 6.26 will be reconsidered as a whole.

	DE
	6.27.1
	1
	ed
	
	“out of bounds” -> “out-of-bounds” (probably a global edit on the document)
	Agreed

	DE
	6.27.1
	2
	ed
	
	keep first “often”, delete all others.
	Agreed, in principle

	DE
	6.27.1
	3
	ed
	
	“such as” –> “by”.

 “impacts as described above”
	Agreed

	DE
	6.27.5
	3rd bullet
	ed
	probably meant to indicate complete initialization
	“when fully initialized.”
	Agreed

	DE
	6.27.5
	7th bullet
	ed
	
	either “assignment is”” or “assignments are”
	Agreed, in principle

	DE
	6.27.5
	8th bullet
	ed
	
	drop first “that”
	Agreed

	DE
	6.27.6
	2nd bullet
	ed
	
	maybe “complete initialization”
	Reject, clear enough

	DE
	6.28.1
	1
	te
	true for the C-family of languages, false for others…

(“Therefore” implies causality. That causality does not exist, except for C-family programmers.)
	Replace “therefore” by “if so specified by the language semantics”.
	Accept

	DE
	6.28.1
	1
	te
	The same is true for decrementing and the wrap-around of negative values to positive values.
	Add the decrementing situation.
	Accept

	DE
	6.28.3
	1
	te
	There is a third possibility, obviously. And it is supported on most HW. (It’s the carry-over into the 33rd bit that causes the flag/trap on overflow.)
	Add: “..; a third behavior is to trap or to set a condition flag for overflow or underflow.”
	Accept

	DE
	6.29.4
	2nd bullet
	te
	Reason for proposed change: Implicit conversions per se are not the culprit. It is the type-unsafeness of the conversion or converting operation.
	Replace the 2 bullet with: “Language that explicitly or implicitly allow applying unsigned extension operations to signed entities or vice-versa.”

	Accept

	DE
	6.29.6
	
	te
	This advice is complete rubbish in this context. Obviously language semantics can make implicit conversions just as safe and correct as explicit ones.

	Could write instead: “..should define implicit and explicit conversions in a way that prevents alteration of the mathematical value beyond traditional rounding rules.”
	Accept

	DE
	6.30.1
	
	ed
	Sentence fails to parse.
	fix it
	Reject

	DE
	6.30.3
	2
	te
	Reason for change: simply replace + by – in your mind, which makes the difference obvious.
	should say “b plus c, times a” at the end.
	Accept

	DE
	6.30.4
	
	te
	associativity is missing
	change to “precedence and associativity rules”
	Accept. Also fix associativiity in the last line of 6.30.3.

	DE
	6.30.5
	
	ed
	
	parentheses (pl.)!
	Agreed

	DE
	6.31.3
	8
	ed
	
	parentheses (pl.) before “; consider”
	Agreed

	DE
	6.31.3
	10
	te
	the parenthetical remark seems to identify C/C++ as a culprit, which is mostly wrong here.
	Change the parenthetical remark to :

All examples use the syntax of C or Java for brevity; the effects can be created in any language that allows functions with side-effects in the places where C allows the increment operations.
	Accept

	DE
	6.31.5
	1st bullet
	te
	The behavior cannot be prohibited. Only expressions susceptible to the behavior can be prohibited.
	Change test to “prohibit expressions that are susceptible to these..”
	Accept

	DE
	6.31.6
	
	ge
	Objection. This issue has been discussed in the language design community for 40 years now. To take a stance here that goes against all design decisions made by nearly all languages (excepting functional languages) is inappropriate.
	Request: leave it blank.
	Reject, but change “restrictions” to “features” and add the words “such as pure functions”.

	DE
	6.32.3
	3
	te
	The words with the example are definitely wrong. The C standard in unambiguous about the left-to-right (and short circuit) semantics of “||”, which the text puts in doubt with the first part. There is definitely a guarantee that the first subexpression is indeed executed first.

Some languages are silent on the short-circuit issue. In that case, a very similar example applies indeed, where execution of either operand is not guaranteed even for the non-short-circuited forms of “and” and “or”. (C is not among them by my reading of the bitwise OR operator, but I defer to cognoscendi.).
	return to committee to figure out what good wording should be like
	Accept in principle. The editor is requested to reconsider the example. See CA-46.

	DE
	6.33.3
	1st example
	te
	fun_a is dead; fun_b is very alive.
	fix it
	Accept.

	DE
	6.33.3
	last
	ed
	
	uses -> use
	Agreed

	DE
	6.33.5
	
	te
	Add the application of standard branch coverage metrics to the list?
	“apply standard branch coverage measurement tools and ensure by 100% coverage that all branches are neither dead nor deactivated.”
	Accept

	DE
	6.35.3
	
	ed
	could -> will
	or loops -> or loop construct (or else fix the grammar anyway)

	Agreed

	DE
	6.35.3
	
	te
	The ambiguity of nested ifs is not mentioned.
	add: moreover, for a nested “if .. then if .. then .. else ..” the programmer may be confused about which “if” statement controls the “else” part directly.
	Accept

	IT
	6.36.3
	1
	Ed
	Poor phrasing.
	A common assumption is that a loop control variable is a constant since such variables are not usually modified in the body of the associated loop.
	Agreed

	DE

IT
	6.36.4
	1st Bullet
	ed
	Let the language annexes say stuff like that.
	drop the parenthetical remark.

Languages that permit a loop control variable to be modified in the body of its associated loop (some languages, e.g., Ada, treat such usage as an erroneous construct and require translators to diagnose it).
	Agreed

	DE
	6.37
	
	te
	Please do not use “sentinel value” as a synonym for index bounds. I.e., replace the uses.

“Sentinel value” in computer science is much more closely related to guarding the end of homogeneous structures that need to be iterated on. E.g. the NUL as the string-terminating sentinel value of the representation in C. I.e., a sentinel value is some designated special value that when read tells “you just fell off the cliff”.
	replace most of the uses of “sentinel value” by “bounds” or “index bounds”. (Attention: one use is correct)
	Accept

	IT
	6.37.1
	Bullet 2
	Ed
	Poor phrasing.
	Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1 (or some other start point); or using the length of a structure as its bound instead of the sentinel values.
	Agreed

	IT
	6.37.1
	4
	Ed
	Spurious parenthesis.
	The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden channels.
	Agreed

	IT
	6.37.3
	Bullet 2
	Ed
	Syntax errors.
	incomplete comparisons or calculation mistakes,
	Agreed

	IT
	6.37.6
	Bullet 1
	Ed
	Incorrect use of colon at end of sentence, instead of standard period.
	Prevent the need for the developer to be concerned with explicit sentinel values.
	Agreed

	IT
	6.39.3
	2-3
	Ed
	The break between paragraph 2 and paragraph 3 is at an illogical place.
	In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When the subprogram references the corresponding formal parameter, it is actually sharing data with the calling program. If the subprogram changes a formal parameter, then the corresponding actual argument is also changed. If the actual argument is an expression or a constant, then the address of a temporary location is passed to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters act as local variables. Values are passed between the actual arguments and the formal parameters by copying. Some languages may control changes to formal parameters based on labels such as in, out, or inout. There are therefore three cases to consider: call by value for in parameters; call by result for out parameters and function return values; and call by value-result for inout parameters. For call by value, the calling program evaluates the actual arguments and copies the result to the corresponding formal parameters that are then treated as local variables by the subprogram. For call by value, the values of the locals corresponding to formal parameters are copied to the corresponding actual arguments. For call by value-result, the values are copied in from the actual arguments at the beginning of the subprogram's execution and back out to the actual arguments at its termination.
	Agreed

	IT
	6.39.6
	Bullet 1
	Ed
	Verbs erroneously at singular.
	Programming language specifications could provide labels – such as in, out, and inout – that control the subprogram’s access to its formal parameters, and enforce the access.
	Agreed

	IT
	6.40.6
	Bullet 2
	Ed
	Erroneous (forward) reference. As a general practice, hard-coded references should be avoided to prevent the risk of them inadvertently becoming obsolete.
	Define implicit checks to implement the assurance of enclosed lifetime expressed in 6.40.5. Note that, in many cases, the check is statically decidable, for example, when the address of a local entity is taken as part of a return statement or expression.
	Agreed

	IT
	6.41.3
	1 (Period 2)
	Ed
	Verb erroneously at singular.
	If the number and type of the actual arguments do not match the number and type of the formal parameters, then the push and the pop will not be commensurable and the stack will be corrupted.
	Agreed

	IT
	6.43.1
	1 (Period 1)
	Ed
	Double dash instead of “em dash”.
	Unpredicted error conditions–perhaps from hardware (such as an I/O device error), perhaps from software (such as heap exhaustion)–sometimes arise during the execution of code.
	Agreed

	IT
	6.43.5
	Bullet 7
	Ed
	Failed compliance to style convention (missing comma).
	In applications with the highest requirements for reliability, defense-in-depth approaches are often appropriate, i.e., checking and handling errors thought to be impossible.
	Agreed

	IT
	6.43.6
	Bullet 1
	Ed
	Failed compliance to style convention (missing comma).
	A standardized set of mechanisms for detecting and treating error conditions should be developed so that all languages to the extent possible could use them. This does not mean that all languages should use the same mechanisms as there should be a variety (e.g., label parameters, auxiliary status variables), but each of the mechanisms should be standardized.
	Agreed

	IT
	6.45.5
	Bullet 3
	Ed
	Failed compliance to font convention (bold italic instead of courier).
	Unchecked_Conversion
	Agreed

	IT
	6.45.6
	Bullet 1
	Ed
	Failed compliance to font convention (italic instead of courier).
	Unchecked_Conversion
	Agreed

	UK
	6.46.1
	para 1
	ed
	At first sight, the third sentence is a bit muddled. The key problem is that a program can stop because it runs out of storage. This can happen with a long running program just because of the elapse of time. Moreover, a program that would not normally run out of storage because it only runs for a short time can be attacked by repeatedly causing it to execute a sequence that triggers the leak thus causing a denial of service. And why does this refer to safety-critical systems specifically? It is a problem for any critical system. Maybe a good solution is to mention shutdown in the second sentence.
	Rewrite sentence 2 thus "... of available memory and eventually lead to the shutdown of the program."

Rewrite sentence 3 thus "A memory leak can be exploited by an attacker to cause a denial-of-service by causing the program to execute repeatedly a sequence that triggers the leak.

Add sentence 4. "Moreover, a memory leak can cause any long-running critical program to shutdown prematurely."
	See UK-54

	UK
	6.46.2
	
	
	It is regrettable that a respectable document should use deplorable junk slang such as aka.
	Replace "aka" by "alias".
	See UK-55

	UK
	6.46.3
	para 1
	te
	Second sentence: it would be better to start "Moreover" and it seems unnecessary to include "partially". Fragmentation often occurs even if all memory is returned. The last part of the sentence would read more smoothly as "... in the inability to obtain storage of the required size."
	Change second sentence to "Moreover, memory claimed and returned can cause the heap to fragment, which will result eventually in the inability to obtain storage of the required size."
	See UK-56

	UK
	6.46.3
	para 2
	ed
	The whole point is that the attacker can make it leak more quickly. So the comparative adverb should be used. Either "more quickly" or "quicklier"; however the latter form is rarely used these days probably because nobody is taught English properly anymore.
	Change to "... application to leak more quickly...".
	See UK-57

	UK
	6.46.4
	bullet
	te
	The problem also arises even if there is a garbage collector since it might still result in fragmentation.
	Extend sentence "...under program control or through the use of a garbage collector."
	See UK-58

	UK
	6.46.5
	bullet 1
	ed
	Why upper case G in Garbage?
	Use lower case g.
	See UK-59

	UK
	6.46.5
	bullet 1
	te
	This bullet is unclear. Why distinguish garbage collectors that are intrinsic to those that are add-ons? Is it trying to say that add-ons are not 100% effective? Should likelihood be probability? They are technical terms and should be used correctly.
	Clarify. No wording suggested since it is not clear what it is attempting to say.
	See UK-60

	UK
	6.46.7
	
	
	No bibliography given
	Perhaps refer to MISRA C as an example of limiting usage of dynamic memory.
	See UK-61

	UK
	6.47
	
	te
	Should not this section be headed "Argument Passing to Library Subprograms"?

In most languages function is used in the sense of a subroutine that returns a result as in mathematics. But clearly these sections should apply to all subroutine calls.

And throughout this section it refers to "calling function" but the calling code might not itself be a function. Better to say "calling code"
	Change section heading to "... to Library Subprograms" or to "... to Library Subroutines".

Throughout this section change "function" in the sense of the called routine to "subprogram" or "subroutine". And change "calling function" to "calling code".
	See UK-62

	UK
	6.47.1
	para 1
	te
	How do libraries supply objects and how does one pass parameters to an object? By a subprogram/method! This should also discuss the question of the number of parameters being correct as well.
	Discuss number of parameters as well.
	See UK-63

	UK
	6.47.1
	para 1
	ed
	Second sentence is confusing.
	Change to "When parameter validation is required, it should be demonstrated that the library function performs such validation or the application should undertake it."
	See UK-64

	UK
	6.47.3
	para 2?
	te
	The question of the number of parameters being the same needs to be addressed.
	Add "If the number of parameters supplied is not the same as the number expected and the implementation does not check this then this will typically result in the integrity of the execution stack being destroyed. The final result is likely to be quite unpredictable. For example an arbitrary item of data could be interpreted as a return address and the program could jump into outer space."
	See UK-65

	UK
	6.47.5
	bullets
	ed
	The first two bullets are statements, the last three are imperative commands. They should be rewritten to be uniform.
	Unify grammar.
	See UK-66

	UK
	6.48.4
	bullet 2
	te
	It seems incorrect to say "i.e. the stack" because that implies that all data space is in the stack which is not true. One could change it to e.g. or simply remove it.
	Either delete "i.e. the stack" or replace by "e.g. the stack"
	See UK-67

	UK
	6.48.5
	bullet 3
	te
	it seems surprising that self-modifying code should ever be necessary in critical code. And "heavily" is a curious word in this context.
	Change to "Self- modifying code should never be used in the most critical applications. In those extremely rare instances ... should be very limited and thoroughly documented."
	See UK-68

	UK
	6.48.6
	bullet
	ed
	The term digital signature is used here as well. That is surely just one means to the desired end.
	Change to "...check that the library used in the application environment is identical to that used in the compile/test environment"
	See UK-69

	UK
	7.2
	
	ed
	This use of the word sandbox is outside our domain of understanding and that of the Shorter Oxford Dictionary which gives the following possible meanings. 1) A box with a perforated top for sprinkling sand on to wet ink; 2) A box or receptacle holding sand, used for various purposes, esp a) a box used on a locomotive for sprinkling sand on slippery rails; b) (golf) a container for sand used in teeing; c) a small low-sided children's sandpit; d) a box kept indoors and filled with sand or other material for a cat to urinate or defecate in. We assume it is none of those meanings. Note that there is a definition in Wikipedia, perhaps refer to that or summarise it.
	Please clarify or refer to a definition of sandbox.
	See UK-71

	UK
	7.3.4
	bullet 1
	ed
	Here is another use of digital signature.
	Delete "with a digital signature"
	See UK-72

	UK
	7.3.4
	bullet 2
	te
	How does validating a library determine whether it is required?
	Split into “All native libraries should be validated” and “Determine whether the application requires the use of the native library” (presumably omitting it if not required).
	See UK-73

	UK
	7.4.1
	para 1
	ed
	It would be nice to have a definition of an Easter Egg in this context.
	Define "Easter Egg" perhaps by writing something like "...may be no more than an amusing additional and irrelevant piece of functionality (such an addition is often called an Easter Egg), like the flight simulator..."
	See UK-74

	UK
	7.4.4
	para 1
	ed
	Spurious apostrophe in "End user's".
	Replace by "End users".
	See UK-75

	UK
	7.4.4
	bullet 1
	te
	Observe that this means that all compilers and similar software tools used in developing critical applications should be from such a developer. Moreover, it is not enough for the developer to have such a process but it must be used as well!
	Rewrite thus "Programs and development tools such as compilers that are to be used in critical applications should come from a developer who uses a recognized and audited development process for the development of those programs and tools. For example ...".
	See UK-76

	UK
	7.5.4
	para 2
	te
	The OS might have an option to clear the swap file on shutdown (Windows does).
	Add "If the OS allows, clear the swap file on shutdown."
	See UK-77

	UK
	7.6.3
	para 2
	ed
	Why Perl? Unless choosing Perl specifically for this can be justified then it should be deleted.
	Delete “Perl”.
	See UK-78

	UK
	7.6.3
	para 3
	ed
	The example of a switch is a bit low-level. Another example might be that if you accept data from a public source, such as an RSS feed, then you have to be prepared to throttle it in case someone deliberately sends too much data.
	Perhaps illustrate with another example as described.
	See UK-79

	UK
	7.7.4
	bullet 8
	ed
	"refractor" should be "refactor".
	Change "refractor" to “refactor”.
	See UK-80

	UK
	7.8
	para 7 bullet 3
	ed
	"browsers" was probably meant to be singular.
	Change “browsers” to “browser”.
	See UK-81

	UK
	7.8.3
	para 2
	ed
	Is “inner-office” correct?
	Possibly “inter-office” was intended.
	See UK-82

	UK
	7.9.3
	para 1
	ed
	It seems likely that “filenames or folder names” was intended rather than “files or folders”.
	Change “files or folders” to “filenames or folder names”.
	See UK-83

	US
	7.9.4
	para 1
	ed
	The use of some scripting languages rather than compiled languages makes this vulnerability more likely.
	Additional paragraph:

“use a programming language that enforces the quoting of strings
	Agreed

	US
	7.10.3
	para 1
	ed
	Second sentence duplicates the first one
	delete “This should ensure the integrity of the data”
	Agreed

	UK
	7.11
	
	te
	OS fingerprinting often makes use of knowing which OS’s IP stacks fail to follow the RFCs correctly.
	In the avoidance section add selection of an OS that confirms to international standards.
	See UK-84

	US
	7.11.4
	para 2
	ed
	First bullet duplicates previous sentence

	delete first bullet
	Agreed

	US
	7.11.4
	para 2
	ed
	It is unclear how trust boundaries relate to time discrepancies, for example.
	Add some mitigation technique for time discrepancies.
	Reject, the US is invited to submit a proposal.

	US
	7.12.3
	para 1
	ed
	It is awkward to speak of data being “long”.
	Say instead “occupies less memory than”
	Agreed

	US
	7.12.14
	para 1
	ed
	mention specific language features that can assist in clearing memory on deallocation
	add after “programming language features”:

(such as destructors or finalization procedures)
	Agreed (taken as 7.12.4)

	US
	7.12.14
	Para 1
	ed
	Do not use subjunctive
	delete “would”
	Agreed (taken as 7.12.4)

	US
	7.13.3
	Para 1
	ed
	end of sentence :”does has control over”
	 replace “has” with “have”
	Agreed

	US
	7.13.4
	3rd bullet
	ed
	Remove “Warning” : all the bullets have the same advisory character.
	
	Agreed

	UK

US
	7.13.4
	3rd bullet
	ed
	typo “fir”
	write “for”
	Agreed

	US
	7.14.1
	para 1
	ed
	Run-on sentence
	insert comma before “otherwise”
	Agreed

	US
	7.12.3
	para 1
	ed
	It is awkward to speak of data being “long”.
	Say instead “occupies less memory than”
	Duplicate

	US
	7.12.14
	para 1
	ed
	mention specific language features that can assist in clearing memory on deallocation
	add after “programming language features”:

(such as destructors or finalization procedures)
	Duplicate

	US
	7.12.14
	Para 1
	ed
	Do not use subjunctive
	delete “would”
	Duplicate

	US
	7.13.3
	Para 1
	ed
	end of sentence :”does has control over”
	 replace “has” with “have”
	Duplicate

	US
	7.13.4
	3rd bullet
	ed
	Remove “Warning” : all the bullets have the same advisory character.
	
	Duplicate

	US
	7.13.4
	3rd bullet
	ed
	typo “fir”
	write “for”
	Duplicate

	US
	7.14.1
	para 1
	ed
	Run-on sentence
	insert comma before “otherwise”
	Duplicate

	US
	7.16.4
	para1
	ed
	Second sentence is confusing.
	Write instead:

Users should not be able to access any information simply by requesting direct access to that page, if they are not authorized for it.
	Agreed, in principle.

	US
	7.17,1
	para 1
	ed
	
	
	

	US
	7.17.3
	Para 4
	ed
	says “rely listening”
	write: “rely on listening”
	Agreed

	US
	7.17.4
	5th bullet
	ed
	bullet seems irrelevant to this subsection. Was it intended for 7.13.3 ?
	Remove bullet
	Agreed

	US
	7.18.3
	para 1
	ed
	Says: “Client-side systems with hard-coded passwords propose even more of a threat”
	replace “propose” with “present”
	Agreed

	UK
	7
	
	ge
	Spoofing of data is not mentioned, e.g. Somali pirate ship sends spoof AIS data claiming to be a trawler.
	Mention spoofed data.
	Reject. The UK is invited to submit a proposal.

	UK
	Annex A
	
	ge
	We do not see how this annex relates to the rest of the document. It is referred to in Annex B but not elsewhere. The same applies to Annex B.
	Clarify use of and need for Annexes A and B.
	These both contain informative information that should help in future Annex development.

	FR
	A.6
	Title
	ed
	typo
	can very => can vary
	Agreed

	UK
	Annexes C & D
	
	ge
	Section 6 on language vulnerabilities is written in the style described by the template in Annex C and section 7 on application vulnerabilities is written in the style of Annex D. But it is confusing that the sections in 6 have the first subsection entitled application vulnerability rather than language vulnerability.
	Maybe change headings of sections in 6 from "Description of application vulnerability" to simply "Description of language vulnerability" or maybe to something like "Language vulnerability and implication for application".
	See UK-88

	UK
	Annex E
	
	ge
	This annex describes 66 vulnerabilities and indeed these are covered in Sections 6 and 7 but not quite in the same order. The structured list in the annex is laid out in a helpful way and one wonders why sections 6 and 7 did not follow the same structure.
	Align order and structure of this annex with sections 6 and 7. Or delete this annex.
	See UK-89

	UK
	Annex E
	
	te
	We find it very surprising that there is no discussion whatsoever about vulnerabilities in multitasking. Many, perhaps almost all, critical systems in areas such as avionics involve parallel processing at some level. There are many ways in which these programs are vulnerable to errors such as deadlock and interference due to multiple access to data. If this document is meant to be comprehensive then these areas really must be addressed.

We suggest a new section E.12 could be added and then the existing E.12 and E.13 would become E.13 and E.14. And then of course Sections 6 and 7 need expanding to match. The new E.12 could be subdivided thus
E.12.1 Concurrency

E.12.2 Communication

E.12.3 Scheduling
See below for suggestions for detailed vulnerabilities.

	Add vulnerabilities on parallelism and multitasking to this annex and corresponding sections in the body of the document.
	See UK-90

	E.12.1 Concurrency
	Language Feature
	Vulnerability

	
	Support for concurrent static tasks
	1. Not all tasks starting their execution

2. Premature silent termination of tasks

3. Tasks executing with inappropriate parameters (due to API difficulties)

4. Overflow of task-local data (task attributes)

5. Indefinitely waiting for another task to terminate (join)

	
	Support for dynamic creation of tasks
	1. Insufficient memory (or global or pooled)

2. Memory exhaustion due to memory leakage

	
	Hierarchical task structures
	1. Indefinitely waiting for child task to terminate

2. Error propagation from child task creation

	
	Abort (one task by another)
	1. Rogue task aborting correctly behaving task (rather than visa versa)

2. Task terminating whilst holding locks/resources

	
	ATC (Asynchronous transfer of control)
	1. Task being in an inappropriate state to handle the asynchronous event

2. Program scope terminating whilst holding locks/resources

	
	Asynchronous event handling
	1. Excessive work load generation

	
	Asynchronous and synchronous task control
	1. Suspended tasks not being continued

2. Tasks being suspended whilst holding locks/resources

3. Race conditions

	
	Clock/Time
	1. Drift between clock and 'real-time'

2. Drift between clocks on distributed platform

	
	Delay/Sleep
	1. Mismatch between statement intent and clock granularity

	E.12.2 Communication and synchronization
	Language Feature
	Vulnerability

	
	Asynchronous communication via shared variable
	1. Unintentional use of shared variables

 2. Mutual update problem

 3. Race conditions

	
	Synchronous communication (e.g. semaphores, monitors, rendezvous)
	1. Deadlocks

2. Race conditions

	E.12.3 Scheduling
	Language Feature
	Vulnerability

	
	Program control over scheduling parameters or policy
	1. Loss of liveness (some tasks fail to make progress)

2. Loss of timeliness (some task failing to meet a deadline)

3. Assumptions of scheduling analysis not been met by the program,

 for example execution times, blocking times, minimum times between

 sporadic tasks, intensity of interrupts, overheads of run-time,

 garbage collection overheads etc.

4. Undetected miss of a deadline

	
	Fixed priority scheduling
	1. Priority inversion

 2. Lack of priority inheritance

	
	Dynamic priorities
	1. Undermine static analysis

	
	Earliest deadline first (EDF) and other dynamic scheduling schemes
	1. Urgency inversion

2. Cascade failures

	BE
	Bibliography
	Page 108
	ed
	References to “Hatton: appear in the text but it is not provided in the bibliography.
	Add the relevant “Hatton” document to the list
	Agreed

	BE
	Bibliography
	Page 108
	ed
	As a result of comments on 6.1.2 and 6.4.2 add a reference to bibliography.
	Add following entry to the list:

“ISO/IEC TR 24718: 2004: Guide for the use of the Ada Ravenscar Profile in high integrity systems”
	Agreed

1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2
Type of comment:
ge = general
te = technical
ed = editorial

NOTE
Columns 1, 2, 4, 5 are compulsory.

page 44 of 45
ISO electronic balloting commenting template/version 2001-10

