
ISO/IEC JTC 1/SC 22/WG 23 N 0325
Proposed rewrite of WXQ and YZS

Date 24 March 2011
Contributed by Jim Moore (consulting drafts previously prepared by Beth Karlin and Tom Plum

and feedback at Meeting #17). The changes are marked relative to the most recent

baseline draft, N0303.
Original file name WG23 Dead Store.doc
Notes Revision to N0316

From the Minutes of Meeting #17:

We decide that there are two vulnerabilities, to be named "Unused Variable" and

"Dead Store". Unused Variable is a vulnerability because it leaves storage to be

used by an attacker. Dead Store is a problem because it indicates a design or

coding error. (If the apparent errant behaviour was really intended then the

variable should have been marked as Volatile.) The compiler may optimize it

away and the intended communication between the processes may not occur.

(Note that the new version of C++ may separate "Atomic" from "Volatile".)

Moore will redraft [ACTION].

6.18 Dead Store [WXQ]
6.18.1 Description of application vulnerability
A variable's value is assigned but never subsequently used, either because the variable is not
referenced again, or because a second value is assigned before the first is used. This may
suggest that the design has been incompletely or inaccurately implemented, i.e. a value has
been created and then ‘forgotten about’.
In the programming languages C and C++ a volatile variable is always assumed to be
“subsequently used”, because storing to such variables may have side effects unknown to the
implementation.
Dead stores by themselves are innocuous, but can combine with other vulnerabilities, such as
index bounds errors or buffer overflows, to mask errors or provide hidden channels.
This vulnerability is very similarrelated to Unused Variable [YZS]. Indeed, a variable that is
declared and initialized but never subsequently used may be regarded as either a dead store or
an unused variable.

6.18.2 Cross reference
CWE:
563. Unused Variable
MISRA C++ 2008: 0-1-4 and 0-1-6
CERT C guidelines: MSC13-C
See also Unused Variable [YZS]

6.18.3 Mechanism of failure
A variable is assigned a value but this is never subsequently used. Such an assignment is then
generally referred to as a dead store.
A dead store may be indicative of careless programming or of a design or coding error; as either
the use of the value was forgotten (almost certainly an error) or the assignment was performed

even though it was not needed (at best inefficient). Because compilers routinely identify dead
stores, their presence may indicate that compiler diagnostics have been suppressed or ignored.

There are legitimate uses for apparent dead stores. For example, the value of the variable might
be intended to be read by another execution thread or an external device. In such cases,
though, the declaration should be marked as volatile. Common compiler optimization
techniques will remove apparent dead stores if the variables are not marked volatile, hence
causing incorrect execution.
Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.
A dead store is justifiable if, for example:
• The variable is volatile and the assignment of a value triggers some external event.
• The code has been automatically generated, where it is commonplace to find dead stores
introduced to keep the generation process simple and uniform.
• The code is initializing a sparse data set, where all members are cleared, and then selected
values assigned a value.
While a dead store is very unlikely of itself to be the cause of erroneous behaviour., their
presence may also be an indication that compiler warnings are either suppressed or are being
ignored by programmers.

6.18.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following
characteristics:

 Dead stores are possible in anyAny programming language that provides assignment.
(Pure functional languages do not have this issue.)

6.18.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
• Enable detection of dead stores in their compiler (if available). The default setting may be to
suppress these warnings.
• Use static analysis to identify any dead stores in the program, and ensure that there is a
justification for them
• Use the volatile attribute in the declaration of variables intended to be accessed by other
execution threads or external devices.
• Do not declare variables of compatible types in nested scopes with similar names

6.18.6 Implications for standardization
In future standardization activities, the following items should be considered:
• Languages should consider requiring mandatory diagnostics for dead store.

6.19 Unused Variable [YZS]
6.19.1 Description of application vulnerability
A variable is declared but neither read nor written in the program, making it an unused variableAn
unused variable is one that is declared by neither read nor written in the program. This type of
error suggests that the design has been incompletely or inaccurately implemented.
Unused variables by themselves are innocuous, but can combine with other vulnerabilities such
as index bounds errors or buffer overflows to mask errors or provide hidden channelsbut provides
memory space that attackers might use in combination with other techniques.
This vulnerability is very similarrelated to Dead Store [WXQ]. Indeed, a variable that is declared
and initialized but never subsequently used, may be regarded as either a dead store or an
unused variable.

6.19.2 Cross reference

Formatted: Bulleted + Level: 1 + Aligned at:
0.25" + Indent at: 0.5"

CWE:
563. Unused Variable
MISRA C++ 2008: 0-1-3
CERT C guidelines: MSC13-C
See also Dead Store [WXQ]

6.19.3 Mechanism of failure
A variable is declared, but never used. It is likely that the variable is simply vestigial, but it is also
possible that the unused variable points out a bug. This is likely to suggest that the design has
been incompletely or inaccurately implementedThe existence of an unused variable may
indicate a design or coding error.
Whilst an unused variable is very unlikely of itself to be the cause of erroneous behaviour,
asBecause compilers routinely diagnose unused variables, their presence is oftenmay be an
indication that compiler warnings are either suppressed or are being ignored by programmers.
While unused variables are innocuous, they do provide available memory space to be used by
attackers to exploit other vulnerabilities.

6.19.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following
characteristics:
• Unused variables (in the technical sense above) are possible only in languagesLanguages that
provide variable declarations.

6.19.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
• Enable detection of unused variables in the compiler. The default setting may be to suppress
these warnings.

6.19.6 Implications for standardization
In future standardization activities, the following items should be considered:
• Languages should consider requiring mandatory diagnostics for unused variables.

6.18 Dead Store Unread Variable [WXQ]

6.18.1 Description of application vulnerability

A variable's value is assigned declared but never subsequently used,.

If the variable had never been initialized, it is considered an unused

variable. If the variable had been previously initialized, it is

considered a dead store. In either case, the variable is never

programmatically read. either because the variable is not

referenced again, or because a second value is assigned before the

first is used. This may suggest that the design has been incompletely

or inaccurately implemented, i.e. a value has been created and then

'forgotten about'.

The vulnerability is that any external write, either inadvertently

through a bad pointer or maliciously through a hidden channel, will go

undetected. The vulnerability is less if the variable is declared

locally vs. globally, as the space for the variable is only present

while the stack frame is open. As soon as the subprogram exits, the

space disappears.

Note: In C and C++, a _volatile_ variable is always assumed to be

"subsequently used", because storing to such variables may have side

effects unknown to the implementation.

[remove last paragraph with referenc to YZS]

6.18.2

[remove references to YZS]

