ISO/IEC JTC 1/SC 22/WG 23 N 0326
Markup of Proposed rewrite of WXQ and YZS

Date 25 March 2011

Contributed by Secretary

Original file name

Notes Meeting #17 markup of N0325

From the Minutes of Meeting #17:
We decide that there are two vulnerabilities, to be named "Unused Variable" and
"Dead Store". Unused Variable is a vulnerability because it leaves storage to be
used by an attacker. Dead Store is a problem because it indicates a design or
coding error. (If the apparent errant behaviour was really intended then the
variable should have been marked as Volatile.) The compiler may optimize it
away and the intended communication between the processes may not occur.
(Note that the new version of C++ may separate "Atomic" from "Volatile".)
Moore will redraft [ACTION].

6.18 Dead Store [WXQ]

6.18.1 Description of application vulnerability

Avariable's value is assigned but never subsequently used, either because the variable is not
referenced again, or because a second value is assigned before the first is used. This may
suggest that the design has been incompletely or inaccurately implemented, i.e. a value has
been created and then ‘forgotten about’.

This vulnerability is verysimitarrelated to Unused Variable [YZS]. iadeed,avariable-thatis

6.18.2 Cross reference

CWE:

563. Unused Variable

MISRA C++ 2008: 0-1-4 and 0-1-6

CERT C guidelines: MSC13-C

See also Unused Variable [YZS]

6.18.3 Mechanism of failure

A variable is assigned a value but this is never subsequently used. Such an assignment is then

generally referred to as a dead store.

A dead store may be indicative of careless programming or of a design or coding error; as either

the use of the value was forgotten (almost certainly an error) or the assignment was performed
| even though it was not needed (at best inefficient). Dead stores may also arise as the result of

mistyping the name of a variable, if the mistyped name matches the name of a variable in an
enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable might
be intended to be read by another execution thread or an external device. In such cases,
though, the variable should be marked as volatile. Common compiler optimization techniques
will remove apparent dead stores if the variables are not marked as volatile, hence causing

incorrect execution.

=«The code has been automatically generated, where it is commonplace to find dead stores
introduced to keep the generation process simple and uniform.

¢ The code is initializing a sparse data set, where all members are cleared, and then selected
values assigned a value.

6.18.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following
characteristics:

o Deadstoresare-possibledin-anyAny programming language that provides assignment. <+ — Formatted: Bulleted + Level: 1 + Aligned at:
{PurefunctionaHanguages-do-not-have this-issue:} 0.25" + Indent at: 0.5"

6.18.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

¢ Use static analysis to identify any dead stores in the program, and ensure that there is a
justification for them.
e If variables are intended to be accessed by other execution threads or external devices, mark

them as volatile.

* Do-net-declareAvoid declaring variables of compatible types in nested scopes with similar
names.

6.18.6 Implications for standardization

In future standardization activities, the following items should be considered:

 Languages should consider reguiring-providing mandatery-optional diagresties-warnings for
dead store.

6.19 Unused Variable [YZS]
6 19. 1 Descrlptlon of appllcatlon vulnerablllty

unused vanable is one that is declared but nelther read nor wntten in the program. ThIS type of

error suggests that the design has been incompletely or inaccurately implemented.
Unused variables by themselves are innocuous, but—eaneeembme—mthethet#eﬂee#ab#ﬂes—sueh

but they
may provide memory space that attackers could use in combmatlon W|th other technlques

This vulnerablllty is ve#y—sta#smllar to Dead Store [\NXQ] if the varlable is |n|t|aI|zed but never
used. ’

6.19.2 Cross reference

CWE:

563. Unused Variable

MISRA C++ 2008: 0-1-3

CERT C guidelines: MSC13-C

See also Dead Store [WXQ]

6.19.3 Mechanism of failure

A varlable is declared, but never used Me#y—that—theamrab@s—wnply#esﬁg&—but—ms—ase

asBecause compllers routmely dlagnose unused IocaI varlables their presence s—eﬁten may be an
indication that compiler warnings are either suppressed or are being ignored-by-pregrammers.
While unused variables are innocuous, they may provide available memory space to be used by
attackers to exploit other vulnerabilities.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following
characteristics:

Uny varia anguages that
provide variable declarations.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

* Enable detection of unused variables in the compiler. Fhe-defaultsettingmay-be-to-suppress
these-warnings:

6.19.6 Implications for standardization

In future standardization activities, the following items should be considered:

¢ Languages should consider requiring mandatory diagnostics for unused variables.

