[bookmark: SK_TCSeparator1]ISO/IEC JTC 1/SC 22 N 0000
Date: 2015-063-1905
ISO/IEC TR 24772-82
Edition 1
ISO/IEC JTC 1/SC 22/WG 23
[bookmark: CVP_Secretariat_Location]Secretariat: ANSI
Information Technology — Programming languages — Guidance to avoiding vulnerabilities in programming languages – Vulnerability descriptions for the programming language FortranAda

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice
This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester:
ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
Contents	Page

[bookmark: _Toc443470358][bookmark: _Toc450303208][bookmark: _Toc358896355]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
In exceptional circumstances, when the joint technical committee has collected data of a different kind from that which is normally published as an International Standard (“state of the art”, for example), it may decide to publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review every five years in the same manner as an International Standard.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC TR 24772-8, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.
[bookmark: _Toc443470359][bookmark: _Toc450303209]

[bookmark: _Toc358896356]Introduction
This Technical Report provides guidance for the programming language Ada Fortran so that application developers considering FortranAda or using FortranAda will be better able to avoid the programming constructs that lead to vulnerabilities in software written in the FortranAda language and their attendant consequences. This guidance can also be used by developers to select source code evaluation tools that can discover and eliminate some constructs that could lead to vulnerabilities in their software. This technical can also be used in comparison with companion technical reports and with the language-independent report, TR 24772-1, to select a programming language that provides the appropriate level of confidence that anticipated problems can be avoided.
This technical report part is intended to be used with TR 24772-1, which discusses programming language vulnerabilities in a language independent fashion.
It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a complete list of programming language vulnerabilities because new weaknesses are discovered continually. Any such report can only describe those that have been found, characterized, and determined to have sufficient probability and consequence.

Information Technology — Programming Languages — Guidance to avoiding vulnerabilities in programming languages through language selection and use – Vulnerability descriptions for the programming language FortranAda

[bookmark: _Toc358896357][bookmark: _Toc443461091][bookmark: _Toc443470360][bookmark: _Toc450303210][bookmark: _Toc192557820][bookmark: _Toc336348220]1. Scope
This Technical Report specifies software programming language vulnerabilities to be avoided in the development of systems where assured behaviour is required for security, safety, mission-critical and business-critical software. In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.
Vulnerabilities described in this technical report document the way that the vulnerability described in the language-independent writeup (in Tr 24772-1) are manifested in FortranAda.
[bookmark: _Toc358896358][bookmark: _Toc443461093][bookmark: _Toc443470362][bookmark: _Toc450303212][bookmark: _Toc192557830][bookmark: _GoBack]2. Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC TR 24772-1 Information Technology — Programming languages — Guidance to avoiding vulnerabilities in programming languages, Part 1, General Guidance
ISO/IEC 1539-1:2010, Information technology -- Programming languages -- Fortran -- Part 1: Base language
ISO/IEC 1539-2:2000, Information technology – Programming languages – Fortran – Varying length character strings
ISO/IEC 1539-3:1999, Information technology -- Programming languages -- Fortran -- Part 3: Conditional compilation
ISO 80000–2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural sciences and technology
ISO/IEC 2382–1:1993, Information technology — Vocabulary — Part 1: Fundamental terms
ISO/IEC 8652:2012 Information Technology – Programming Languages—Ada.
ISO/IEC TR 15942:2000, Guidance for the Use of Ada in High Integrity Systems.
ISO/IEC TR 24718:2005, Guide for the use of the Ada Ravenscar Profile in high integrity systems.
ISO IEC ???? 754-2008, Binary Floating Point Arithmetic, IEEE, 2008.
ISO IEC ???? 854-1987, Radix-Independent Floating-Point Arithmetic, IEEE, 1987
[bookmark: _Toc358896359][bookmark: _Toc443461094][bookmark: _Toc443470363][bookmark: _Toc450303213][bookmark: _Toc192557831]3. Terms and definitions, symbols and conventions
[bookmark: _Toc358896360]3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1, in TR 24772-1 and the following apply. Other terms are defined where they appear in italic type.
The precise statement of the following definitions can be found in the Fortran standard.
argument association: association between an effective argument and a dummy argument
assumed-shape array: a dummy argument array whose shape is assumed from the corresponding actual argument
assumed-size array: a dummy argument array whose size is assumed from the corresponding actual argument
deleted feature: a feature that existed in older versions of Fortran but has been removed from later versions of the standard
explicit interface: an interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments
image: one of a mutually cooperating set of instances of a Fortran program; each has its own execution state and set of data objects
implicit typing: an archaic rule that declares a variable upon use according to the first letter of its name
kind type parameter: a value that determines one of a set of processor-dependent data representation methods
module: a separate scope that contains definitions that can be accessed from other scopes
obsolescent feature: a feature that is not recommended because better methods exist in the current standard
processor: combination of computing system and mechanism by which programs are transformed for use on that computing system
processor dependent: not completely specified in the Fortran standard, having one of a set of methods and semantics determined by the processor
pure procedure: a procedure subject to constraints such that its execution has no side effects
type: named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations that interpret and manipulate the valuesAbnormal Representation: A representation of an object that is incomplete or that does not represent any valid value of the object’s subtype.
Access object: An object of an access type.
Access-to-Subprogram: A pointer to a subprogram (function or procedure).
Access type: The type for objects that designate (point to) other objects.
Access value: A value of an access type that is either null or designates another object.
Allocator: A construct that allocates storage from the heap or from a storage pool.
Atomic: a characteristic of an object, specified by a pragma, that guarantees that every access to an object is an indivisible access to the entity in memory instead of possibly partial, repeated manipulation of a local or register copy
Attribute: A characteristic of a declaration that can be queried by special syntax to return a value corresponding to the requested attribute.
Bit Ordering: An implementation defined value that is either High_Order_First or Low_Order_First that permits the specification or query of the way that bits are represented in memory within a single memory unit.
Bounded Error: An error that need not be detected either prior to or during run time, but if not detected falls within a bounded range of possible effects.
Case statement: A case statement that provides multiple paths of execution dependent upon the value of the case expression, but which will have only one of alternative sequences selected.
Case expression: The discrete type that is evaluated by the case statement.
Case choices: The choices of a case statement must be of the same type as the type of the expression in the case statement. All possible values of the case expression must be covered by the case choices.
Compilation unit: The smallest Ada syntactic construct that may be submitted to the compiler, usually held in a single compilation file.
Configuration pragma: A directive to the compiler that is used to select partition-wide or system-wide options and that applies to all compilation units appearing in the compilation or all future compilation units compiled into the same environment.
Controlled type: A type descended from the language-defined type Controlled or Limited_Controlled which is a specialized type in Ada where an implementer can tightly control the initialization, assignment, and finalization of objects of the type.
Controlled Type: This supports techniques such as reference counting, hidden levels of indirection, reliable resource allocation, and so on.
Dead store: An assignment to a variable that is not used in subsequent instructions
Default expression: an expression of the formal object type that may be used to initialize the formal object if an actual object is not provided.
Discrete type: An integer type or an enumeration type.
Discriminant: A parameter for a composite type that is used at elaboration of each object of the type to configure the object.
Endianness: bit ordering.
Enumeration Representation Clause: a clause used to specify the internal codes for enumeration literals.
Enumeration Type: A discrete type defined by an enumeration of its values, which may be named by identifiers or character literals, including the types Character and Boolean
Erroneous execution: The unpredictable result arising from an error that is not bounded by the language, but that, like a bounded error, need not be detected by the implementation either prior to or during run time.
Exception: A mechanism to detect an exceptional situation and to initiate processing dedicated to recover from the exceptipnala situation, including .
Expanded name: A mechanism to disambiguate that name of an entity E within a package P by permitting the alternate name P.E instead of the simple name E.
Fixed-point types: Real-valued types with a specified error bound (called the 'delta' of the type) that provide arithmetic operations carried out with fixed precision (rather than the relative precision of floating-point types).
Generic formal subprogram: A parameter to a generic package used to specify a subprogram or operator.
Hiding: The process where a declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its scope.
Homograph: A property of two declarations such that they have the same name, and do not overload each other according to the rules of the language.
Identifier: name.
Idempotent behaviour: The property of an operation that has the same effect whether applied just once or multiple times.
Implementation defined: A set of possible effects of a construct where the implementation may choose to implement any effect in the set of effects.
Modular type: An integer type with values in the range 0. modulus – 1 with wrap-around semantics for arithmetic operations, bit-wise "and" and "or" operations, and arithmetic and logical shift operations.
Obsolescent Features: Language features that have been declared to be obsolescent or deprecated and documented in Annex J of the Ada Reference Manual.
Operational and Representation Attributes: The values of certain implementation-dependent characteristics obtained by querying the applicable attributes and possibly specified by the user.
Overriding Indicators: Indicators overriding and not overriding that specifies the intent that an operation does or does not override ancestor operations by the same name, and used by the compiler to verify that the operation does (or does not) override an ancestor operation.
Partition: A part of a program that consists of a set of library units such that each partition may executes in a separate address space, possibly on a separate computer, and executes concurrently with and communicates with other partitions.
Pointer: Synonym for “access object.”
Pragma: A directive to the compiler.
Range check: A run-time check that ensures the result of an operation is contained within the range of allowable values for a given type or subtype, such as the check done on the operand of a type-conversion.
Record Representation Clauses: a mechanism to specify the layout of components within records, that is, their order, position, and size.
Scalar Type: A set of types that includes enumeration types, integer types, and real types.
Static expressions: Expressions with statically known operands that are computed with exact precision by the compiler.
Storage Place Attributes: for a component of a record, the attributes (integer) Position, First_Bit and Last_Bit used to specify the component position and size within the record.
Subtype declaration: A construct that allows programmers to declare a named entity that defines a possibly restricted subset of values of an existing type or subtype, typically by imposing a constraint, such as specifying a smaller range of values.
Task: A separate thread of control that proceeds independently and concurrently between the points where it interacts with other tasks. An Ada program may be comprised of a collection of tasks.
Storage Pool: A named location in an Ada program where all of the objects of a single access type will be allocated.
Unused variable: A variable that is declared but neither read nor written to in the program is an unused variable.
Volatile: (see Atomic)

[bookmark: _Ref336413302][bookmark: _Ref336413340][bookmark: _Ref336413373][bookmark: _Ref336413480][bookmark: _Ref336413504][bookmark: _Ref336413544][bookmark: _Ref336413835][bookmark: _Ref336413845][bookmark: _Ref336414000][bookmark: _Ref336414024][bookmark: _Ref336414050][bookmark: _Ref336414084][bookmark: _Ref336422881][bookmark: _Toc358896485]4 Language concepts
The Fortran standard is written in terms of a processor which includes the language translator (that is, the compiler or interpreter, and supporting libraries), the operating system (affecting, for example, how files are stored or which files are available to a program), and the hardware (affecting, for example, the machine representation of numbers or the availability of a clock). The Fortran standard specifies how the contents of files are interpreted. The standard does not specify the size or complexity of a program that might cause a processor to fail.
A program conforms to the Fortran standard if it uses only forms specified by the standard, and does so with the interpretation given by the standard. A subprogram is standard-conforming if it can be included in an otherwise standard-conforming program in a way that is standard conforming.
The Fortran standard allows a processor to support features not defined by the standard, provided such features do not contradict the standard. Use of such features, called extensions, should be avoided. Processors are able to detect and report the use of extensions.
Annex B.1 of the Fortran standard lists six features of older versions of Fortran that have been deleted because they were redundant and considered largely unused. Although no longer part of the standard, they are supported by many processors to allow old programs to continue to run. Annex B.2 lists ten features of Fortran that are regarded as obsolescent because they are redundant – better methods are available in the current standard. The obsolescent features are described in the standard using a small font. The use of any deleted or obsolescent feature should be avoided. It should be replaced by a modern counterpart for greater clarity and reliability (by automated means if possible). Processors are able to detect and report the use of these features.
The Fortran standard defines a set of intrinsic procedures and intrinsic modules, and allows a processor to extend this set with further procedures and modules. A program that uses an intrinsic procedure or module not defined by the standard is not standard-conforming. A program that uses an entity not defined by the standard from a module defined by the standard is not standard-conforming. Use of intrinsic procedures or modules not defined by the standard should be avoided. Use of entities not defined by the standard from intrinsic modules should be avoided. Processors are able to detect and report the use of intrinsic procedures not defined by the standard.
The Fortran standard does not completely specify the effects of programs in some situations, but rather allows the processor to employ any of several alternatives. These alternatives are called processor dependencies and are summarized in Annex A.2 of the standard. The programmer should not rely for program correctness on a particular alternative being chosen by a processor. In general, the representation of quantities, the results of operations, and the results of the calculations performed by intrinsic procedures are all processor-dependent approximations of their respective exact mathematical equivalent.
Although strenuous efforts have been made, and are ongoing, to ensure that the Fortran standard provides an interpretation for all Fortran programs, circumstances occasionally arise where the standard fails to do so. If the standard fails to provide an interpretation for a program, the program is not standard-conforming.
Processors are required to detect deviation from the standard so far as can be determined from syntax rules and constraints during translation only, and not during execution of a program. It is the responsibility of the program to adhere to the Fortran standard. Many processors offer debugging aids to assist with this task. For example, most processors support options to report when, during execution, an array subscript is found to be out-of-bounds in an array reference.
Generally, the Fortran standard is written as specifying what a correct program produces as output, and not how such output is actually produced. That is, the standard specifies that a program executes as if certain actions occur in a certain order, but not that such actions actually occur. A means other than Fortran (for example, a debugger) might be able to detect such particulars, but not a standard-specified means (for example, a print statement).
The values of intrinsic data objects are described in terms of a bit model, an integer model, and a floating-point model. Inquiry intrinsic procedures return values that describe the model rather than any particular hardware. The Fortran standard places minimal constraints on the representation of entities of type character and type logical.
Interoperability of Fortran program units with program units written in other languages is defined in terms of a companion processor. A Fortran processor is its own companion processor, and might have other companion processors as well. The interoperation of Fortran program units is defined as if the companion processor is defined by the C programming language.
Fortran is an inherently parallel programming language, with program execution consisting of one or more asynchronously executing replications, called images, of the program. The standard makes no requirements of how many images exist for any program, nor of the mechanism of inter-image communication. Inquiry intrinsic procedures are defined to allow a program to detect the number of images in use, and which replication a particular image represents. Synchronization statements are defined to allow a program to synchronize its images. Within an image, many statements involving arrays are specifically designed to allow efficient vector instructions. Several constructs for iteration are specifically designed to allow parallel execution.
Fortran is the oldest international standard programming language with the first Fortran processors appearing over fifty years ago. During half a century of computing, computing technology has changed immensely and Fortran has evolved via several revisions of the standard. Also, during half a century of computing and in response to customer demand, some popular processors supported extensions. There remains a substantial body of Fortran code that is written to previous versions of the standard or with extensions to previous versions, and before modern techniques of software development came into widespread use. The process of revising the standard has been done carefully with a goal of protecting applications programmers’ investments in older codes. Very few features were deleted from older revisions of the standard; those that were deleted were little used, or redundant with a superior alternative, or error-prone with a safer alternative. Many modern processors generally continue to support deleted features from older revisions of the Fortran standard, and even some extensions from older processors, and do so with the intention of reproducing the original semantics. Also, there exist automatic means of replacing at least some archaic features with modern alternatives. Even with automatic assistance, there might be reluctance to change existing software due to its having proven itself through usage on a wider variety of hardware than is in general use at present, or due to issues of regulation or certification. The decision to modernize trusted software is made cognizant of many factors, including the availability of resources to do so and the perceived benefits. This document does not attempt to specify criteria for modernizing trusted old code.How Ada addresses issues in TR24772-1 section 5.
High level discussion and concepts – what makes the language different, what language issues may enhance it against vulnerabilities or make it more susceptible to vulnerabilities.
 Enumeration Type: The defining identifiers and defining character literals of an enumeration type must be distinct. The predefined order relations between values of the enumeration type follow the order of corresponding position numbers.
Exception: There is a set of predefined exceptions in Ada in package Standard: Constraint_Error, Program_Error, Storage_Error, and Tasking_Error; one of them is raised when a language-defined check fails.
Hiding: Where hidden from all visibility, it is not visible at all (neither using a direct_name nor a selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a selector_name is still possible.
Implementation define: Implementations are required to document their behaviour in implementation-defined situations.
Type Conversions:
Ada uses a strong type system based on name equivalence rules. It distinguishes types, which embody statically checkable equivalence rules, and subtypes, which associate dynamic properties with types, for example, index ranges for array subtypes or value ranges for numeric subtypes. Subtypes are not types and their values are implicitly convertible to all other subtypes of the same type. All subtype and type-conversions ensure by static or dynamic checks that the converted value is within the value range of the target type or subtype. If a static check fails, then the program is rejected by the compiler. If a dynamic check fails, then an exception Constraint_Error is raised.
To effect a transition of a value from one type to another, three kinds of conversions can be applied in Ada:
a) Implicit conversions: there are few situations in Ada that allow for implicit conversions. An example is the assignment of a value of a type to a polymorphic variable of an encompassing class. In all cases where implicit conversions are permitted, neither static nor dynamic type safety or application type semantics (see below) are endangered by the conversion.
b) Explicit conversions: various explicit conversions between related types are allowed in Ada. All such conversions ensure by static or dynamic rules that the converted value is a valid value of the target type. Violations of subtype properties cause an exception to be raised by the conversion.
c) Unchecked conversions: Conversions that are obtained by instantiating the generic subprogram Unchecked_Conversion are unsafe and enable all vulnerabilities mentioned in Section 6.3 as the result of a breach in a strong type system. Unchecked_Conversion is occasionally needed to interface with type-less data structures, for example, hardware registers.
A guiding principle in Ada is that, with the exception of using instances of Unchecked_Conversion, no undefined semantics can arise from conversions and the converted value is a valid value of the target type.
Operational and Representation Attributes: Some attributes can be specified by the user; for example:
· X'Alignment: allows the alignment of objects on a storage unit boundary at an integral multiple of a specified value.
· X'Size: denotes the size in bits of the representation of the object.
· X'Component_Size: denotes the size in bits of components of the array type X.
Language-defined mechanisms to avoid vulnerabilities
Pragma Atomic: Specifies that all reads and updates of an object are indivisible.
Pragma Atomic_Components: Specifies that all reads and updates of an element of an array are indivisible.
Pragma Convention: Specifies that an Ada entity should use the conventions of another language.
Pragma Detect_Blocking: A configuration pragma that specifies that all potentially blocking operations within a protected operation shall be detected, resulting in the Program_Error exception being raised.
Pragma Discard_Names: Specifies that storage used at run-time for the names of certain entities may be reduced.
Pragma Export: Specifies an Ada entity to be accessed by a foreign language, thus allowing an Ada subprogram to be called from a foreign language, or an Ada object to be accessed from a foreign language.
Pragma Import: Specifies an entity defined in a foreign language that may be accessed from an Ada program, thus allowing a foreign-language subprogram to be called from Ada, or a foreign-language variable to be accessed from Ada.
Pragma Normalize_Scalars: A configuration pragma that specifies that an otherwise uninitialized scalar object is set to a predictable value, but out of range if possible.
Pragma Pack: Specifies that storage minimization should be the main criterion when selecting the representation of a composite type.
Pragma Restrictions: Specifies that certain language features are not to be used in a given application. For example, the pragma Restrictions (No_Obsolescent_Features) prohibits the use of any deprecated features. This pragma is a configuration pragma which means that all program units compiled into the library must obey the restriction.
Pragma Suppress: Specifies that a run-time check need not be performed because the programmer asserts it will always succeed.
Pragma Unchecked_Union: Specifies an interface correspondence between a given discriminated type and some C union. The pragma specifies that the associated type shall be given a representation that leaves no space for its discriminant(s).
Pragma Volatile: Specifies that all reads and updates on a volatile object are performed directly to memory.
Pragma Volatile_Components: Specifies that all reads and updates of an element of an array are performed directly to memory.
Separate Compilation: Ada requires that calls on libraries are checked for invalid situations as if the called routine were declared locally.
Storage Pool: A storage pool can be sized exactly to the requirements of the application by allocating only what is needed for all objects of a single type without using the centrally managed heap. Exceptions raised due to memory failures in a storage pool will not adversely affect storage allocation from other storage pools or from the heap. Storage pools for types whose values are of equal length do not suffer from fragmentation.
The following Ada restrictions prevent the application from using any allocators:
pragma Restrictions(No_Allocators): prevents the use of allocators.
pragma Restrictions(No_Local_Allocators): prevents the use of allocators after the main program has commenced.
pragma Restrictions(No_Implicit_Heap_Allocations): prevents the use of allocators that would use the heap, but permits allocations from storage pools.
pragma Restrictions(No_Unchecked_Deallocations): prevents allocated storage from being returned and hence effectively enforces storage pool memory approaches or a completely static approach to access types. Storage pools are not affected by this restriction as explicit routines to free memory for a storage pool can be created.
Unsafe Programming: In recognition of the occasional need to step outside the type system or to perform “risky” operations, Ada provides clearly identified language features to do so. Examples include the generic Unchecked_Conversion for unsafe type-conversions or Unchecked_Deallocation for the deallocation of heap objects regardless of the existence of surviving references to the object. If unsafe programming is employed in a unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointer to a local object, using the Unchecked_Access attribute. A restriction pragma may be used to disallow uses of Unchecked_Access. The SUPPRESS pragma allows an implementation to omit certain run-time checks.
User-defined floating-point types: Types declared by the programmer that allow specification of digits of precision and optionally a range of values.
User-defined scalar types: Types declared by the programmer for defining ordered sets of values of various kinds, namely integer, enumeration, floating-point, and fixed-point types. The typing rules of the language prevent intermixing of objects and values of distinct types.
[bookmark: _Toc358896486]5 General guidance for FortranAda
[See Template] [Thoughts welcomed as to what could be provided here. Possibly an opportunity for the language community to address issues that do not correlate to the guidance of section 6. For languages that provide non-mandatory tools, how those tools can be used to provide effective mitigation of vulnerabilities described in the following sections]
6 Specific Guidance for FortranAda
6.1 General
This clause contains specific advice for FortranAda about the possible presence of vulnerabilities as described in TR 24772-1, and provides specific guidance on how to avoid them in Fortran programAda code. This section mirrors TR 24772-1 clause 6 in that the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772-1, and FortranAda specific guidance is found in clause 6.2 and subclauses in this TR.
6.2 Type System [IHN]
6.2.1 Applicability to language
The Fortran type system is a strong type system consisting of the data type and type parameters. A type parameter is an integer value that specifies a parameterization of the type; a user-defined type need not have any type parameters. Objects of the same type that differ in the value of their type parameter(s) might differ in representation, and therefore in the limits of the values they can represent. For many purposes for which other languages use type, Fortran uses the type, type parameters, and rank of a data object. A conforming processor supports at least two kinds of type real and a complex kind corresponding to each supported real kind. Double precision real is required to provide more digits of decimal precision than default real. A conforming processor supports at least one integer kind with a range of 1018 or greater.
The compatible types in Fortran are the numeric types: integer, real, and complex. No coercion exists between type logical and any other type, nor between type character and any other type. Among the numeric types, coercion might result in a loss of information or an undetected failure to conform to the standard. For example, if a double-precision real is assigned to a single-precision real, round-off is likely; and if an integer operation results in a value outside the supported range, the program is not conforming. This might not be detected. Likewise, assigning a value to an integer variable whose range does not include the value, renders the program not conforming.
An example of coercion in Fortran is (assuming rkp names a suitable real kind parameter):
real(kind= rkp) :: a
integer :: i
a = a + i
which is automatically treated as if it were:
a = a + real(i, kind= rkp)
Objects of derived types are considered to have the same type when their type definitions are the same instance of text (which can be made available to other program units by module use). Sequence types and bind(c) types represent a narrow exception to this rule. Sequence types are less commonly used because they are less convenient to use, cannot be extended, and cannot interoperate with types defined by a companion processor. Bind(c) types are, in general, only used to interoperate with types defined by a companion processor; they also cannot be extended.
A derived type can have type parameters and these parameters can be applied to the derived type’s components. Default assignment of variables of the same derived type is component-wise. Default assignment can be overridden by an explicitly coded assignment procedure. For derived-type objects, type changing assignments and conversion procedures are required to be explicitly coded by the programmer. Other than default assignment, each operation on a derived type is defined by a procedure. These procedures can contain any necessary checks and coercions.
In addition to the losses mentioned in Clause 6 of ISO/IEC TR 24772, assignment of a complex entity to a noncomplex variable only assigns the real part.
Assignment of an object of extended type to one of base type only assigns the base type part.
Intrinsic functions can be used in constant expressions that compute desired kind type parameter values. Also, the intrinsic module iso_fortran_env supplies named constants suitable for kind type parameters.Implicit conversions cause no application vulnerability, as long as resulting exceptions are properly handled.
Assignment between types cannot be performed except by using an explicit conversion.
Failure to apply correct conversion factors when explicitly converting among types for different units will result in application failures due to incorrect values.
Failure to handle the exceptions raised by failed checks of dynamic subtype properties cause systems, threads or components to halt unexpectedly.
Unchecked conversions circumvent the type system and therefore can cause unspecified behaviour (see 6.38 Type-breaking Reinterpretation of Data [AMV]).
6.2.2 Guidance to language users
· Use kind values based on the needed range for integer types via the selected_int_kind intrinsic procedure, and based on the range and precision needed for real and complex types via the selected_real_kind intrinsic procedure.
· Use explicit conversion intrinsics for conversions of values of intrinsic types, even when the conversion is within one type and is only a change of kind. Doing so alerts the maintenance programmer to the fact of the conversion, and that it is intentional.
· Use inquiry intrinsic procedures to learn the limits of a variable’s representation and thereby take care to avoid exceeding those limits.
· Use derived types to avoid implicit conversions.
· Use compiler options when available to detect during execution when a significant loss of information occurs.
· Use compiler options when available to detect during execution when an integer value overflows.The predefined ‘Valid attribute for a given subtype may be applied to any value to ascertain if the value is a valid value of the subtype. This is especially useful when interfacing with type-less systems or after Unchecked_Conversion.
· A conceivable measure to prevent incorrect unit conversions is to restrict explicit conversions to the bodies of user-provided conversion functions that are then used as the only means to effect the transition between unit systems. These bodies are to be critically reviewed for proper conversion factors.
· Exceptions raised by type and subtype-conversions shall be handled.
[bookmark: _Toc358896487]6.3 Bit Representation [STR]
6.3.1 Applicability to language
Fortran defines bit positions by a bit model described in Subclause 13.3 of the standard. Care should be taken to understand the mapping between an external definition of the bits (for example, a control register) and the bit model. The programmer can rely on the bit model regardless of endian, or other hardware peculiarities.
Fortran allows constants to be defined by binary, octal, or hexadecimal digits, collectively called BOZ constants. These values can be assigned to named constants thereby providing a name for a mask.
Fortran provides access to individual bits within a storage unit by bit manipulation intrinsic procedures. Of particular use, double-word shift procedures are provided to extract bit fields crossing storage unit boundaries.
The bit model does not provide an interpretation for negative integer values. There are distinct shift intrinsic procedures to interpret, or not interpret, the left-most bit as the sign bit.In general, the type system of Ada protects against the vulnerabilities outlined in Section 6.4. However, the use of Unchecked_Conversion, calling foreign language routines, and unsafe manipulation of address representations voids these guarantees.
The vulnerabilities caused by the inherent conceptual complexity of bit level programming are as described in Section 6.4.
6.3.2 Guidance to language users
Use the intrinsic procedure bit_size to determine the size of the bit model supported by the kind of integer in use.
Be aware that the Fortran standard uses the term “left-most” to refer to the highest-order bit, and the term “left” to mean towards (as in shiftl), or from (as in maskl), the highest-order bit.
Be aware that the Fortran standard uses the term “right-most” to refer to the lowest-order bit, and the term “right” to mean towards (as in shiftr), or from (as in maskr), the lowest-order bit.
Avoid bit constants made by adding integer powers of two in favour of those created by the bit intrinsic procedures or encoded by BOZ constants.
Use bit intrinsic procedures to operate on individual bits and bit fields, especially those that occupy more than one storage unit. Choose shift intrinsic procedures cognizant of the need to affect the sign bit, or not.
Create objects of derived type to hide use of bit intrinsic procedures within defined operators and to separate those objects subject to arithmetic operations from those objects subject to bit operations.The vulnerabilities associated with the complexity of bit-level programming can be mitigated by:
The use of record and array types with the appropriate representation specifications added so that the objects are accessed by their logical structure rather than their physical representation. These representation specifications may address: order, position, and size of data components and fields.
The use of pragma Atomic and pragma Atomic_Components to ensure that all updates to objects and components happen atomically.
The use of pragma Volatile and pragma Volatile_Components to notify the compiler that objects and components must be read immediately before use as other devices or systems may be updating them between accesses of the program.
The default object layout chosen by the compiler may be queried by the programmer to determine the expected behaviour of the final representation.
For the traditional approach to bit-level programming, Ada provides modular types and literal representations in arbitrary base from 2 to 16 to deal with numeric entities and correct handling of the sign bit. The use of pragma Pack on arrays of Booleans provides a type-safe way of manipulating bit strings and eliminates the use of error-prone arithmetic operations.
[bookmark: _Ref336422984][bookmark: _Toc358896488]6.4 Floating-point Arithmetic [PLF]
6.4.1 Applicability to language
Fortran supports floating-point data. Furthermore, most processors support parts of the IEEE 754 standard and facilities are provided for the programmer to detect the extent of conformance.
The rounding mode in effect during translation might differ from the rounding mode in effect during execution; the rounding mode could change during execution. A separate rounding mode is provided for input/output formatting conversions, this rounding mode could also change during execution.
Fortran provides intrinsic procedures to give values describing the limits of any representation method in use, to provide access to the parts of a floating-point quantity, and to set the parts.Ada specifies adherence to the IEEE Floating Point Standards (IEEE-754-2008, IEEE-854-1987).
The vulnerability in Ada is as described in Section 6.4.2.
6.4.2 Guidance to language users
· Use procedures from a trusted library to perform calculations where floating-point accuracy is needed. Understand the use of the library procedures and test the diagnostic status values returned to ensure the calculation proceeded as expected.
· Avoid creating a logical value from a test for equality or inequality between two floating-point expressions. Use compiler options where available to detect such usage.
· Do not use floating-point variables as loop indices; use integer variables instead. (This relies on a deleted feature.) A floating-point value can be computed from the integer loop variable as needed.
· Use intrinsic inquiry procedures to determine the limits of the representation in use when needed.
· Avoid the use of bit operations to get or to set the parts of a floating point quantity. Use intrinsic procedures to provide the functionality when needed.
· Use the intrinsic module procedures to determine the limits of the processor’s conformance to IEEE 754, and to determine the limits of the representation in use, where the IEEE intrinsic modules and the IEEE real kinds are in use.
· Use the intrinsic module procedures to detect and control the available rounding modes and exception flags, where the IEEE intrinsic modules are in use.Rather than using predefined types, such as Float and Long_Float, whose precision may vary according to the target system, declare floating-point types that specify the required precision (for example, digits 10). Additionally, specifying ranges of a floating point type enables constraint checks which prevents the propagation of infinities and NaNs.
· Avoid comparing floating-point values for equality. Instead, use comparisons that account for the approximate results of computations. Consult a numeric analyst when appropriate.
· Make use of static arithmetic expressions and static constant declarations when possible, since static expressions in Ada are computed at compile time with exact precision.
· Use Ada's standardized numeric libraries (for example, Generic_Elementary_Functions) for common mathematical operations (trigonometric operations, logarithms, and others).
· Use an Ada implementation that supports Annex G (Numerics) of the Ada standard, and employ the "strict mode" of that Annex in cases where additional accuracy requirements must be met by floating-point arithmetic and the operations of predefined numerics packages, as defined and guaranteed by the Annex.
· Avoid direct manipulation of bit fields of floating-point values, since such operations are generally target-specific and error-prone. Instead, make use of Ada's predefined floating-point attributes (such as 'Exponent).
· In cases where absolute precision is needed, consider replacement of floating-point types and operations with fixed-point types and operations.
[bookmark: _Ref336423044][bookmark: _Toc358896489]6.5 Enumerator Issues [CCB]
6.5.1 Applicability to language
Fortran provides enumeration values for interoperation with C programs that use C enums. Their use is expected most often to occur when a C enum appears in the function prototype whose interoperation requires a Fortran interface.
The Fortran enumeration values are integer constants of the correct kind to interoperate with the corresponding C enum. The Fortran variables to be assigned the enumeration values are of type integer and the correct kind to interoperate with C variables of C type enum.Enumeration representation specification may be used to specify non-default representations of an enumeration type, for example when interfacing with external systems. All of the values in the enumeration type must be defined in the enumeration representation specification. The numeric values of the representation must preserve the original order. For example:
type IO_Types is (Null_Op, Open, Close, Read, Write, Sync);
for IO_Types use (Null_Op => 0, Open => 1, Close => 2,
	Read => 4, Write => 8, Sync => 16);
An array may be indexed by such a type. Ada does not prescribe the implementation model for arrays indexed by an enumeration type with non-contiguous values. Two options exist: Either the array is represented “with holes” and indexed by the values of the enumeration type, or the array is represented contiguously and indexed by the position of the enumeration value rather than the value itself. In the former case, the vulnerability described in 6.6 exists only if unsafe programming is applied to access the array or its components outside the protection of the type system. Within the type system, the semantics are well defined and safe. The vulnerability of unexpected but well-defined program behaviour upon extending an enumeration type exist in Ada. In particular, subranges or others choices in aggregates and case statements are susceptible to unintentionally capturing newly added enumeration values.
6.5.2 Guidance to language users
· Use enumeration values in Fortran only when interoperating with C procedures that have enumerations as formal parameters and/or return enumeration values as function results.
· Ensure the interoperability of the C and Fortran definitions of every enum type used.
· Ensure that the correct companion processor has been identified, including any companion processor options that affect enum definitions.
· Do not use variables assigned enumeration values in arithmetic operations, or to receive the results of arithmetic operations if subsequent use will be as an enumerator.For case statements and aggregates, do not use the others choice.
· For case statements and aggregates, mistrust subranges as choices after enumeration literals have been added anywhere but the beginning or the end of the enumeration type definition.
[bookmark: _Toc358896490]6.6 Numeric Conversion Errors [FLC]
6.6.1 Applicability to language
Fortran processors are required to support two kinds of type real and are required to support a complex kind for every real kind supported. Fortran processors are required to support at least one integer kind with a range of 1018 or greater and most processors support at least one integer kind with a smaller range.
Automatic conversion among these types is allowed.Ada does not permit implicit conversions between different numeric types, hence cases of implicit loss of data due to truncation cannot occur as they can in languages that allow type coercion between types of different sizes.
In the case of explicit conversions, Ada language rules prevent numeric conversion errors, as follows:
· Range bound checks are applied, so no truncation can occur, and an exception will be generated if the operand of the conversion exceeds the bounds of the target type or subtype.
· Ada permits the definition of subtypes of existing types that can impose a restricted range of values, and implicit conversions can occur for values of different subtypes belonging to the same type, but such conversions still involve range checks that prevent any loss of data or violation of the bounds of the target subtype.
Precision is lost only on explicit conversion from a real type to an integer type or a real type of less precision.
6.6.2 Guidance to language users
· Use the kind selection intrinsic procedures to select sizes of variables supporting the required operations and values.
· Use a temporary variable with a large range to read a value from an untrusted source so that the value can be checked against the limits provided by the inquiry intrinsics for the type and kind of the variable to be used.
· Use a temporary variable with a large range to hold the value of an expression before assigning it to a variable of a type and kind that has a smaller numeric range to ensure that the value of the expression is within the allowed range for the variable. Use the inquiry intrinsics to supply the extreme values allowed for the variable.
· When assigning an expression of one type and kind to a variable of a type and kind that might have a smaller numeric range, check that the value of the expression is within the allowed range for the variable. Use the inquiry intrinsics to supply the extreme values allowed for the variable.
· Use derived types and put checks in the applicable defined assignment procedures.
· Use static analysis to identify whether numeric conversion will lose information.
· Use compiler options when available to detect during execution when a significant loss of information occurs.
· Use compiler options when available to detect during execution when an integer value overflows.Use Ada's capabilities for user-defined scalar types and subtypes to avoid accidental mixing of logically incompatible value sets.
· Use range checks on conversions involving scalar types and subtypes to prevent generation of invalid data.
· Use static analysis tools during program development to verify that conversions cannot violate the range of their target.
[bookmark: _Ref336423082][bookmark: _Toc358896491]6.7 String Termination [CJM]
This vulnerability is not applicable to Fortran since strings are not terminated by a special character.
With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as strings in Ada are not delimited by a termination character. Ada programs that interface to languages that use null-terminated strings and manipulate such strings directly should apply the vulnerability mitigations recommended for that language.
[bookmark: _Toc358896492]6.8 Buffer Boundary Violation (Buffer Overflow) [HCB]
A Fortran program might be affected by this vulnerability in two situations. The first is that an array subscript could be outside its bounds, and the second is that a character substring index could be outside its length. The Fortran standard requires that each array subscript be separately within its bounds, not simply that the resulting offset be within the array as a whole.
Fortran does not mandate array subscript checking to verify in-bounds array references, nor character substring index checking to verify in-bounds substring references.
The Fortran standard requires that array shapes conform for whole array assignments and operations where the left-hand side is not an allocatable object. However, Fortran does not mandate that array shapes be checked during whole-array assignments and operations.
When a whole-array assignment occurs to define an allocatable array, the allocatable array is resized, if needed, to the correct size. When a whole character assignment occurs to define an allocatable character, the allocatable character is resized, if needed, to the correct size.
When a character assignment occurs to define a non-allocatable character entity and a length mismatch occurs, the assignment has a blank-fill (if the value is too short) or truncate (if the value is too long) semantic. Otherwise, the variable defined is resized, if needed, to the correct size.
Most implementations include an optional facility for bounds checking. These are likely to be incomplete for a dummy argument that is an explicit-shape or assumed-size array because of passing only the address of such an object, or because the local declaration of the bounds might be inconsistent with those of the actual argument. It is therefore preferable to use an assumed-shape array as a procedure dummy argument. The performance of operations involving assumed-shape arrays is improved by the use of the contiguous attribute.
Fortran provides a set of array bounds intrinsic inquiry procedures which can be used to obtain the bounds of arrays where such information is available. Fortran also provides character length intrinsic inquiry intrinsics so the length of character entities can be reliably found.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as this vulnerability can only happen as a consequence of unchecked array indexing or unchecked array copying (see 6.9 Unchecked Array Indexing [XYZ] and 6.10 Unchecked Array Copying [XYW]).
6.8.2 Guidance to language users
Ensure that consistent bounds information about each array is available throughout a program.
Enable bounds checking throughout development of a code. Disable bounds checking during production runs only for program units that are critical for performance.
Use whole array assignment, operations, and bounds inquiry intrinsics where possible.
Obtain array bounds from array inquiry intrinsic procedures wherever needed. Use explicit interfaces and assumed-shape arrays or allocatable
dummy arguments to ensure that array shape information is passed to all procedures where needed, and can be used to dimension local automatic arrays.
Use allocatable arrays where array operations involving differently-sized arrays might occur so the left-hand side array is reallocated as needed.
Use allocatable character variables where assignment of strings of widely-varying sizes is expected so the left-hand side character variable is reallocated as needed.
Use intrinsic assignment rather than explicit loops to assign data to statically-sized character variables so the truncate-or-blank-fill semantic protects against storing outside the assigned variable.

[bookmark: _Ref336413403][bookmark: _Toc358896493]6.9 Unchecked Array Indexing [XYZ]
6.9.1 Applicability to language
A Fortran program might be affected by this vulnerability in the situation an array subscript could be outside its bounds. The Fortran standard requires that each array subscript be separately within its bounds, not simply that the resulting offset be within the array as a whole.
Fortran does not mandate that array sizes be checked during whole-array assignment to a non-allocatable array.
When a whole-array assignment occurs to define an allocatable array, the allocatable array is resized, if needed, to the correct size. When a whole character assignment occurs to define an allocatable character, the allocatable character is resized, if needed.
Most processors include an optional facility for bounds checking. These are likely to be incomplete for a dummy argument that is an explicit-shape or assumed-size array because of passing only the address of such an object, or because the local declaration of the bounds might be inconsistent with those of the actual argument. It is therefore preferable to use an assumed-shape array as a procedure argument. The performance of operations involving assumed-shape arrays is improved by the use of the contiguous attribute.
Fortran provides a set of array bounds intrinsic inquiry procedures which can obtain the bounds of arrays where such information is available.All array indexing is checked automatically in Ada, and raises an exception when indexes are out of bounds. This is checked in all cases of indexing, including when arrays are passed to subprograms.
An explicit suppression of the checks can be requested by use of pragma Suppress, in which case the vulnerability would apply; however, such suppression is easily detected, and generally reserved for tight time-critical loops, even in production code.
6.9.2 Guidance to language users
· Ensure that consistent bounds information about each array is available throughout a program.
· Enable bounds checking throughout development of a code. Disable bounds checking during production runs only for program units that are critical for performance.
· Use whole array assignment, operations, and bounds inquiry intrinsics where possible.
· Obtain array bounds from array inquiry intrinsic procedures wherever needed. Use explicit interfaces and assumed-shape arrays or allocatable arrays as procedure dummy arguments to ensure that array shape information is passed to all procedures where needed, and can be used to dimension local automatic arrays.
· Use allocatable arrays where arrays operations involving differently-sized arrays might occur so the left-hand side array is reallocated as needed.
· Declare the lower bound of each array extent to fit the problem, thus minimizing the use of subscript arithmetic.
· Arrays can be declared in modules which makes their bounds information available wherever the array is available. Do not suppress the checks provided by the language.
Use Ada's support for whole-array operations, such as for assignment and comparison, plus aggregates for whole-array initialization, to reduce the use of indexing.
Write explicit bounds tests to prevent exceptions for indexing out of bounds.
[bookmark: _Ref336413426][bookmark: _Toc358896494]6.10 Unchecked Array Copying [XYW]
Fortran provides array assignment, so this vulnerability applies.
An array assignment with shape disagreement is prohibited, but the standard does not require the processor to check for this.
When a whole-array assignment occurs to define a non-coarray allocatable array, the non-coarray allocatable array is resized, if needed, to the correct size. When a whole character assignment occurs to define a non-coarray allocatable character, the non-coarray allocatable character is resized, if needed.
Most implementations include an optional facility for bounds checking. These are likely to be incomplete for a dummy argument that is an explicit-shape or assumed-size array because of passing only the address of such an object, and/or the reliance on local declaration of the bounds. It is therefore preferable to use an assumed-shape or allocatable array as a procedure dummy argument. The performance of operations involving assumed-shape arrays is improved by the use of the contiguous attribute.
Fortran provides a set of array bounds intrinsic inquiry procedures which can be used to obtain the bounds of arrays where such information is available.
6.10.2 Guidance to language users
Ensure that consistent bounds information about each array is available throughout a program.
Enable bounds checking throughout development of a code. Disable bounds checking during production runs only for program units that are critical for performance.
Use whole array assignment, operations, and bounds inquiry intrinsics where possible.
Obtain array bounds from array inquiry intrinsics wherever needed. Use explicit interfaces and assumed-shape arrays or allocatable array as procedure dummy arguments to ensure that array bounds information is passed to all procedures where needed, including dummy arguments and automatic arrays.
Use allocatable arrays where arrays operations involving differently-sized arrays might occur so the left-hand side array is reallocated as needed.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as Ada allows arrays to be copied by simple assignment (":="). The rules of the language ensure that no overflow can happen; instead, the exception Constraint_Error is raised if the target of the assignment is not able to contain the value assigned to it. Since array copy is provided by the language, Ada does not provide unsafe functions to copy structures by address and length.
[bookmark: _Toc358896495]6.11 Pointer Type Conversions [HFC]
6.11.1 Applicability to language
This vulnerability is not applicable to Fortran in most circumstances. There is no mechanism for associating a data pointer with a procedure pointer. A non-polymorphic pointer is declared with a type and can be associated only with an object of its type. A polymorphic pointer that is not unlimited polymorphic is declared with a type and can be associated only with an object of its type or an extension of its type. An unlimited polymorphic pointer can be used to reference its target only by using a type with which the type of its target is compatible in a select type construct. These restrictions are enforced during compilation. An unlimited polymorphic pointer can also be assigned to a sequence type or bind(c) type pointer; this is unsafe, and cannot be checked during compilation.
When an unlimited polymorphic pointer has a target of a sequence type or an interoperable derived type, a type-breaking cast might occur.
A pointer appearing as an argument to the intrinsic module procedure c_f_pointer effectively has its type changed to the intrinsic type c_ptr. Further casts could be made if the pointer is processed by procedures written in a language other than Fortran.The mechanisms available in Ada to alter the type of a pointer value are unchecked type-conversions and type-conversions involving pointer types derived from a common root type. In addition, uses of the unchecked address taking capabilities can create pointer types that misrepresent the true type of the designated entity (see Section 13.10 of the Ada Language Reference Manual).
The vulnerabilities described in Section 6.12 exist in Ada only if unchecked type-conversions or unsafe taking of addresses are applied (see 4 Concepts). Other permitted type-conversions can never misrepresent the type of the designated entity.
Checked type-conversions that affect the application semantics adversely are possible.
6.11.2 Guidance to language users
· Avoid C interoperability features in programs that do not interoperate with other languages.
· Avoid use of sequence types. This vulnerability can be avoided in Ada by not using the features explicitly identified as unsafe.
Use ‘Access which is always type safe.
[bookmark: _Toc358896496]6.12 Pointer Arithmetic [RVG]
This vulnerability is not applicable to Fortran. There is no mechanism for pointer arithmetic in Fortran.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as Ada does not allow pointer arithmetic.
[bookmark: _Toc358896497]6.13 Null Pointer Dereference [XYH]
A Fortran pointer should not be referenced when its status is disassociated.
A Fortran pointer by default is initially undefined and not nullified. A pointer is only nullified when it is done explicitly, either by pointer assigning the result of the null intrinsic procedure or by the nullify statement.
The Fortran intrinsic procedure associated determines whether a pointer that is not undefined has a valid target, or whether it is associated with a particular target.
Some processors include an optional facility for pointer checking.
6.13.2 Guidance to language users
Use compiler options where available to enable pointer checking during development of a code throughout. Disable pointer checking during production runs only for program units that are critical for performance.
Use the associated intrinsic procedure before referencing a target through the pointer if there is any possibility of it being disassociated.
Associate pointers before referencing them.
Use default initialization in the declarations of pointer components.
Use initialization in the declarations of all pointers that have the save attribute. In Ada, this vulnerability does not exist, since compile-time or run-time checks ensure that no null value can be dereferenced.
Ada provides an optional qualification on access types that specifies and enforces that objects of such types cannot have a null value. Non-nullness is enforced by rules that statically prohibit the assignment of either null or values from sources not guaranteed to be non-null.
[bookmark: _Toc358896498]6.14 Dangling Reference to Heap [XYK]
6.14.1 Applicability to language
This vulnerability is applicable to Fortran because it has pointers, and separate allocate and deallocate statements for them.Use of Unchecked_Deallocation can cause dangling references to the heap. The vulnerabilities described in 6.15 exist in Ada, when this feature is used, since Unchecked_Deallocation may be applied even though there are outstanding references to the deallocated object.
Ada provides a model in which whole collections of heap-allocated objects can be deallocated safely, automatically and collectively when the scope of the root access type ends.
For global access types, allocated objects can only be deallocated through an instantiation of the generic procedure Unchecked_Deallocation.
6.14.2 Guidance to language users
· Use allocatable objects in preference to pointer objects whenever the facilities of allocatable objects are sufficient.
· Use compiler options where available to detect dangling references.
· Use compiler options where available to enable pointer checking throughout development of a code. Disable pointer checking during production runs only for program units that are critical for performance.
· Do not pointer-assign a pointer to a target if the pointer might have a longer lifetime than the target or the target attribute of the target. Check actual arguments that are argument associated with dummy arguments that are given the target attribute within the referenced procedure.
· Check for successful deallocation when deallocating a pointer by using the stat= specifier.Use local access types where possible.
· Do not use Unchecked_Deallocation.
· Use Controlled types and reference counting.
[bookmark: _Ref336423281][bookmark: _Toc358896499]6.15 Arithmetic Wrap-around Error [FIF]
6.15.1 Applicability to language
This vulnerability is applicable to Fortran for integer values. Some processors have an option to detect this vulnerability at run time.
6.15.2 Guidance to language users
Use the intrinsic procedure selected_int_kind to select an integer kind value that will be adequate for all anticipated needs.
Use compiler options where available to detect during execution when an integer value overflows.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as wrap-around arithmetic in Ada is limited to modular types. Arithmetic operations on such types use modulo arithmetic, and thus no such operation can create an invalid value of the type.
For non-modular arithmetic, Ada raises the predefined exception Constraint_Error whenever a wrap-around occurs but, implementations are allowed to refrain from doing so when a correct final value is obtained. In Ada there is no confusion between logical and arithmetic shifts.
[bookmark: _Ref336424688][bookmark: _Toc358896500]6.16 Using Shift Operations for Multiplication and Division [PIK]
6.16.1 Applicability to language
Fortran provides bit manipulation through intrinsic procedures that operate on integer variables. Specifically, both shifts that replicate the left-most bit and shifts that do not are provided as intrinsic procedures with integer operands.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as shift operations in Ada are limited to the modular types declared in the standard package Interfaces, which are not signed entities.
6.16.2 Guidance to language users
Separate integer variables into those on which bit operations are performed and those on which integer arithmetic is performed.
Do not use shift intrinsics where integer multiplication or division is intended.
[bookmark: _Ref336423311][bookmark: _Toc358896502]6.17 Choice of Clear Names [NAI]
6.17.1 Applicability to language
Fortran is a single-case language; upper case and lower case are treated identically by the standard in names.
A name can include underscore characters, except in the initial position. The number of consecutive underscores is significant but might be difficult to see.
When implicit typing is in effect, a misspelling of a name results in a new variable. Implicit typing can be disabled by use of the implicit none statement.
Fortran has no reserved names. Language keywords are permitted as names.There are two possible issues: the use of the identical name for different purposes (overloading) and the use of similar names for different purposes.
This vulnerability does not address overloading, which is covered in Section C.22.YOW.
The risk of confusion by the use of similar names might occur through:
· Mixed casing. Ada treats upper and lower case letters in names as identical. Thus no confusion can arise through an attempt to use Item and ITEM as distinct identifiers with different meanings.
· Underscores and periods. Ada permits single underscores in identifiers and they are significant. Thus BigDog and Big_Dog are different identifiers. But multiple underscores (which might be confused with a single underscore) are forbidden, thus Big__Dog is forbidden. Leading and trailing underscores are also forbidden. Periods are not permitted in identifiers at all.
· Singular/plural forms. Ada does permit the use of identifiers which differ solely in this manner such as Item and Items. However, the user might use the identifier Item for a single object of a type T and the identifier Items for an object denoting an array of items that is of a type array (…) of T. The use of Item where Items was intended or vice versa will be detected by the compiler because of the type violation and the program rejected so no vulnerability would arise.
· International character sets. Ada compilers strictly conform to the appropriate international standard for character sets.
· Identifier length. All characters in an identifier in Ada are significant. Thus Long_IdentifierA and Long_IdentifierB are always different. An identifier cannot be split over the end of a line. The only restriction on the length of an identifier is that enforced by the line length and this is guaranteed by the language standard to be no less than 200.
Ada permits the use of names such as X, XX, and XXX (which might all be declared as integers) and a programmer could easily, by mistake, write XX where X (or XXX) was intended. Ada does not attempt to catch such errors.
The use of the wrong name will typically result in a failure to compile so no vulnerability will arise. But, if the wrong name has the same type as the intended name, then an incorrect executable program will be generated.
6.17.2 Guidance to language users
· Declare all variables and use implicit none to enforce this.
· Do not attempt to distinguish names by case only.
Do not use consecutive underscores in a name.
· Do not use keywords as names when there is any possibility of confusion.This vulnerability can be avoided or mitigated in Ada in the following ways:
Avoid the use of similar names to denote different objects of the same type.
Adopt a project convention for dealing with similar names
See the Ada Quality and Style Guide.
[bookmark: _Toc358896503]6.18 Dead store [WXQ]
6.18.1 Applicability to language
Fortran provides assignment so this is applicable.This vulnerability exists in Ada as described in section 6.20, with the exception that in Ada if a variable is read by a different thread (task) than the thread that wrote a value to the variable it is not a dead store. Simply marking a variable as being Volatile is usually considered to be too error-prone for inter-thread (task) communication by the Ada community, and Ada has numerous facilities for safer inter thread communication.
Ada compilers do exist that detect and generate compiler warnings for dead stores.
The error in 6.20.3 that the planned reader misspells the name of the store is possible but highly unlikely in Ada since all objects must be declared and typed and the existence of two objects with almost identical names and compatible types (for assignment) in the same scope would be readily detectable.
6.18.2 Guidance to Language Users
· Use a compiler, or other analysis tool, that provides a warning for this.
· Use the volatile attribute where a variable is assigned a value to communicate with a device or process unknown to the processor.
· Do not use similar names in nested scopes.Use Ada compilers that detect and generate compiler warnings for unused variables or use static analysis tools to detect such problems.
[bookmark: _Ref336423432][bookmark: _Toc358896504]6.19 Unused Variable [YZS]
6.19.1 Applicability to language
Fortran has separate declaration and use of variables and does not require that all variables declared be used, so this vulnerability applies.This vulnerability exists in Ada as described in section 6.21, although Ada compilers do exist that detect and generate compiler warnings for unused variables.
6.19.2 Guidance to language users
Use a processor that can detect a variable that is declared but not used and enable the processor’s option to do so at all times.
· Use processor options where available or a static analysis to detect variables to which a value is assigned but are not referenced.Do not declare variables of the same type with similar names. Use distinctive identifiers and the strong typing of Ada (for example through declaring specific types such as Pig_Counter is range 0 .. 1000; rather than just Pig: Integer;) to reduce the number of variables of the same type.
Use Ada compilers that detect and generate compiler warnings for unused variables.
Use static analysis tools to detect dead stores.
[bookmark: _Ref336414331][bookmark: _Toc358896505]6.20 Identifier Name Reuse [YOW]
6.20.1 Applicability to language
Fortran has several situations where nested scopes occur. These include:
Module procedures have a nested scope within their module host.
Internal procedures have a nested scope within their (procedure) host.
A block construct might have a nested scope within the host scope.
An array constructor might have a nested scope.
The index variables of some constructs, such as or do concurrent, forall, or array constructor implied do loops, are local to the construct. A select name in an associate or select type construct is local to the construct.Ada is a language that permits local scope, and names within nested scopes can hide identical names declared in an outer scope. As such it is susceptible to the vulnerability. For subprograms and other overloaded entities the problem is reduced by the fact that hiding also takes the signatures of the entities into account. Entities with different signatures, therefore, do not hide each other.
Name collisions with keywords cannot happen in Ada because keywords are reserved.
The mechanism of failure identified in section 6.22.3 regarding the declaration of non-unique identifiers in the same scope cannot occur in Ada because all characters in an identifier are significant.
6.20.2 Guidance to language users
Do not reuse a name within a nested scope.
· Clearly comment the distinction between similarly-named variables, wherever they occur in nested scopes.Use expanded names whenever confusion may arise.
Use Ada compilers that generate compile time warnings for declarations in inner scopes that hide declarations in outer scopes.
Use static analysis tools that detect the same problem.
[bookmark: _Ref336423347][bookmark: _Toc358896506]6.21 Namespace Issues [BJL]

6.21.1 Applicability to language
Fortran does not have namespaces. However, when implicit typing is used within a scope, and a module is accessed via use association without an only list, a similar issue could arise.
Specifically, a variable that appears in the local scope but is not explicitly declared, might have a name that is the same as a name that was added to the module after the module was first used. This can cause the declaration, meaning, and the scope of the affected variable to change.This vulnerability is not applicable to Ada because Ada does not attempt to disambiguate conflicting names imported from different packages. Instead, use of a name with conflicting imported declarations causes a compile time error. The programmer can disambiguate the name usage by using a fully qualified name that identifies the exporting package.
6.21.2 Guidance to language users
Never use implicit typing. Always declare all variables. Use implicit none to enforce this.
Use a global private statement in all modules to require explicit specification of the public attribute.
Use an only clause on every use statement.
Use renaming when needed to avoid name collisions.
[bookmark: _Ref336414149][bookmark: _Toc358896507]6.22 Initialization of Variables [LAV]
6.22.1 Applicability to language
The value of a variable that has never been given a value is undefined. It is the programmer’s responsibility to guard against use of uninitialized variables.As in many languages, it is possible in Ada to make the mistake of using the value of an uninitialized variable. However, as described below, Ada prevents some of the most harmful possible effects of using the value.
The vulnerability does not exist for pointer variables (or constants). Pointer variables are initialized to null by default, and every dereference of a pointer is checked for a null value.
The checks mandated by the type system apply to the use of uninitialized variables as well. Use of an out-of-bounds value in relevant contexts causes an exception, regardless of the origin of the faulty value. (See 6.36 Ignored Error Status and Unhandled Exceptions [OYB] regarding exception handling.) Thus, the only remaining vulnerability is the potential use of a faulty but subtype-conformant value of an uninitialized variable, since it is technically indistinguishable from a value legitimately computed by the application.
For record types, default initializations may be specified as part of the type definition.
For controlled types (those descended from the language-defined type Controlled or Limited_Controlled), the user may also specify an Initialize procedure which is invoked on all default-initialized objects of the type.
The pragma Normalize_Scalars can be used to ensure that scalar variables are always initialized by the compiler in a repeatable fashion. This pragma is designed to initialize variables to an out-of-range value if there is one, to avoid hiding errors.
Lastly, the user can query the validity of a given value. The expression X’Valid yields true if the value of the scalar variable X conforms to the subtype of X and false otherwise. Thus, the user can protect against the use of out-of-bounds uninitialized or otherwise corrupted scalar values.
6.22.2 Guidance to language users
Favour explicit initialization for objects of intrinsic type and default initialization for objects of derived type. When providing default initialization, provide default values for all components.
Use type value constructors to provide values for all components.
Use compiler options, where available, to find instances of use of uninitialized variables.
Use other tools, for example, a debugger or flow analyzer, to detect instances of the use of uninitialized variables.This vulnerability can be avoided or mitigated in Ada in the following ways:
If the compiler has a mode that detects use before initialization, then this mode should be enabled and any such warnings should be treated as errors.
Where appropriate, explicit initializations or default initializations can be specified.
The pragma Normalize_Scalars can be used to cause out-of-range default initializations for scalar variables.
The ‘Valid attribute can be used to identify out-of-range values caused by the use of uninitialized variables, without incurring the raising of an exception.
Common advice that should be avoided is to perform a “junk initialization” of variables. Initializing a variable with an inappropriate default value such as zero can result in hiding underlying problems, because the compiler or other static analysis tools will then be unable to detect that the variable has been used prior to receiving a correctly computed value.
[bookmark: _Ref336423389][bookmark: _Toc358896508]6.23 Operator Precedence/Order of Evaluation [JCW]
6.23.1 Applicability to language
Fortran specifies an order of precedence for operators. The order for the intrinsic operators is well known except among the logical operators .not., .and., .or., .eqv., and .neqv.. In addition, any monadic defined operator, the intrinsic operator //, and any dyadic defined operator have a position in this order, but these positions are not well known.Since this vulnerability is about "incorrect beliefs" of programmers, there is no way to establish a limit to how far incorrect beliefs can go. However, Ada is less susceptible to that vulnerability than many other languages, since
Ada only has six levels of precedence and associativity is closer to common expectations. For example, an expression like A = B or C = D will be parsed as expected, as (A = B) or (C = D).
Mixed logical operators are not allowed without parentheses, for example, "A or B or C" is valid, as well as "A and B and C", but "A and B or C" is not (must write "(A and B) or C" or "A and (B or C)".
Assignment is not an operator in Ada.
6.23.2 Guidance to language users
· Use parentheses and partial-result variables within expressions to avoid any reliance on a precedence that is not well known.The general mitigation measures can be applied to Ada like any other language.
[bookmark: _Ref336414351][bookmark: _Toc358896509]6.24 Side-effects and Order of Evaluation [SAM]
6.24.1 Applicability to language
Fortran functions are permitted to have side effects, unless the function is declared to have the pure attribute. Within some expressions, the order of invocation of functions is not specified. The standard explicitly requires that evaluating any part of an expression does not change the value of any other part of the expression, but there is no requirement for this to be diagnosed by the processor.
Further, the Fortran standard allows a processor to ignore any part of an expression that is not needed to compute the value of the expression. Processors vary as to how aggressively they take advantage of this permission.There are no operators in Ada with direct side effects on their operands using the language-defined operations, especially not the increment and decrement operation. Ada does not permit multiple assignments in a single expression or statement.
There is the possibility though to have side effects through function calls in expressions where the function modifies globally visible variables. Although functions only have "in" parameters, meaning that they are not allowed to modify the value of their parameters, they may modify the value of global variables. Operators in Ada are functions, so, when defined by the user, although they cannot modify their own operands, they may modify global state and therefore have side effects.
Ada allows the implementation to choose the order of evaluation of expressions with operands of the same precedence level, the order of association is left-to-right. The operands of a binary operation are also evaluated in an arbitrary order, as happens for the parameters of any function call. In the case of user-defined operators with side effects, this implementation dependency can cause unpredictability of the side effects.
6.24.2 Guidance to language users
· Replace any function with a side effect by a subroutine so that its place in the sequence of computation is certain.
Assign function values to temporary variables and use the temporary variables in the original expression.
· Declare a function as pure whenever possible.Make use of one or more programming guidelines which prohibit functions that modify global state, and can be enforced by static analysis.
Keep expressions simple. Complicated code is prone to error and difficult to maintain.
Always use brackets to indicate order of evaluation of operators of the same precedence level.
[bookmark: _Ref336424769][bookmark: _Toc358896510]6.25 Likely Incorrect Expression [KOA]
6.25.1 Applicability to language
While Fortran is not as susceptible to this issue as some languages (largely because assignment = is not an operator), nevertheless, some situations exist where a single character, present or absent, could change the meaning of an expression. For example, assignment could be confused with pointer assignment when the name on the left-hand side has the pointer attribute and the name on the right-hand side has the target attribute.
Some processors allow a dyadic operator immediately preceding a unary operator, which should be avoided. However, this can be detected by using processor options to detect violations of the standard.
Fortran is not susceptible to the “dangling else” version of this problem because each construct has a unique end-of-construct statement.An instance of this vulnerability consists of two syntactically similar constructs such that the inadvertent substitution of one for the other may result in a program which is accepted by the compiler but does not reflect the intent of the author.
The examples given in 6.27 are not problems in Ada because of Ada's strong typing and because an assignment is not an expression in Ada.
In Ada, a type-conversion and a qualified expression are syntactically similar, differing only in the presence or absence of a single character:
 Type_Name (Expression) -- a type-conversion
vs.
 Type_Name'(Expression) -- a qualified expression
Typically, the inadvertent substitution of one for the other results in either a semantically incorrect program which is rejected by the compiler or in a program which behaves in the same way as if the intended construct had been written. In the case of a constrained array subtype, the two constructs differ in their treatment of sliding (conversion of an array value with bounds 100 .. 103 to a subtype with bounds 200 .. 203 will succeed; qualification will fail a run-time check).
Similarly, a timed entry call and a conditional entry call with an else-part that happens to begin with a delay statement differ only in the use of "else" vs. "or" (or even "then abort" in the case of a asynchronous_select statement).
Probably the most common correctness problem resulting from the use of one kind of expression where a syntactically similar expression should have been used has to do with the use of short-circuit vs. non-short-circuit Boolean-valued operations (for example, "and then" and "or else" vs. "and" and "or"), as in
if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if;
-- should have used "and then" to avoid dereferencing null
6.25.2 Guidance to language users
· Use an automatic tool to simplify expressions.
Check for assignment versus pointer assignment carefully when assigning to names having the pointer attribute.
· Use dummy argument intents to assist the processor’s ability to detect such occurrences.Compilers and other static analysis tools can detect some cases (such as the preceding example).
Developers may also choose to use short-circuit forms by default (errors resulting from the incorrect use of short-circuit forms are much less common), but this makes it more difficult for the author to express the distinction between the cases where short-circuited evaluation is known to be needed (either for correctness or for performance) and those where it is not.
[bookmark: _Ref336424817][bookmark: _Toc358896511]6.26 Dead and Deactivated Code [XYQ]
6.26.1 Applicability to language
There is no requirement in the Fortran standard for processors to detect code that cannot be executed. It is entirely the task of the programmer to remove such code.
The developer should justify each case of statements not being executed.
If desirable to preserve older code for documentation (for example, of an older numerical method), the code should be converted to comments. Alternatively, a source code control package can be used to preserve the text of older versions of a program.Ada allows the usual sources of dead code (described in 6.26) that are common to most conventional programming languages.
6.26.2 Guidance to language users
Use a compiler, or other tool, that can detect dead or deactivated code.
Use a coverage tool to check that the test suite causes every statement to be executed.
Use an editor or other tool that can transform a block of code to comments to do so with dead or deactivated code.
Use a version control tool to maintain older versions of code when needed to preserve development history.Implementation specific mechanisms may be provided to support the elimination of dead code. In some cases, pragmas such as Restrictions, Suppress, or Discard_Names may be used to inform the compiler that some code whose generation would normally be required for certain constructs would be dead because of properties of the overall system, and that therefore the code need not be generated. For example, given the following:
package Pkg is
type Enum is (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);
end Pkg;
If Pkg.Enum'Image and related attributes (for example, Value, Wide_Image) of the type are never used, and if the implementation normally builds a table, then the pragma allows the elimination of the table.
[bookmark: _Ref336424846][bookmark: _Toc358896512]6.27 Switch Statements and Static Analysis [CLL]
6.27.1 Applicability to language
Fortran has a select case construct, but control never flows from one alternative to another.
Fortran has a computed go to statement that allows control to flow from one alternative to another, and allows other unexpected flow of control.With the exception of unsafe programming (see 4 Concepts) and the use of default cases, this vulnerability is not applicable to Ada as Ada ensures that a case statement provides exactly one alternative for each value of the expression's subtype. This restriction is enforced at compile time. The others clause may be used as the last choice of a case statement to capture any remaining values of the case expression type that are not covered by the preceding case choices. If the value of the expression is outside of the range of this subtype (for example, due to an uninitialized variable), then the resulting behaviour is well-defined (Constraint_Error is raised). Control does not flow from one alternative to the next. Upon reaching the end of an alternative, control is transferred to the end of the case statement.
The remaining vulnerability is that unexpected values are captured by the others clause or a subrange as case choice. For example, when the range of the type Character was extended from 128 characters to the 256 characters in the Latin-1 character type, an others clause for a case statement with a Character type case expression originally written to capture cases associated with the 128 characters type now captures the 128 additional cases introduced by the extension of the type Character. Some of the new characters may have needed to be covered by the existing case choices or new case choices.
6.27.2 Guidance to language users
Cover cases that are expected never to occur with a case default clause to ensure that unexpected cases are detected and processed, perhaps emitting an error message.
· Avoid the use of computed go to statements.For case statements and aggregates, avoid the use of the others choice.
For case statements and aggregates, mistrust subranges as choices after enumeration literals have been added anywhere but the beginning or the end of the enumeration type definition.15F[footnoteRef:1] [1:]

[bookmark: _Ref336424940][bookmark: _Toc358896513]6.28 Demarcation of Control Flow [EOJ]
6.28.1 Applicability to language
T Modern Fortran supports block constructs for choice and iteration, which have separate end statements for do, select, and if constructs. Furthermore, these constructs can be named which reduces visual confusion when blocks are nested.
There are archaic forms of loops and choices that should be avoided.
6.28.2 Guidance to language users
Use the block form of the do-loop, together with cycle and exit statements, rather than the non-block do-loop.
Use the if construct or select case construct whenever possible, rather than statements that rely on labels, that is, the arithmetic if and go to statements.
Use names on block constructs to provide matching of initial statement and end statement for each construct.his vulnerability is not applicable to Ada as the Ada syntax describes several types of compound statements that are associated with control flow including if statements, loop statements, case statements, select statements, and extended return statements. Each of these forms of compound statements require unique syntax that marks the end of the compound statement.
[bookmark: _Ref336424963][bookmark: _Toc358896514]6.29 Loop Control Variables [TEX]
6.29.1 Applicability to language
A Fortran enumerated do loop has the trip increment and trip count established when the do statement is executed. These do not change during the execution of the loop.
The program is prohibited from changing the value of an iteration variable during execution of the loop. The processor is usually able to detect violation of this rule, but there are situations where this is difficult or requires use of a processor option; for example, an iteration variable might be changed by a procedure that is referenced within the loop.
6.29.2 Guidance to language users
Ensure that the value of the iteration variable is not changed other than by the loop control mechanism during the execution of a do loop.
 Verify that where the iteration variable is an actual argument, it is associated with an intent(in) or a value dummy argument.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as Ada defines a for loop where the number of iterations is controlled by a loop control variable (called a loop parameter). This value has a constant view and cannot be updated within the sequence of statements of the body of the loop.
[bookmark: _Ref336424988][bookmark: _Toc358896515]6.30 Off-by-one Error [XZH]
6.30.1 Applicability to language
Fortran is not very susceptible to this vulnerability because it permits explicit declarations of upper and lower bounds of arrays, which allows bounds that are relevant to the application to be used. For example, latitude can be declared with bounds -90 to 90, while longitude can be declared with bounds -180 to 180. Thus, user-written arithmetic on subscripts can be minimized.
 This vulnerability is applicable to a mixed-language program containing both Fortran and C, since arrays in C always have the lower bound 0, and it might reduce the overall amount of explicit subscript arithmetic to declare the Fortran arrays with lower bounds of zero when they would otherwise be given different lower bounds.Confusion between the need for < and <= or > and >= in a test.
A for loop in Ada does not require the programmer to specify a conditional test for loop termination. Instead, the starting and ending value of the loop are specified which eliminates this source of off-by-one errors. A while loop however, lets the programmer specify the loop termination expression, which could be susceptible to an off-by-one error.
Confusion as to the index range of an algorithm.
Although there are language defined attributes to symbolically reference the start and end values for a loop iteration, the language does allow the use of explicit values and loop termination tests. Off-by-one errors can result in these circumstances.
Care should be taken when using the 'Length attribute in the loop termination expression. The expression should generally be relative to the 'First value.
The strong typing of Ada eliminates the potential for buffer overflow associated with this vulnerability. If the error is not statically caught at compile time, then a run-time check generates an exception if an attempt is made to access an element outside the bounds of an array.
Failing to allow for storage of a sentinel value.
Ada does not use sentinel values to terminate arrays. There is no need to account for the storage of a sentinel value, therefore this particular vulnerability concern does not apply to Ada.
6.30.2 Guidance to language users
Declare array bounds to fit the natural bounds of the problem.
· Declare interoperable arrays with the lower bound 0 so that the subscript values correspond between languages, where doing so reduces the overall amount of explicit subscript arithmetic.Whenever possible, a for loop should be used instead of a while loop.
Whenever possible, the 'First, 'Last, and 'Range attributes should be used for loop termination. If the 'Length attribute must be used, then extra care should be taken to ensure that the length expression considers the starting index value for the array.
[bookmark: _Ref336414195][bookmark: _Toc358896516]6.31 Structured Programming [EWD]
6.31.1 Applicability to language
As the first language to be formally standardized, Fortran has older constructs that allow an unstructured programming style to be employed.
These features have been superseded by better methods. The Fortran standard continues to support these archaic forms to allow older programs to function. Some of them are obsolescent, which means that the processor is required to be able to detect and report their usage.
Automatic tools are the preferred method of refactoring unstructured code. Only where automatic tools are unable to do so should refactoring be done manually.
Refactoring efforts should always be thoroughly checked by testing of the new code.Ada programs can exhibit many of the vulnerabilities noted in 6.31: leaving a loop at an arbitrary point, local jumps (goto), and multiple exit points from subprograms.
Ada however does not suffer from non-local jumps and multiple entries to subprograms.
6.31.2 Guidance to language users
Use a tool to automatically refactor unstructured code.
Replace unstructured code manually with modern structured alternatives only where automatic tools are unable to do so.
Use the compiler or other tool to detect archaic usage.Avoid the use of goto, loop exit statements, return statements in procedures and more than one return statement in a function If not following this guidance caused the function code to be clearer – short of appropriate restructuring – then multiple exit points should be used.
[bookmark: _Toc358896517]6.32 Passing Parameters and Return Values [CSJ]
6.32.1 Applicability to language
Fortran does not specify the argument passing mechanism, but rather specifies the rules of argument association. These rules are generally implemented either by pass-by-reference, by value, by copy-in/copy-out, by descriptor, or by copy-in.
More restrictive rules apply to coarrays and to arrays with the contiguous attribute. Rules for procedures declared to have a C binding follow the rules of C.
Module procedures, intrinsic procedures, and internal procedures have explicit interfaces. An external procedure has an explicit interface only when one is provided by a procedure declaration or interface body. Such an interface body could be generated automatically using a software tool. Explicit interfaces allow processors to check the type, kind, and rank of arguments and result variables of functions.Ada employs the mechanisms (for example, modes in, out and in out) that are recommended in Section 6.34. These mode definitions are not optional, mode in being the default. The remaining vulnerability is aliasing when a large object is passed by reference.
6.32.2 Guidance to language users
· Specify explicit interfaces by placing procedures in modules where the procedure is to be used in more than one scope, or by using internal procedures where the procedure is to be used in one scope only.
· Specify argument intents to allow further checking of argument usage.
· Specify pure (or elemental) for procedures where possible for greater clarity of the programmer’s intentions.
· Use a compiler or other tool to automatically create explicit interfaces for external procedures.Follow avoidance advice in Section 6.24.
[bookmark: _Ref336414367][bookmark: _Toc358896518]6.33 Dangling References to Stack Frames [DCM]
6.33.1 Applicability to language
A Fortran pointer is vulnerable to this issue when a local target does not have the save attribute and the pointer has a lifetime longer than the target. However, the intended functionality is often available with allocatables, which do not suffer from this vulnerability. The Fortran standard explicitly states that the lifetime of an allocatable function result extends to its use in the expression that invoked the call.In Ada, the attribute 'Address yields a value of some system-specific type that is not equivalent to a pointer. The attribute 'Access provides an access value (what other languages call a pointer). Addresses and access values are not automatically convertible, although a predefined set of generic functions can be used to convert one into the other. Access values are typed, that is to say, they can only designate objects of a particular type or class of types.
As in other languages, it is possible to apply the 'Address attribute to a local variable, and to make use of the resulting value outside of the lifetime of the variable. However, 'Address is very rarely used in this fashion in Ada. Most commonly, programs use 'Access to provide pointers to objects and subprograms, and the language enforces accessibility checks whenever code attempts to use this attribute to provide access to a local object outside of its scope. These accessibility checks eliminate the possibility of dangling references.
As for all other language-defined checks, accessibility checks can be disabled over any portion of a program by using the Suppress pragma. The attribute Unchecked_Access produces values that are exempt from accessibility checks.
6.33.2 Guidance to language users
Do not pointer-assign a pointer to a target if the pointer association might have a longer lifetime than the target or the target attribute of the target.
· Use allocatable variables in preference to pointers wherever they provide sufficient functionality.Only use 'Address attribute on static objects (for example, a register address).
Do not use 'Address to provide indirect untyped access to an object.
Do not use conversion between Address and access types.
Use access types in all circumstances when indirect access is needed.
Do not suppress accessibility checks.
Avoid use of the attribute Unchecked_Access.
Use ‘Access attribute in preference to ‘Address.
[bookmark: _Ref336425045][bookmark: _Toc358896519]6.34 Subprogram Signature Mismatch [OTR]
6.34.1 Applicability to language
The Fortran term denoting a procedure’s signature is its interface.
The Fortran standard requires that interfaces match, but does not require that the processor diagnoses mismatches. However, processors do check this when the interface is explicit. Some processors can check interfaces if inter-procedural analysis is requested.
Explicit interfaces are provided automatically for intrinsic procedures or when procedures are placed in modules or are internal procedures within other procedures.There are two concerns identified with this vulnerability. The first is the corruption of the execution stack due to the incorrect number or type of actual parameters. The second is the corruption of the execution stack due to calls to externally compiled modules.
In Ada, at compilation time, the parameter association is checked to ensure that the type of each actual parameter matches the type of the corresponding formal parameter. In addition, the formal parameter specification may include default expressions for a parameter. Hence, the procedure may be called with some actual parameters missing. In this case, if there is a default expression for the missing parameter, then the call will be compiled without any errors. If default expressions are not specified, then the procedure call with insufficient actual parameters will be flagged as an error at compilation time.
Caution must be used when specifying default expressions for formal parameters, as their use may result in successful compilation of subprogram calls with an incorrect signature. The execution stack will not be corrupted in this event but the program may be executing with unexpected values.
When calling externally compiled modules that are Ada program units, the type matching and subprogram interface signatures are monitored and checked as part of the compilation and linking of the full application. When calling externally compiled modules in other programming languages, additional steps are needed to ensure that the number and types of the parameters for these external modules are correct.
6.34.2 Guidance to language users
· Use explicit interfaces, preferably by placing procedures inside a module or another procedure.
Use a processor that checks all interfaces, especially if this can be checked during compilation with no execution overhead.
· Use a processor or other tool to create explicit interface bodies for external procedures.Do not use default expressions for formal parameters.
Interfaces between Ada program units and program units in other languages can be managed using pragma Import to specify subprograms that are defined externally and pragma Export to specify subprograms that are used externally. These pragmas specify the imported and exported aspects of the subprograms, this includes the calling convention. Like subprogram calls, all parameters need to be specified when using pragma Import and pragma Export.
The pragma Convention may be used to identify when an Ada entity should use the calling conventions of a different programming language facilitating the correct usage of the execution stack when interfacing with other programming languages.
In addition, the Valid attribute may be used to check if an object that is part of an interface with another language has a valid value and type.
[bookmark: _Toc358896520]6.35 Recursion [GDL]
6.35.1 Applicability to language
Fortran supports recursion, so this vulnerability applies. Possibly recursive procedures are marked with the recursive attribute, thereby leaving some documentation of the programmer’s intentions.
Recursive calculations are attractive in some situations due to their close resemblance to the most compact mathematical formula of the quantity to be computed.Ada permits recursion. The exception Storage_Error is raised when the recurring execution results in insufficient storage.
6.35.2 Guidance to language users
· Prefer iteration to recursion, unless it can be proved that the depth of recursion can never be large.If recursion is used, then a Storage_Error exception handler may be used to handle insufficient storage due to recurring execution.
· Alternatively, the asynchronous control construct may be used to time the execution of a recurring call and to terminate the call if the time limit is exceeded.
· In Ada, the pragma Restrictions may be invoked with the parameter No_Recursion. In this case, the compiler will ensure that as part of the execution of a subprogram the same subprogram is not invoked.
[bookmark: _Toc358896521]6.36 Ignored Error Status and Unhandled Exceptions [OYB]
6.36.1 Applicability to language
Many Fortran statements and some intrinsic procedures return a status value. In most circumstances, status error values returned from statements that are not received by the invoking program result in the error termination of the program. Some programmers, however, in order to “keep going” accept the status value but do not examine it. This results in a program crash without an explanation when subsequent steps in the program rely upon the previous statements having completed successfully.
Fortran consistently uses a scheme of status values where zero indicates success, a positive value indicates an error, and a negative value indicates some other information.
Other than via the IEEE intrinsic modules, Fortran does not support exception handling.Ada offers a set of predefined exceptions for error conditions that may be detected by checks that are compiled into a program. In addition, the programmer may define exceptions that are appropriate for their application. These exceptions are handled using an exception handler. Exceptions may be handled in the environment where the exception occurs or may be propagated out to an enclosing scope.
As described in 6.38, there is some complexity in understanding the exception handling methodology especially with respect to object-oriented programming and multi-threaded execution.
[bookmark: _Ref336425085]6.36.2 Guidance to language users
· Code a status variable for all statements that support one, and examine its value prior to continuing execution for faults that cause termination, provide a message to users of the program, perhaps with the help of the error message generated by the statement whose execution generated the error.
· Appropriately treat all status values that might be returned by an intrinsic procedure or by a library procedure.In addition to the mitigations defined in the main text, values delivered to an Ada program from an external device may be checked for validity prior to being used. This is achieved by testing the Valid attribute.
[bookmark: _Toc358896522]6.37 Fault Tolerance and Failure Strategies [REW]
6.37.1 Applicability to language
Fortran distinguishes between normal termination (stop or end program) and error termination (error stop). For a normal termination there are three stages, initiation, synchronization, and completion. This allows images that are still executing to access data on images that have finished and are awaiting synchronization. Error termination on one image causes error termination on the other images.
Therefore, there are three options available to a Fortran program. First, it can detect an error locally and handle it; second, it can detect an error and halt one image; and third, it can detect an error and signal all images to halt.An Ada system that consists of multiple tasks is subject to the same hazards as multithreaded systems in other languages. A task that fails, for example, because its execution violates a language-defined check, terminates quietly.
Any other task that attempts to communicate with a terminated task will receive the exception Tasking_Error. The undisciplined use of the abort statement or the asynchronous transfer of control feature may destroy the functionality of a multitasking program.
6.37.2 Guidance to language users
Decide upon a strategy for handling errors, and consistently use it across all portions of the program.
· Use stop or error stop as appropriate.Include exception handlers for every task, so that their unexpected termination can be handled and possibly communicated to the execution environment.
Use objects of controlled types to ensure that resources are properly released if a task terminates unexpectedly.
The abort statement should be used sparingly, if at all.
For high-integrity systems, exception handling is usually forbidden. However, a top-level exception handler can be used to restore the overall system to a coherent state.
Define interrupt handlers to handle signals that come from the hardware or the operating system. This mechanism can also be used to add robustness to a concurrent program.
Annex C of the Ada Reference Manual (Systems Programming) defines the package Ada.Task_Termination to be used to monitor task termination and its causes.
Annex H of the Ada Reference Manual (High Integrity Systems) describes several pragma, restrictions, and other language features to be used when writing systems for high-reliability applications. For example, the pragma Detect_Blocking forces an implementation to detect a potentially blocking operation within a protected operation, and to raise an exception in that case.
[bookmark: _Ref336413236][bookmark: _Toc358896523]6.38 Type-breaking Reinterpretation of Data [AMV]
6.38.1 Applicability to language
Storage association via common or equivalence statements, or via the transfer intrinsic procedure can cause a type-breaking reinterpretation of data. Type-breaking reinterpretation via common and equivalence is not standard-conforming.Unchecked_Conversion can be used to bypass the type-checking rules, and its use is thus unsafe, as in any other language. The same applies to the use of Unchecked_Union, even though the language specifies various inference rules that the compiler must use to catch statically detectable constraint violations.
Type reinterpretation is a universal programming need, and no usable programming language can exist without some mechanism that bypasses the type model. Ada provides these mechanisms with some additional safeguards, and makes their use purposely verbose, to alert the writer and the reader of a program to the presence of an unchecked operation.
6.38.2 Guidance to language users
· Do not use common to share data. Use modules instead.
· Do not use equivalence to save storage space. Use allocatable data instead.
Avoid use of the transfer intrinsic unless its use is unavoidable, and then document the use carefully.
· Use compiler options where available to detect violation of the rules for common and equivalence.The fact that Unchecked_Conversion is a generic function that must be instantiated explicitly (and given a meaningful name) hinders its undisciplined use, and places a loud marker in the code wherever it is used. Well-written Ada code will have a small set of instantiations of Unchecked_Conversion.
Most implementations require the source and target types to have the same size in bits, to prevent accidental truncation or sign extension.
Unchecked_Union should only be used in multi-language programs that need to communicate data between Ada and C or C++. Otherwise the use of discriminated types prevents "punning" between values of two distinct types that happen to share storage.
Using address clauses to obtain overlays should be avoided. If the types of the objects are the same, then a renaming declaration is preferable. Otherwise, the pragma Import should be used to inhibit the initialization of one of the entities so that it does not interfere with the initialization of the other one.
[bookmark: _Ref336414390][bookmark: _Toc358896524]6.39 Memory Leak [XYL]
6.39.1 Applicability to language
The misuse of pointers in Fortran can cause a memory leak. However, the intended functionality is often available with allocatables, which do not suffer from this vulnerability.For objects that are allocated from the heap without the use of reference counting, the memory leak vulnerability is possible in Ada. For objects that must allocate from a storage pool, the vulnerability can be present but is restricted to the single pool and which makes it easier to detect by verification. For objects of a controlled type that uses referencing counting and that are not part of a cyclic reference structure, the vulnerability does not exist.
Ada does not mandate the use of a garbage collector, but Ada implementations are free to provide such memory reclamation. For applications that use and return memory on an implementation that provides garbage collection, the issues associated with garbage collection exist in Ada.
6.39.2 Guidance to language users
· Use allocatable data items rather than pointer data items whenever possible.
· Use final routines to free memory resources allocated to a data item of derived type.
· Use a tool during testing to detect memory leaks.
· Use storage pools where possible.
Use controlled types and reference counting to implement explicit storage management systems that cannot have storage leaks.
Use a completely static model where all storage is allocated from global memory and explicitly managed under program control.
[bookmark: _Toc358896525]6.40 Templates and Generics [SYM]
Fortran does not support templates or generics, so this vulnerability does not apply.With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as the Ada generics model is based on imposing a contract on the structure and operations of the types that can be used for instantiation. Also, explicit instantiation of the generic is required for each particular type.
Therefore, the compiler is able to check the generic body for programming errors, independently of actual instantiations. At each actual instantiation, the compiler will also check that the instantiated type meets all the requirements of the generic contract.
Ada also does not allow for ‘special case’ generics for a particular type, therefore behaviour is consistent for all instantiations.
[bookmark: _Ref336414406][bookmark: _Toc358896526]6.41 Inheritance [RIP]
6.41.1 Applicability to language
Fortran supports inheritance so this vulnerability applies.
Fortran supports single inheritance only, so the complexities associated with multiple inheritance do not apply.The vulnerability documented in Section 6.43 applies to Ada.
Ada only allows a restricted form of multiple inheritance, where only one of the multiple ancestors (the parent) may define operations. All other ancestors (interfaces) can only specify the operations’ signature. Therefore, Ada does not suffer from multiple inheritance derived vulnerabilities.
6.41.2 Guidance to language users
Declare a type-bound procedure to be non overridable when necessary to ensure that it is not overridden.
· Provide a private component to store the version control identifier of the derived type, together with an accessor routine.Use the overriding indicators on potentially inherited subprograms to ensure that the intended contract is obeyed, thus preventing the accidental redefinition or failure to redefine an operation of the parent.
Use the mechanisms of mitigation described in the main body of the document.
[bookmark: _Ref336425131][bookmark: _Toc358896527]6.42 Extra Intrinsics [LRM]
6.42.1 Applicability to language
Fortran permits a processor to supply extra intrinsic procedures.
The processor that provides extra intrinsic procedures might be standard-conforming; the program that uses one is not.
6.42.2 Guidance to language users
Specify that an intrinsic or external procedure has the intrinsic or external attribute, respectively, in the scope where the reference occurs.
Use compiler options to detect use of non-standard intrinsic procedures.
The vulnerability does not apply to Ada, because all subprograms, whether intrinsic or not, belong to the same name space. This means that all subprograms must be explicitly declared, and the same name resolution rules apply to all of them, whether they are predefined or user-defined. If two subprograms with the same name and signature are visible (that is to say nameable) at the same place in a program, then a call using that name will be rejected as ambiguous by the compiler, and the programmer will have to specify (for example by means of a qualified name) which subprogram is meant.
[bookmark: _Ref336414420][bookmark: _Toc358896528]6.43 Argument Passing to Library Functions [TRJ]
6.43.1 Applicability to language
Fortran allows use of libraries so this vulnerability applies.The general vulnerability that parameters might have values precluded by preconditions of the called routine applies to Ada as well.
However, to the extent that the preclusion of values can be expressed as part of the type system of Ada, the preconditions are checked by the compiler statically or dynamically and thus are no longer vulnerabilities. For example, any range constraint on values of a parameter can be expressed in Ada by means of type or subtype declarations. Type violations are detected at compile time, subtype violations cause run-time exceptions.
6.43.2 Guidance to language users
· Use libraries from reputable sources with reliable documentation and understand the documentation to appreciate the range of acceptable input.
· Verify arguments to library procedures when their validity is in doubt.
Use condition constructs such as if and where to prevent invocation of a library procedure with invalid arguments.
· Provide explicit interfaces for library procedures. If the library provides a module containing interface bodies, use the module.Exploit the type and subtype system of Ada to express preconditions (and postconditions) on the values of parameters.
Document all other preconditions and ensure by guidelines that either callers or callees are responsible for checking the preconditions (and postconditions). Wrapper subprograms for that purpose are particularly advisable.
Library providers should specify the response to invalid values.
[bookmark: _Ref336425160][bookmark: _Toc358896529]6.44 Inter-language Calling [DJS]
6.44.1 Applicability to Language
Fortran supports interoperating with functions and data that can be specified by means of the C programming language. The facilities limit the interactions and thereby limit the extent of this vulnerability.The vulnerability applies to Ada, however Ada provides mechanisms to interface with common languages, such as C, Fortran and COBOL, so that vulnerabilities associated with interfacing with these languages can be avoided.
6.44.2 Guidance to Language Users
· Correctly identify the companion processor, including any options affecting its types.
· Use the iso_c_binding module, and use the correct constants therein to specify the type kind values needed.
· Use the value attribute as needed for dummy arguments.
· Use the inter-language methods and syntax specified by the Ada Reference Manual when the routines to be called are written in languages that the ARM specifies an interface with.
Use interfaces to the C programming language where the other language system(s) are not covered by the ARM, but the other language systems have interfacing to C.
Make explicit checks on all return values from foreign system code artifacts, for example by using the 'Valid attribute or by performing explicit tests to ensure that values returned by inter-language calls conform to the expected representation and semantics of the Ada application.
[bookmark: _Ref336425206][bookmark: _Toc358896530]6.45 Dynamically-linked Code and Self-modifying Code [NYY]
With the exception of unsafe programming (see 4 Concepts), this vulnerability is not applicable to Ada as Ada supports neither dynamic linking nor self-modifying code. The latter is possible only by exploiting other vulnerabilities of the language in the most malicious ways and even then it is still v
6.45.1 Applicability to language
The Fortran standard does not discuss the means of program translation, so any use or misuse of dynamically linked libraries is processor dependent. Fortran does not permit self-modifying code.
6.45.2 Guidance to language users
· Use compiler options to effect a static link.ery difficult to achieve.
[bookmark: _Ref336414438][bookmark: _Ref336425269][bookmark: _Toc358896531]6.46 Library Signature [NSQ]
6.46.1 Applicability to language
Fortran allows the use of libraries, so this vulnerability applies.Ada provides mechanisms to explicitly interface to modules written in other languages. Pragmas Import, Export and Convention permit the name of the external unit and the interfacing convention to be specified.
Even with the use of pragma Import, pragma Export and pragma Convention the vulnerabilities stated in Section 6.48 are possible. Names and number of parameters change under maintenance; calling conventions change as compilers are updated or replaced, and languages for which Ada does not specify a calling convention may be used.
6.46.2 Guidance to language users
· Use explicit interfaces for the library code if they are available. Avoid libraries that do not provide explicit interfaces.
· Carefully construct explicit interfaces for the library procedures where library modules are not provided.
· Prefer libraries that provide procedures as module procedures rather than as external procedures.The mitigation mechanisms of Section 6.48.5 are applicable.
[bookmark: _Ref336425300][bookmark: _Toc358896532]6.48 Unanticipated Exceptions from Library Routines [HJW]
6.48.1 Applicability to language
Fortran allows the use of libraries so this vulnerability applies.Ada programs are capable of handling exceptions at any level in the program, as long as any exception naming and delivery mechanisms are compatible between the Ada program and the library components. In such cases the normal Ada exception handling processes will apply, and either the calling unit or some subprogram or task in its call chain will catch the exception and take appropriate programmed action, or the task or program will terminate.
If the library components themselves are written in Ada, then Ada's exception handling mechanisms let all called units trap any exceptions that are generated and return error conditions instead. If such exception handling mechanisms are not put in place, then exceptions can be unexpectedly delivered to a caller.
If the interface between the Ada units and the library routine being called does not adequately address the issue of naming, generation and delivery of exceptions across the interface, then the vulnerabilities as expressed in Section 6.49 apply.
6.47.2 Guidance to language users
· Check any return flags present and, if an error is indicated, take appropriate actions when calling a library procedure.Ensure that the interfaces with libraries written in other languages are compatible in the naming and generation of exceptions.
· Put appropriate exception handlers in all routines that call library routines, including the catch-all exception handler when others =>.
· Document any exceptions that may be raised by any Ada units being used as library routines.
[bookmark: _Ref336425330][bookmark: _Toc358896533]6.48 Pre-Processor Directives [NMP]
6.48.1 Applicability to language
The Fortran standard does not include pre-processing, so this vulnerability does not apply to standard programs. However, some Fortran programmers employ the C pre-processor cpp, or other pre-processors.
The C pre-processor, as defined by the C language, is unaware of several Fortran source code properties. Some suppliers of Fortran processors also supply a Fortran-aware version of cpp. Unless a Fortran-aware version of cpp is used, unexpected results, not always easily detected, can occur.
Other pre-processors might or might not be aware of Fortran source code properties. Not all pre-processors have a Fortran-aware mode that could be used to reduce the probability of erroneous results.
6.48.2 Guidance to language users
Avoid use of the C pre-processor cpp.
Avoid pre-processors generally. Where deemed necessary, a Fortran mode should be set.
Use processor-specific modules in place of pre-processing wherever possible.This vulnerability is not applicable to Ada as Ada does not have a pre-processor.
[bookmark: _Toc358896534]6.49 Suppression of Language-defined Run-time Checking [MXB]
6.49.1 Applicability to Language
The Fortran standard has many requirements that cannot be statically checked. While many processors provide options for run-time checking, the standard does not require that any such checks be provided.The vulnerability exists in Ada since “pragma Suppress” permits explicit suppression of language-defined checks on a unit-by-unit basis or on partitions or programs as a whole. (The language-defined default, however, is to perform the runtime checks that prevent the vulnerabilities.) Pragma Suppress can suppress all language-defined checks or 12 individual categories of checks.
6.49.2 Guidance to Language Users
· Use all run-time checks that are available during development.
Use all run-time checks that are available during production running, except where performance is critical.
· Use several processors during development to check as many conditions as possible.Do not suppress language defined checks.
If language-defined checks must be suppressed, use static analysis to prove that the code is correct for all combinations of inputs.
If language-defined checks must be suppressed, use explicit checks at appropriate places in the code to ensure that errors are detected before any processing that relies on the correct values.
[bookmark: _Ref336425360][bookmark: _Toc358896535]6.50 Provision of Inherently Unsafe Operations [SKL]
6.50.1 Applicability to Language
The types of actual arguments and corresponding dummy arguments are required to agree, but few processors check this unless the procedure has an explicit interface.
The intrinsic function transfer provides the facility to transform an object of one type to an object of another type that has the same physical representation.
A variable of one type can be storage associated through the use of common and equivalence with a variable of another type. Defining the value of one causes the value of the other to become undefined. A processor might not be able to detect this.
There are facilities for invoking C functions from Fortran and Fortran procedures from C. While there are rules about type agreement for the arguments, it is unlikely that processors will check them.
6.50.2 Guidance to language users
Provide an explicit interface for each external procedure or replace the procedure by an internal or module procedure.
Avoid the use of the intrinsic function transfer.
Avoid the use of common and equivalence.
Use the compiler or other automatic tool for checking the types of the arguments in calls between Fortran and C, make use of them during development and in production running except where performance would be severely affected.In recognition of the occasional need to step outside the type system or to perform “risky” operations, Ada provides clearly identified language features to do so. Examples include the generic Unchecked_Conversion for unsafe type-conversions or Unchecked_Deallocation for the deallocation of heap objects regardless of the existence of surviving references to the object. If unsafe programming is employed in a unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointer to a local object, using the Unchecked_Access attribute.
[bookmark: _Toc358896536]6.51 Obscure Language Features [BRS]
6.51.1 Applicability to language
Any use of deleted and obsolescent features, see 6.55 Deprecated Language Features (Error! Reference source not found.), might produce semantic results not in accord with the modern programmer’s expectations. They might be beyond the knowledge of modern code reviewers.
Variables can be storage associated through the use of common and equivalence. Defining the value of one alters the value of the other. They might be of different types, in which case defining the value of one causes the value of the other to become undefined.
Supplying an initial value for a local variable implies that it has the save attribute, which might be unexpected by the developer.
If implicit typing is used, a simple spelling error might unexpectedly introduce a new name. The intended effect on the given variable will be lost without any processor diagnostic.Ada is a rich language and provides facilities for a wide range of application areas. Because some areas are specialized, it is likely that a programmer not versed in a special area might misuse features for that area. For example, the use of tasking features for concurrent programming requires knowledge of this domain. Similarly, the use of exceptions and exception propagation and handling requires a deeper understanding of control flow issues than some programmers may possess.
6.51.2 Guidance to language users
Use the processor to detect and identify obsolescent or deleted features and replace them by better methods.
Avoid the use of common and equivalence.
Specify the save attribute when supplying an initial value.
Use implicit none to require explicit declarations.The pragma Restrictions can be used to prevent the use of certain features of the language. Thus, if a program should not use feature X, then writing pragma Restrictions (No_X); ensures that any attempt to use feature X prevents the program from compiling.
Similarly, features in a Specialized Needs Annex should not be used unless the application area concerned is well-understood by the programmer.
[bookmark: _Ref336414226][bookmark: _Toc358896537]6.52 Unspecified Behaviour [BQF]
This vulnerability is described by Implementation-defined Behaviour [FAB].
6.52.1 Applicability to language
In Ada, there are two main categories of unspecified behaviour, one having to do with unspecified aspects of normal run-time behaviour, and one having to do with bounded errors, errors that need not be detected at run-time but for which there is a limited number of possible run-time effects (though always including the possibility of raising Program_Error).
For the normal behaviour category, there are several distinct aspects of run-time behaviour that might be unspecified, including:
Order in which certain actions are performed at run-time;
Number of times a given element operation is performed within an operation invoked on a composite or container object;
Results of certain operations within a language-defined generic package if the actual associated with a particular formal subprogram does not meet stated expectations (such as “<” providing a strict weak ordering relationship);
Whether distinct instantiations of a generic or distinct invocations of an operation produce distinct values for tags or access-to-subprogram values.
The index entry in the Ada Standard for unspecified provides the full list. Similarly, the index entry for bounded error provides the full list of references to places in the Ada Standard where a bounded error is described.
Failure can occur due to unspecified behaviour when the programmer did not fully account for the possible outcomes, and the program is executed in a context where the actual outcome was not one of those handled, resulting in the program producing an unintended result.
6.52.2 Guidance to language users
As in any language, the vulnerability can be reduced in Ada by avoiding situations that have unspecified behaviour, or by fully accounting for the possible outcomes.
Particular instances of this vulnerability can be avoided or mitigated in Ada in the following ways:
For situations where order of evaluation or number of evaluations is unspecified, using only operations with no side-effects, or idempotent behaviour, will avoid the vulnerability;
For situations involving generic formal subprograms, care should be taken that the actual subprogram satisfies all of the stated expectations;
For situations involving unspecified values, care should be taken not to depend on equality between potentially distinct values;
For situations involving bounded errors, care should be taken to avoid the situation completely, by ensuring in other ways that all requirements for correct operation are satisfied before invoking an operation that might result in a bounded error. See the Ada Annex section on Initialization of Variables [LAV] for a discussion of uninitialized variables in Ada, a common cause of a bounded error.
[bookmark: _Ref336414272][bookmark: _Toc358896538]6.53 Undefined Behaviour [EWF]
6.53.1 Applicability to language
A Fortran processor is unconstrained unless the program uses only those forms and relations specified by the Fortran standard, and gives them the meaning described therein.
The behaviour of non-standard code can change between processors.
A processor is permitted to provide additional intrinsic procedures. One of these might be invoked instead of an intended external procedure with the same name.In Ada, undefined behaviour is called erroneous execution, and can arise from certain errors that are not required to be detected by the implementation, and whose effects are not in general predictable.
There are various kinds of errors that can lead to erroneous execution, including:
· Changing a discriminant of a record (by assigning to the record as a whole) while there remain active references to subcomponents of the record that depend on the discriminant;
· Referring via an access value, task id, or tag, to an object, task, or type that no longer exists at the time of the reference;
· Referring to an object whose assignment was disrupted by an abort statement, prior to invoking a new assignment to the object;
· Sharing an object between multiple tasks without adequate synchronization;
· Suppressing a language-defined check that is in fact violated at run-time;
· Specifying the address or alignment of an object in an inappropriate way;
· Using Unchecked_Conversion, Address_To_Access_Conversions, or calling an imported subprogram to create a value, or reference to a value, that has an abnormal representation.
The full list is given in the index of the Ada Standard under erroneous execution.
Any occurrence of erroneous execution represents a failure situation, as the results are unpredictable, and may involve overwriting of memory, jumping to unintended locations within memory, and other uncontrolled events.
6.53.2 Guidance to language users
Use processor options to detect and report use of non-standard features.
Obtain diagnostics from more than one source, for example, use code checking tools.
Supply an explicit interface to specify the external attribute for all external procedures invoked.
Avoid use of non-standard intrinsic procedures.
Specific the intrinsic attribute for all non-standard intrinsic procedures.The common errors that result in erroneous execution can be avoided in the following ways:
All data shared between tasks should be within a protected object or marked Atomic, whenever practical;
Any use of Unchecked_Deallocation should be carefully checked to be sure that there are no remaining references to the object;
pragma Suppress should be used sparingly, and only after the code has undergone extensive verification.
The other errors that can lead to erroneous execution are less common, but clearly in any given Ada application, care must be taken when using features such as:
abort;
Unchecked_Conversion;
Address_To_Access_Conversions;
The results of imported subprograms;
Discriminant-changing assignments to global variables.
The mitigations described in Section 6.55.5 are applicable here.
[bookmark: _Ref336414530][bookmark: _Toc358896539]6.54 Implementation-Defined Behaviour [FAB]
6.54.1 Applicability to language
Implementation-defined behaviour is known within the Fortran standard as processor-dependent. Annex A.2 of ISO/IEC 1539-1 (2010) contains a list of processor dependencies.
Different processors might process processor dependencies differently. Relying on one behaviour is not guaranteed by the Fortran standard.
Reliance on one behaviour where the standard explicitly allows several is not portable. The behaviour is liable to change between different processors.There are a number of situations in Ada where the language semantics are implementation defined, to allow the implementation to choose an efficient mechanism, or to match the capabilities of the target environment. Each of these situations is identified in Annex M of the Ada Standard, and implementations are required to provide documentation associated with each item in Annex M to provide the programmer with guidance on the implementation choices.
A failure can occur in an Ada application due to implementation-defined behaviour if the programmer presumed the implementation made one choice, when in fact it made a different choice that affected the results of the execution. In many cases, a compile-time message or a run-time exception will indicate the presence of such a problem. For example, the range of integers supported by a given compiler is implementation defined. However, if the programmer specifies a range for an integer type that exceeds that supported by the implementation, then a compile-time error will be indicated, and if at run time a computation exceeds the base range of an integer type, then a Constraint_Error is raised.
Failure due to implementation-defined behaviour is generally due to the programmer presuming a particular effect that is not matched by the choice made by the implementation. As indicated above, many such failures are indicated by compile-time error messages or run-time exceptions. However, there are cases where the implementation-defined behaviour might be silently misconstrued, such as if the implementation presumes Ada.Exceptions.Exception_Information returns a string with a particular format, when in fact the implementation does not use the expected format. If a program is attempting to extract information from Exception_Information for the purposes of logging propagated exceptions, then the log might end up with misleading or useless information if there is a mismatch between the programmer’s expectation and the actual implementation-defined format.
6.54.2 Guidance to language users
· Use processor options to detect and report use of non-standard features.
· Obtain diagnostics from more than one source, for example, use code checking tools.
· Supply an explicit interface to specify the external attribute for all external procedures invoked.
Avoid use of non-standard intrinsic procedures.
· Specific the intrinsic attribute for all non-standard intrinsic procedures.Many implementation-defined limits have associated constants declared in language-defined packages, generally package System. In particular, the maximum range of integers is given by System.Min_Int .. System.Max_Int, and other limits are indicated by constants such as System.Max_Binary_Modulus, System.Memory_Size, System.Max_Mantissa, and similar. Other implementation-defined limits are implicit in normal ‘First and ‘Last attributes of language-defined (sub) types, such as System.Priority’First and System.Priority’Last. Furthermore, the implementation-defined representation aspects of types and subtypes can be queried by language-defined attributes. Thus, code can be parameterized to adjust to implementation-defined properties without modifying the code.
Programmers should be aware of the contents of Annex M of the Ada Standard and avoid implementation-defined behaviour whenever possible.
Programmers should make use of the constants and subtype attributes provided in package System and elsewhere to avoid exceeding implementation-defined limits.
Programmers should minimize use of any predefined numeric types, as the ranges and precisions of these are all implementation defined. Instead, they should declare their own numeric types to match their particular application needs.
When there are implementation-defined formats for strings, such as Exception_ Information, any necessary processing should be localized in packages with implementation-specific variants.
[bookmark: _Ref336425434][bookmark: _Toc358896540]6.55 Deprecated Language Features [MEM]
6.55.1 Applicability to language
Because they are still used in some programs, many processors support features of previous revisions of the Fortran standard that were deleted in later versions of the Fortran standard. These are listed in Annex B.1 of the Fortran standard. In addition, there are features of earlier revisions of Fortran that are still in the standard but are redundant and might be replaced by better methods. They are described in small font in the standard and are summarized in Annex B.2. Any use of these deleted and obsolescent features might produce semantic results not in accord with the modern programmer’s expectations. They might be beyond the knowledge of modern code reviewers.If obsolescent language features are used, then the mechanism of failure for the vulnerability is as described in Section 6.55.3.
6.55.2 Guidance to language users
· Use the processor to detect and identify obsolescent or deleted features and replace them by better methods.Use pragma Restrictions (No_Obsolescent_Features) to prevent the use of any obsolescent features.
· Refer to Annex J of the Ada reference manual to determine if a feature is obsolescent.
[bookmark: _Toc358896436][bookmark: _Ref336425443][bookmark: _Toc358896541]6.56 Concurrency – Activation [CGA]
TBD

6.56.1 Applicability to language
6.56.2 Guidance to language users

[bookmark: _Toc358896437][bookmark: _Ref411808169][bookmark: _Ref411809401]6.57 Concurrency – Directed termination [CGT]
TBD

6.57.1 Applicability to language
6.57.2 Guidance to language users
[bookmark: _Toc358896438][bookmark: _Ref358977270]6.58 Concurrent Data Access [CGX]

TBD
6.58.1 Applicability to language
6.58.2 Guidance to language users

[bookmark: _Toc358896439][bookmark: _Ref411808187][bookmark: _Ref411808224][bookmark: _Ref411809438]6.59 Concurrency – Premature Termination [CGS]

TBD
6.59.1 Applicability to language
6.59.2 Guidance to language users
[bookmark: _Toc358896440]6.60 Protocol Lock Errors [CGM]

TBD
6.60.1 Applicability to language
6.60.2 Guidance to language users
[bookmark: _Toc358896443]6.61 Uncontrolled Format String [SHL]

TBD
7 Language specific vulnerabilities for FortranAda

8 Implications for standardization
Future standardization efforts should consider:
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of integer overflows during program execution.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of out-of-bounds subscripts and array-shape mismatches in assignment statements during program execution.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of invalid pointer references during program execution.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of an invalid use of character constants as format specifiers.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of tests for equality between two objects of type real or complex.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of pointer assignment of a pointer whose lifetime is known to be longer than the lifetime of the target or the target attribute of the target.
Requiring that processors have the ability to detect and report the occurrence within a submitted program unit of the reuse of a name within a nested scope.
Providing a means to specify explicitly a limited set of entities to be accessed by host association.
Identifying, deprecating, and replacing features whose use is problematic where there is a safer and clearer alternative in the modern revisions of the language or in current practice in other languages.
Future standardization efforts should consider the following items to address vulnerability issues identified earlier in this Annex:
Some languages (for example, Java) require that all local variables either be initialized at the point of declaration or on all paths to a reference. Such a rule could be considered for Ada (see 6.22 Initialization of Variables [LAV]).
Pragma Restrictions could be extended to allow the use of these features to be statically checked (see 6.31 Structured Programming [EWD]).
When appropriate, language-defined checks should be added to reduce the possibility of multiple outcomes from a single construct, such as by disallowing side-effects in cases where the order of evaluation could affect the result (see 6.52 Unspecified Behaviour [BQF]).
When appropriate, language-defined checks should be added to reduce the possibility of erroneous execution, such as by disallowing unsynchronized access to shared variables (see 6.53 Undefined Behaviour [EWF]).
Language standards should specify relatively tight boundaries on implementation-defined behaviour whenever possible, and the standard should highlight what levels represent a portable minimum capability on which programmers may rely. For languages like Ada that allow user declaration of numeric types, the number of predefined numeric types should be minimized (for example, strongly discourage or disallow declarations of Byte_Integer, Very_Long_Integer, and similar, in package Standard) (see 6.54 Implementation-Defined Behaviour [FAB]).
Ada could define a pragma Restrictions identifier No_Hiding that forbids the use of a declaration that result in a local homograph (see 6.20 Identifier Name Reuse [YOW]).
Add the ability to declare in the specification of a function that it is pure, that is, it has no side effects (see 6.24 Side-effects and Order of Evaluation [SAM]).
Pragma Restrictions could be extended to restrict the use of 'Address attribute to library level static objects (see 6.33 Dangling References to Stack Frames [DCM]).
Future standardization of Ada should consider implementing a language-provided reference counting storage management mechanism for dynamic objects (see 6.39 Memory Leak [XYL]).
Provide mechanisms to prevent further extensions of a type hierarchy (see 6.41 Inheritance [RIP]).
Future standardization of Ada should consider support for arbitrary pre- and postconditions (see 6.43 Argument Passing to Library Functions [TRJ]).
Ada standardization committees can work with other programming language standardization committees to define library interfaces that include more than a program calling interface. In particular, mechanisms to qualify and quantify ranges of behaviour, such as pre-conditions, post-conditions and invariants, would be helpful (see 6.48 Library Signature [NSQ]).

8. Language Vulnerabilities Specific to Ada

[bookmark: _Toc358896893]Bibliography
[1]	ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2004
[2]	ISO/IEC TR 10000‑1, Information technology — Framework and taxonomy of International Standardized Profiles — Part 1: General principles and documentation framework
[3]	ISO 10241 (all parts), International terminology standards
 [7]	ISO/IEC/IEEE 60559:2011, Information technology – Microprocessor Systems – Floating-Point arithmetic
 [9]	ISO/IEC 8652:1995, Information technology — Programming languages — Ada
 [11]	R. Seacord, The CERT C Secure Coding Standard. Boston,MA: Addison-Westley, 2008.
 [14]	ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the 	Ada programming language in high integrity systems
 [17]	ISO/IEC TR 24718: 2005, Information technology — Programming languages — Guide for the use of the Ada Ravenscar Profile in high integrity systems
 [19]	ISO/IEC 15291:1999, Information technology — Programming languages — Ada Semantic Interface Specification (ASIS)
[20]	Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by the European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.
[21]	IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).
[22]	ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.
[23]	J Barnes, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.
1. Lecture Notes on Computer Science 5020, “Ada 2012 Rationale: The Language, the Standard Libraries,” John Barnes, Springer, 2012. ???????

 [25]	Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04
 [29]	Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National Center for Space Study (CNES) Inquiry Board, July 1996.
 [33]	The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/)
[34]	Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.
[35]	IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008. Institute of Electrical and Electronics Engineers, New York, 2008.
[36]	Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008
[37]	Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005 http://www.nsc.liu.se/wg25/book
[38]	GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf
[39]	Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page 11, http://www.siam.org/siamnews/general/patriot.htm
 [41]	Holzmann, Garard J., Computer, vol. 39, no. 6, pp 95-97, Jun., 2006, The Power of 10: Rules for Developing Safety-Critical Code
[42]	P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT Software Engineering Notes, v.28 n.4, July 2003
[43]	Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: Software Productivity Consortium, 1992. Available from: http://www.adaic.org/docs/95style/95style.pdf
[44]	Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of Object Technology , 127-134.
[45]	Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Constraint Violation Detection in Safety-Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 - 116.
[46]	Lundqvist, K and Asplund, L., “A Formal Model of a Run-Time Kernel for Ravenscar”, The 6th International Conference on Real-Time Computing Systems and Applications – RTCSA 1999

[bookmark: _Toc358896894]Index

	Technical Report
	ISO/IEC TR 24772-82:201X(E)

	© ISO/IEC 2013 – All rights reserved
			1

	6
	© ISO/IEC 2013 – All rights reserved

	© ISO/IEC 2013 – All rights reserved
	5

Ada, 13, 59, 63, 73, 76
AMV – Type-breaking Reinterpretation of Data, 72
API
Application Programming Interface, 16
APL, 48
Apple
OS X, 120
application vulnerabilities, 9
Application Vulnerabilities
Adherence to Least Privilege [XYN], 113
Authentication Logic Error [XZO], 135
Cross-site Scripting [XYT], 125
Discrepancy Information Leak [XZL], 129
Distinguished Values in Data Types [KLK], 112
Download of Code Without Integrity Check [DLB], 137
Executing or Loading Untrusted Code [XYS], 116
Hard-coded Password [XYP], 136
Improper Restriction of Excessive Authentication Attempts [WPL], 140
Improperly Verified Signature [XZR], 128
Inclusion of Functionality from Untrusted Control Sphere [DHU], 139
Incorrect Authorization [BJE], 138
Injection [RST], 122
Insufficiently Protected Credentials [XYM], 133
Memory Locking [XZX], 117
Missing or Inconsistent Access Control [XZN], 134
Missing Required Cryptographic Step [XZS], 133
Path Traversal [EWR], 130
Privilege Sandbox Issues [XYO], 114
Resource Exhaustion [XZP], 118
Resource Names [HTS], 120
Sensitive Information Uncleared Before Use [XZK], 130
Unquoted Search Path or Element [XZQ], 127
Unrestricted File Upload [CBF], 119
Unspecified Functionality [BVQ], 111
URL Redirection to Untrusted Site ('Open Redirect') [PYQ], 140
Use of a One-Way Hash without a Salt [MVX], 141
application vulnerability, 5
Ariane 5, 21

bitwise operators, 48
BJE – Incorrect Authorization, 138
BJL – Namespace Issues, 43
black-list, 120, 124
BQF – Unspecified Behaviour, 92, 94, 95
break, 60
BRS – Obscure Language Features, 91
buffer boundary violation, 23
buffer overflow, 23, 26
buffer underwrite, 23
BVQ – Unspecified Functionality, 111

C, 22, 48, 50, 51, 58, 60, 63, 73
C++, 48, 51, 58, 63, 73, 76, 86
C11, 192
call by copy, 61
call by name, 61
call by reference, 61
call by result, 61
call by value, 61
call by value-result, 61
CBF – Unrestricted File Upload, 119
CCB – Enumerator Issues, 18
CGA – Concurrency – Activation, 98
CGM – Protocol Lock Errors, 105
CGS – Concurrency – Premature Termination, 103
CGT - Concurrency – Directed termination, 100
CGX – Concurrent Data Access, 101
CGY – Inadequately Secure Communication of Shared Resources, 107
CJM – String Termination, 22
CLL – Switch Statements and Static Analysis, 54
concurrency, 2
continue, 60
cryptologic, 71, 128
CSJ – Passing Parameters and Return Values, 61, 82

dangling reference, 31
DCM – Dangling References to Stack Frames, 63
Deactivated code, 53
Dead code, 53
deadlock, 106
DHU – Inclusion of Functionality from Untrusted Control Sphere, 139
Diffie-Hellman-style, 136
digital signature, 84
DJS – Inter-language Calling, 81
DLB – Download of Code Without Integrity Check, 137
DoS
Denial of Service, 118
dynamically linked, 83

EFS – Use of unchecked data from an uncontrolled or tainted source, 109
encryption, 128, 133
endian
big, 15
little, 15
endianness, 14
Enumerations, 18
EOJ – Demarcation of Control Flow, 56
EWD – Structured Programming, 60
EWF – Undefined Behaviour, 92, 94, 95
EWR – Path Traversal, 124, 130
exception handler, 86

FAB – Implementation-defined Behaviour, 92, 94, 95
FIF – Arithmetic Wrap-around Error, 34, 35
FLC – Numeric Conversion Errors, 20
Fortran, 73

GDL – Recursion, 67
generics, 76
GIF, 120
goto, 60

HCB – Buffer Boundary Violation (Buffer Overflow), 23, 82
HFC – Pointer Casting and Pointer Type Changes, 28
HJW – Unanticipated Exceptions from Library Routines, 86
HTML
Hyper Text Markup Language, 124
HTS – Resource Names, 120
HTTP
Hypertext Transfer Protocol, 127

IEC 60559, 16
IEEE 754, 16
IHN –Type System, 12
inheritance, 78
IP address, 119

Java, 18, 50, 52, 76
JavaScript, 125, 126, 127
JCW – Operator Precedence/Order of Evaluation, 47

KLK – Distinguished Values in Data Types, 112
KOA – Likely Incorrect Expression, 50

language vulnerabilities, 9
Language Vulnerabilities
Argument Passing to Library Functions [TRJ], 80
Arithmetic Wrap-around Error [FIF], 34
Bit Representations [STR], 14
Buffer Boundary Violation (Buffer Overflow) [HCB], 23
Choice of Clear Names [NAI], 37
Concurrency – Activation [CGA], 98
Concurrency – Directed termination [CGT], 100
Concurrency – Premature Termination [CGS], 103
Concurrent Data Access [CGX], 101
Dangling Reference to Heap [XYK], 31
Dangling References to Stack Frames [DCM], 63
Dead and Deactivated Code [XYQ], 52
Dead Store [WXQ], 39
Demarcation of Control Flow [EOJ], 56
Deprecated Language Features [MEM], 97
Dynamically-linked Code and Self-modifying Code [NYY], 83
Enumerator Issues [CCB], 18
Extra Intrinsics [LRM], 79
Floating-point Arithmetic [PLF], xvii, 16
Identifier Name Reuse [YOW], 41
Ignored Error Status and Unhandled Exceptions [OYB], 68
Implementation-defined Behaviour [FAB], 95
Inadequately Secure Communication of Shared Resources [CGY], 107
Inheritance [RIP], 78
Initialization of Variables [LAV], 45
Inter-language Calling [DJS], 81
Library Signature [NSQ], 84
Likely Incorrect Expression [KOA], 50
Loop Control Variables [TEX], 57
Memory Leak [XYL], 74
Namespace Issues [BJL], 43
Null Pointer Dereference [XYH], 30
Numeric Conversion Errors [FLC], 20
Obscure Language Features [BRS], 91
Off-by-one Error [XZH], 58
Operator Precedence/Order of Evaluation [JCW], 47
Passing Parameters and Return Values [CSJ], 61, 82
Pointer Arithmetic [RVG], 29
Pointer Casting and Pointer Type Changes [HFC], 28
Pre-processor Directives [NMP], 87
Protocol Lock Errors [CGM], 105
Provision of Inherently Unsafe Operations [SKL], 90
Recursion [GDL], 67
Side-effects and Order of Evaluation [SAM], 49
Sign Extension Error [XZI], 36
String Termination [CJM], 22
Structured Programming [EWD], 60
Subprogram Signature Mismatch [OTR], 65
Suppression of Language-defined Run-time Checking [MXB], 89
Switch Statements and Static Analysis [CLL], 54
Templates and Generics [SYM], 76
Termination Strategy [REU], 70
Type System [IHN], 12
Type-breaking Reinterpretation of Data [AMV], 72
Unanticipated Exceptions from Library Routines [HJW], 86
Unchecked Array Copying [XYW], 27
Unchecked Array Indexing [XYZ], 25
Uncontrolled Fromat String [SHL], 110
Undefined Behaviour [EWF], 94
Unspecified Behaviour [BFQ], 92
Unused Variable [YZS], 40
Use of unchecked data from an uncontrolled or tainted source [EFS], 109
Using Shift Operations for Multiplication and Division [PIK], 35
language vulnerability, 5
LAV – Initialization of Variables, 45
LHS (left-hand side), 241
Linux, 120
livelock, 106
longjmp, 60
LRM – Extra Intrinsics, 79

MAC address, 119
macof, 118
MEM – Deprecated Language Features, 97
memory disclosure, 130
Microsoft
Win16, 121
Windows, 117
Windows XP, 120
MIME
Multipurpose Internet Mail Extensions, 124
MISRA C, 29
MISRA C++, 87
mlock(), 117
MVX – Use of a One-Way Hash without a Salt, 141
MXB – Suppression of Language-defined Run-time Checking, 89

NAI – Choice of Clear Names, 37
name type equivalence, 12
NMP – Pre-Processor Directives, 87
NSQ – Library Signature, 84
NTFS
New Technology File System, 120
NULL, 31, 58
NULL pointer, 31
null-pointer, 30
NYY – Dynamically-linked Code and Self-modifying Code, 83

OTR – Subprogram Signature Mismatch, 65, 82
OYB – Ignored Error Status and Unhandled Exceptions, 68, 163

Pascal, 82
PHP, 124
PIK – Using Shift Operations for Multiplication and Division, 34, 35, 197
PLF – Floating-point Arithmetic, xvii, 16
POSIX, 99
pragmas, 75, 96
predictable execution, 4, 8
PYQ – URL Redirection to Untrusted Site ('Open Redirect'), 140

real numbers, 16
Real-Time Java, 105
resource exhaustion, 118
REU – Termination Strategy, 70
RIP – Inheritance, xvii, 78
rsize_t, 22
RST – Injection, 109, 122
runtime-constraint handler, 191
RVG – Pointer Arithmetic, 29

safety hazard, 4
safety-critical software, 5
SAM – Side-effects and Order of Evaluation, 49
security vulnerability, 5
SeImpersonatePrivilege, 115
setjmp, 60
SHL – Uncontrolled Format String, 110
size_t, 22
SKL – Provision of Inherently Unsafe Operations, 90
software quality, 4
software vulnerabilities, 9
SQL
Structured Query Language, 112
STR – Bit Representations, 14
strcpy, 23
strncpy, 23
structure type equivalence, 12
switch, 54
SYM – Templates and Generics, 76
symlink, 131

tail-recursion, 68
templates, 76, 77
TEX – Loop Control Variables, 57
thread, 2
TRJ – Argument Passing to Library Functions, 80
type casts, 20
type coercion, 20
type safe, 12
type secure, 12
type system, 12

UNC
Uniform Naming Convention, 131
Universal Naming Convention, 131
Unchecked_Conversion, 73
UNIX, 83, 114, 120, 131
unspecified functionality, 111
Unspecified functionality, 111
URI
Uniform Resource Identifier, 127
URL
Uniform Resource Locator, 127

VirtualLock(), 117

white-list, 120, 124, 127
Windows, 99
WPL – Improper Restriction of Excessive Authentication Attempts, 140
WXQ – Dead Store, 39, 40, 41

XSS
Cross-site scripting, 125
XYH – Null Pointer Deference, 30
XYK – Dangling Reference to Heap, 31
XYL – Memory Leak, 74
XYM – Insufficiently Protected Credentials, 9, 133
XYN –Adherence to Least Privilege, 113
XYO – Privilege Sandbox Issues, 114
XYP – Hard-coded Password, 136
XYQ – Dead and Deactivated Code, 52
XYS – Executing or Loading Untrusted Code, 116
XYT – Cross-site Scripting, 125
XYW – Unchecked Array Copying, 27
XYZ – Unchecked Array Indexing, 25, 28
XZH – Off-by-one Error, 58
XZI – Sign Extension Error, 36
XZK – Senitive Information Uncleared Before Use, 130
XZL – Discrepancy Information Leak, 129
XZN – Missing or Inconsistent Access Control, 134
XZO – Authentication Logic Error, 135
XZP – Resource Exhaustion, 118
XZQ – Unquoted Search Path or Element, 127
XZR – Improperly Verified Signature, 128
XZS – Missing Required Cryptographic Step, 133
XZX – Memory Locking, 117

YOW – Identifier Name Reuse, 41, 44
YZS – Unused Variable, 39, 40

soneencuscan 0000

dormaton Tachnopy — rogrmming bgusgs — Gudonce 0 i
ieraiies n rograning ages - Vet decpions o e
ogamng ngee Foriarads

ottt e e

"

