ine Edition, TR 24772-4 { Deleted: -3

ISO/IEC JTC 1/SC 22/WG23 NO745, | Deleted: 41n 0000

Deleted: 5

Deleted: 10

ISO/IECTR 24772 ™ " pejeted: 20150951826

1 Deleted: 2013-08-07

[
[
|
Editionfl, {

’| Deleted: 3

ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology — Programming languages — Guidance to avoiding

vulnerabilities in programming languages — Vulnerability descriptions for the | = [Deleted: through language selection and use

programming language Python (Deleted: ada

Elément introductif — Elément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage

Document language: E [Deleted: 3

© ISO/IEC 2015,~ All rights reserved i

WG 23/N 0541,

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the 1ISO
standards development process is permitted without prior permission from 1SO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from 1SO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requester:

I1SO copyright office

Case postale 56, CH-1211 Geneva 20
Tel. +4122 7490111

Fax +4122 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC 2015~ All rights reserved

[r' d: x

) { Deleted: 461

[Deleted: 3

Baseline Edition, TR 24772-4

Contents Page
Foreword v
Introduction vi
1. Scope 1
2. Normative references 1
3. Terms and definitions, symbols and conventions 1
3.1 Terms and definitions 1
3.2 Key Concepts 5
5. General guidance for Python 6
6. Specific Guidance for Python 7
6.1 General 7
6.2 Type System [IHN] 7
6.3 Bit Representations [STR] 9
6.45 Floating-point Arithmetic [PLF] 10
6.5 Enumerator Issues [CCB] 11
6.6 Numeric Conversion Errors [FLC] 12
6.7 String Termination [CIM] 12
6.8 Buffer Boundary Violation [HCB] 12
6.9 Unchecked Array Indexing [XYZ] 13
6.10 Unchecked Array Copying [XYW] 13
6.11 Pointer Casting and Pointer Type Changes [HFC] 13
6.12 Pointer Arithmetic [RVG] 13
6.13 Null Pointer Dereference [XYH] 13
6.14 Dangling Reference to Heap [XYK] 13
6.15 Arithmetic Wrap-around Error [FIF] 13
6.16 Using Shift Operations for Multiplication and Division [PIK] 14
6.17 Sign Extension Error [XZI] 14
6.18 Choice of Clear Names [NAI] 14
6.19 Dead Store [WXQ] 15
6.20 Unused Variable [YZS] 17
6.21 Identifier Name Reuse [YOW] 17
6.22 Namespace Issues [BJL] 18
6.23 Initialization of Variables [LAV] 21
6.24 Operator Precedence/Order of Evaluation [JCW] 22
6.25 Side-effects and Order of Evaluation [SAM] 23
6.26 Likely Incorrect Expression [KOA] 24
6.27 Dead and Deactivated Code [XYQ] 25
6.28 Switch Statements and Static Analysis [CLL] 25

© ISO/IEC 2015,~ All rights reserved

{ Deleted: 3

WG 23/N 0541,

{ Deleted: x

{ Deleted: 461

6.29 Demarcation of Control Flow [EOJ] 26
6.30 Loop Control Variables [TEX] 26
6.31 Off-by-one Error [XZH] 28
6.32 Structured Programming [EWD] 28
6.33 Passing Parameters and Return Values [CSJ] 29
6.34 Dangling References to Stack Frames [DCM] 30
6.35 Subprogram Signature Mismatch [OTR] 30
6.36 Recursion [GDL] 31
6.37 Ignored Error Status and Unhandled Exceptions [OYB] 31
6.38 Termination Strategy [REU] 32
6.39 Type-breaking Reinterpretation of Data [AMV] 32
6.40 Memory Leak [XYL] 32
6.41 Templates and Generics [SYM] 32
6.42 Inheritance [RIP] 33
6.43 Extra Intrinsics [LRM] 33
6.44 Argument Passing to Library Functions [TRJ] 34
6.45 Inter-language Calling [DJS] 35
6.46 Dynamically-linked Code and Self-modifying Code [NYY] 35
6.47 Library Signature [NSQ] 36
6.48 Unanticipated Exceptions from Library Routines [HIW] 36
6.49 Pre-processor Directives [NMP] 36
6.50 Suppression of Language-defined Run-time Checking [MXB] 37
6.51 Provision of Inherently Unsafe Operations [SKL] 37
6.52 Obscure Language Features [BRS] 37
6.53 Unspecified Behaviour [BQF] 40
6.54 Undefined Behaviour [EWF] 40
6.55 Implementation—defined Behaviour [FAB] 41
6.56 Deprecated Language Features [MEM] 42
8 Implications for standardization 43
Bibliography 45
Index 47

v { Deleted: Foreword . xvi . [ﬁ

{ Deleted: 3
iv ISO/IEC 2015~ All rights reserved

Baseline Edition, TR 24772-4 I { Deleted: -3

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, 1ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

[Deleted: 3

© ISO/IEC 2015~ All rights reserved \

WG 23/N 0541,

Introduction

This Technical Report provides guidance for the programming language Python, so that application

developers considering Python or using Python will be better able to avoid the programming constructs that
lead to vulnerabilities in software written in the Python language and their attendant consequences. This
guidance can also be used by developers to select source code evaluation tools that can discover and
eliminate some constructs that could lead to vulnerabilities in their software. This report can also be used in
comparison with companion Technical Reports and with the language-independent report, TR 24772-1, to
select a programming language that provides the appropriate level of confidence that anticipated problems
can be avoided.

This technical report part is intended to be used with TR 24772-1, which discusses programming language
vulnerabilities in a language independent fashion.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a
complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence,,

Deleted: x]

[
) { Deleted: 461 J

~-| Deleted: All programming languages contain constructs that are
incompletely specified, exhibit undefined behaviour, are
implementation-dependent, or are difficult to use correctly. The
use of those constructs may therefore give rise to vulnerabilities, as
a result of which, software programs can execute differently than
intended by the writer. In some cases, these vulnerabilities can
compromise the safety of a system or be exploited by attackers to
compromise the security or privacy of a system.

{ Deleted

vi © ISO/IEC 2015~ Al rights reserved

report. These subject areas include:

-1 Del d: Furthermore, to focus its limited resources, the working
group developing this report decided to defer comprehensive
treatment of several subject areas until future editions of the

. [2]
| Formatted: Space After: 10 pt, Line spacing: multiple 1.15
li, No bullets or numbering

[Deleted: 3

Technical Report

Information Technology — Programming Languages — Guidance to avoiding
vulnerabilities in programming languages — Vulnerability descriptions for
the programming language Python ‘

1. Scope

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission-critical and business-critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities are described in this Technical Report document the way that the vulnerability described in the
language-independent TR 24772-1 are manifested in Python.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

|SO/IEC TR 24772-1:201X, /nformation Technology — Programming languages — Guidance to avoiding

vulnerabilities in programming languages,

I1SO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural
sciences and technology

ISO/IEC 2382-1:1993, Information technology,— Vocabulary,— Part 1: Fundamental terms Yii

|EC 60559:2011, Information technology -- Microprocessor Systems -- Floating-Point arithmetic

3. Terms and definitions, symbols and conventions
3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1, in TR 24772-1, and the
following apply. Other terms are defined where they appear in italic type.

assignment statement: Used to create (or rebind) a variable to an object. The simple syntax is a=b, the
augmented syntax applies an operator at assignment time (for example, a += 1) and therefore cannot create a
variable since it operates using the current value referenced by a variable. Other syntaxes support multiple
targets (thatis,x = y = z = 1).

© 1SO/IEC 2015, All rights reserved 1

{ Deleted: 3

[Deleted: Ada]

{ Formatted: Font:16 pt, Bold J

\ Formatted: English (UK)

\ Formatted: English (UK), Highlight

\ Formatted: English (UK)

‘ Formatted: Font:Italic, English (UK)

‘ Deleted: TR 24772-1 Programming Languages - etc.

| Formatted: Space After: 0 pt

| Formatted: Font:Italic

| Formatted: Font:Italic

\
\
\
\
\
| Formatted: English (UK) |
\
\
\
\

| Formatted: Font:Not Italic

Moved down [1]: Achour, M. (n.d.). PHP Manual. Retrieved 3
5,2012, from PHP: http://www.php.net/manual/en/
Brueggeman, E. (n.d.). Retrieved 3 5, 2012, from The Website of
Elliott Brueggeman :
http://www.ebrueggeman.com/blog/integers-and-floating-
numbers

Enums for Python (Python recipe). (n.d.). Retrieved from
ActiveState: http://code.activestate.com/recipes/67107/
Goleman, S. (n.d.). Extension Writing Part I: Introduction to PHP
and Zend. Retrieved 5 5, 12, from Zend Developer Zone:
http://devzone.zend.com/303/extension-writing-part-i-
introduction-to-php-and-zend/ .

Isaac, A. G. (2010, 06 23). Python Introduction. Retrieved 05 12,
2011, from
https://subversion.american.edu/aisaac/notes/python4class.xht
ml#tintroduction-to-the-interpreter

Lutz, M. (2009). Learning Python. Sebastopol, CA: O'Reilly Media,
Inc.

Lutz, M. (2011). Programming Python. Sebastopol, CA: O'Reilly
Media, Inc.

Martelli, A. (2006). Python in a Nutshell. Sebastopol, CA: O'Reilly
Media, Inc.

Norwak, H. (n.d.). 10 Python Pitfalls. Retrieved 05 13, 2011, from
10 Python Pitfalls:
http://zephyrfalcon.org/labs/python_pitfalls.html

Pilgrim, M. (2004). Dive Into Python.

Python Gotchas. (n.d.). Retrieved from
http://www.ferg.org/projects/python_gotchas.html

source, G. (n.d.). Big List of Portabilty in Python. Retrieved 6 12,
2011, from stackoverflow:
http://stackoverflow.com/questions/1883118/big-list-of-
portability-in-python

The Python Language Reference. (n.d.). Retrieved from
python.org:
http://docs.python.org/reference/index.html#reference-index
Will Dietz, P. L. (n.d.). Understanding Integer Overflow in C/C++.
Retrieved 3 5, 2012, from
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf ﬁ

Formatted: Font:

Deleted:]

Deleted: 3 J

body: The portion of a compound statement that follows the header. It may contain other compound (nested)
statements.

boolean: A truth value where True equivalences to any non-zero value and False equivalences to zero.
Commonly expressed numerically as 1 (true), or O (false) but referenced as True and False.

built-in: A function provided by the Python language intrinsically without the need to import it (called the, str,
slice, type).

class: A program defined type which is used to instantiate objects and provide attributes that are common to all
the objects that it instantiates.

comment: Comments are preceded by a hash symbol “#”.

complex number: A number made up of two parts each expressed as floating-point numbers: a real and an
imaginary part. The imaginary part is expressed with a trailing upper or lower case "J or j".

compound statement: A structure that contains and controls one or more statements.
CPython: The standard implementation of Python coded in ANSI portable C.

dictionary: A built-in mapping consisting of zero or more key/value "pairs". Values are stored and retrieved using
keys which can be of mixed types (with some caveats beyond the scope of this annex).

docstring: One or more lines in a unit of code that serve to document the code. Docstrings are retrievable at run-
time.

exception: An object that encapsulates the attributes of an exception (an error or abnormal event). Raising an
exception is a process that creates the exception object and propagates it through a process that is optionally
defined in a program. Lacking an exception 'handler", Python terminates the program with an error message.

loating-point number: A real number expressed with a decimal point, an exponent expressed as an upper or
lower case "e or E" or both (for example, 1.0, 27e0, .456).

function: A grouping of statements, either built-in or defined in a program using the def statement, which can
be called as a unit.

garbage collection: The process by which the memory used by unreferenced object and their namespaces is
reclaimed. Python provides a gc module to allow a program to direct when and how garbage collection is done.

global: A variable that is scoped to a module and can be referenced from anywhere within the module including
within functions and classes defined in that module.

guerrilla patching: Also known as Monkey Patching, the practice of changing the attributes and/or methods of a
module’s class at run-time from outside of the module.

immutability: The characteristic of being unchangeable. Strings, tuples, and numbers are immutable objects in
Python.

import: A mechanism that is used to make the contents of a module accessible to the importing program.

/| Deleted: 3

inheritance: The ability to define a class that is a subclass of other classes (called the superclass). Inheritance uses
a method resolution order (MRO) to resolve references to the correct inheritance level (that is, it resolves
attributes (methods and variables)).

instance: A single occurrence of a class that is created by calling the class as if it was a function (for example, a =
Animal ()).

integer: An integer can be of any length but is more efficiently processed if it can be internally represented by a
32 or 64 bit integer. Integer literals can be expressed in binary, decimal, octal, or hexadecimal formats.

keyword: An identifier that is reserved for special meaning to the Python interpreter (for example, 1 f, else,

for,class).

lambda expression: A convenient way to express a single return function statement within another statement
instead of defining a separate function and referencing it.

list: An ordered sequence of zero or more items which can be modified (that is, is mutable) and indexed.

literals: A string or number (for example, "abc', 123, 5.4). Note that a string literal can use either double
quote (“) or single apostrophe pairs (‘) to delimit a string.

membership: If an item occurs within a sequence it is said to be a member. Python has built-ins to test for
membership (for example, 1f a in D). Classes can provide methods to override built-in membership tests.

module: A file containing source language (that is, statements) in Python (or another) language. A module has its
own namespace and scope and may contain definitions for functions and classes. A module is only executed when
first imported and upon reloading.

mutability: The characteristic of being changeable. Lists and dictionaries are two examples of Python objects that
are mutable.

name: A variable that references a Python object such as a number, string, list, dictionary, tuple, set, builtin,
module, function, or class.

namespace: A place where names reside with their references to the objects that they represent. Examples of
objects that have their own namespaces include: blocks, modules, classes, and functions. Namespaces provide a
way to enforce scope and thus prevent name collisions since each unique name exists in only one namespace.

none: A null object.
number: An integer, floating point, decimal, or complex number.

operator: Non-alphabetic characters, characters, and character strings that have special meanings within
expressions (for example, +, -, not, is).

overriding: Coding an attribute in a subclass to replace a superclass attribute.

package: A collection of one or more other modules in the form of a directory.

© 1SO/IEC 2015, All rights reserved 3

/| Deleted: 3

pickling: The process of serializing objects using the pickle module.

polymorphism: The meaning of an operation — generally a function/method call — depends on the objects being
operated upon, not the type of object. One of Python’s key principles is that object interfaces support operations
regardless of the type of object being passed. For example, string methods support addition and multiplication
just as methods on integers and other numeric objects do.

recursion: The ability of a function to call itself. Python supports recursion to a level of 1,000 unless that limit is
modified using the setrecursionlimit function.

scope: The visibility of a name is its scope. All names within Python exist within a specific namespace which is tied
to a single block, function, class, or module in which the name was last assigned a value.

script: A unit of code generally synonymous with a program but usually connotes code run at the highest level as
in “scripts run modules”.

self: By convention, the name given to a class’ instance variable.

sequence: An ordered container of items that can be indexed or sliced using positive numbers. Python provides
three built-in sequences: strings, tuples, and lists. New sequences can also be defined in libraries, extension
modules, or within classes.

set: An unordered sequence of zero or more items which do not need to be of the same type. Sets can be frozen
(immutable) or unfrozen (mutable).

short-circuiting operators: Operators and and or can short-circuit the evaluation of their operand if the left

side evaluates to true (in the case of the or) or false (in the case of and). For example, in the expression a or
b, there is no need to evaluate b if a is True, likewise in the expression a and Db, there is no need to evaluate
b ifa isFalse.

statement: An expression that generally occupies one line. Multiple statements can occupy the same line if
separated by a semicolon (;) but this is very unconventional in Python where each line typically contains one
statement.

string: A built-in sequence object consisting of one or more characters. Unlike many other languages, Python
strings cannot be modified (that is, they are "immutable") and they do not have a termination character.

tuple: A sequence of zero or more items (for example, (1,2,3) or ("A"™, "B"™, "C")).Tuplesare
immutable and may contain different object types (for example, (1, "a", 5.678)).

variable: Python variables (that is, names) are not like variables in most other languages - they are never declared
they are dynamically referenced to objects, they have no type, and they may be bound to objects of different
types at different times. Variables are bound explicitly (for example, a = 1 binds a to the integer 1) and
unbound implicitly (for example, a=1; a=2).In the last example, a is bound to the object (value) 1 then
implicitly unbound to that object when bound to 2 - a process known as rebinding. Variables can also be
unbound explicitly using the de 1 statement (for example, del a, b, c).

/| Deleted: 3

4. Language concepts

The key concepts discussed in this section are not entirely unique to Python but they are implemented in Python
in ways that are not intuitive to new and experienced programmers alike.

Dynamic Typing — A frequent source of confusion is Python’s dynamic typing and its effect on variable
assignments (name is synonymous with variable in this annex). In Python there are no static declarations of
variables - they are created, rebound, and deleted dynamically. Further, variables are not the objects that they

point to - they are just references to objects which can be, and frequently are, bound to other objects at any time:

a 1 # a is bound to an integer object whose value is 1

a = 'abc' # a i1s now bound to a string object

Variables have no type — they reference objects which have types thus the statement a = 1 creates a new
variable called a that references a new object whose value is 1 and type is integer. That variable can be deleted
with a del statement or bound to another object any time as shown above. Refer to 6.2 Type System [IHN] for |

[Deleted:

more on this subject. For the purpose of brevity this annex often treats the term variable (or name) as being the
object which is technically incorrect but simpler. For example, in the statementa = 1, the numeric object a is
assigned the value 1. In reality the name a is assigned to a newly created object of type integer which is assigned
the value 1.

Lcovers dynamic typing in more detail. |

Mutable and Immutable Objects - Note that in the statement:a = a + 1, Python createsa new object
whose value is calculated by adding 1 to the value of the current object referenced by a. If, prior to the execution
of this statement a’s object had contained a value of 1, then a new integer object with a value of 2 would be
created. The integer object whose value was 1 is now marked for deletion using garbage collection (provided no
other variables reference it). Note that the value of a is not updated in place, that is, the object references by a
does not simply have 1 added to it as would be typical in other languages. The reason this does not happen in
Python is because integer objects, as well as string, number and tuples, are immutable — they cannot be changed
in place. Only lists and dictionaries can be changed in place — they are mutable. In practice this restriction of not
being able to change a mutable object in place is mostly transparent but a notable exception is when immutable
objects are passed as a parameter to a function or class. See 6.22 Initialization of Variables [LAV] for a description|
of this.

The underling actions that are performed to enable the apparent in-place change do not update the immutable
object — they create a new object and “point” the variable to new object. This can be proven as below (the id
function returns an object’s address):

a = 'abc'
print (id(a)) #=> 30753768
a = 'abc' + 'def'

print (id(a)) #=> 52499320
print (a)#=> abcdef

© ISO/IEC 2015,— All rights reserved 5

7 { Deleted: E.3 Type System [IHN]

Principle or the Contract Model [BLP]

Deleted: Section 6.42 Violations of the Liskov Substit

[Deleted: E.43 Extra Intrinsics [LRM]

ution
.. [4]
J

/| Deleted: 3

The updating of objects referenced in the parameters passed to a function or class is governed by whether the
object is mutable, in which case it is updated in place, or immutable in which case a local copy of the object is

created and updated which has no effect on the passed object. This is described in more detail in 6.32 Passing
Parameters and Return Values [CSJ].

5. General guidance for Python

5.1 Top avoidance mechanisms

Each vulnerability listed in clause 6 provides a set of ways that the vulnerability can be avoided or mitigated.

Many of the mitigations and avoidance mechanisms are common. This subclause provides the most most

effective and the most common mitigations, together with references to which vulnerabilities they apply. The

references are hyperlinked to provide the reader with easy access to those vulnerabilities for rationale and

further exploration. The mitigations provided here are in addition to the ones provided in TR 24772-1, clause 5.4

The expectation is that users of this document will develop and use a coding standard based on this document
that is tailored to their risk environment.

Deleted: [See Template] [Thoughts wels d as to what
could be provided here. Possibly an opportunity for the
language community to address issues that do not correlate to
the guidance of section 6. For languages that provide non-
mandatory tools, how those tools can be used to provide
effective mitigation of vulnerabilities described in the
following sections]

Number | Recommended avoidance mechanism References
1 Do not use floating-point arithmetic when integers or booleans
would suffice

2 Use of enumeration requires careful attention to readability, | <« Formatted: Normal, Indent: Left: 0.63 cm, Space After: 0
performance, and safety. There are many complex, but useful pt, Line spacing: single, No bullets or numbering
ways to simulate enums in Python [(Enums for Python (Python
recipe))]and many simple ways including the use of sets:

colors = {'red', 'green’, 'blue'}
if red in colors: print('valid color')
Be aware that the technique shown above, as with almost all
other ways to simulate enums, is not safe since the variable
can be bound to another object at any time.
en functions return error values, check the error return values before
processing any other returned data.

3 Ensure that when examining code that you take into account 6 Formatted: Indent: Left: 0.63 cm, Space After: 0 pt, Line
that a variable can be bound (or rebound) to another object (of spacing: single, Adjust space between Latin and Asian text,
same o different type) at any time, Adjust space between Asian text and numbers
A . T 4 . { Formatted: Font:11 pt, Not Bold J

4 Avoid implicit references to global values from within functions to

make code clearer. In order to update globals within a function or
class, place the global statement at the beginning of the function
definition and list the variables so it is clearer to the reader which
variables are local and which are global (for example, global a, b, c)..
5 Use only spaces or tabs, not both, to indent to demark control flow. |, 4 { Formatted: Font:Not Bold, English]
Never use form feed characters for indentation :;;T;atted: Space Before: 0 pt, After: 0 pt, Line spacing: }
{ Deleted: 3 }

6 Use Python’s built-in documentation (such as docstrings) to obtain

information about a class’ method before inheriting from it

7 Either avoid logic that depends on byte order or use the
sys.byteorder variable and write the logic to account for byte order
dependent on its value ('little' or 'big').

Formatted: Space After: 0 pt, Line spacing: single, Adjust
space between Latin and Asian text, Adjust space between
Asian text and numbers

- B 4 - - - { Formatted: Font:11 pt, Not Bold]
8 When launching parallel tasks don’t raise a BaseException subclass in
a callable in the Future class
9 Do not depend on the way Python may or may not optimize object [Deleted: 10]
references for small integer and string objects because it may vary
for environments or even for releases in the same environment.
1Q, Be aware of short-circuiting behaviour when expressions with side effects Deleted: 8

are used on the right side of a Boolean expression such as if the first
expression evaluates to false in an and expression, then the remaining

expressions, including functions calls, will not be evaluated.

11 Do not use floating-point arithmetic when integers or booleans would

suffice, especially for counters associated with program flow, such as loop

control variables.

‘| Deleted: 20

12 Sanitize, erase or encrypt data that will be visible to others (for example,

)

,[l" d: 21

freed memory, transmitted [datal).

C t [Officel]: This is a section 7 rule?

6. Specific Guidance for Python

6.1 General

This clause contains specific advice for Python about the possible presence of vulnerabilities as described in ’ «

TR 24772-1, and provides specific guidance on how to avoid them in Python code. This section mirrors TR 24772-1
clause 6 in that the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772-1, and Python specific guidance
is found in clause 6.2 and subclauses in this TR.

6.2 Type System [IHN]

Yes, but this section will cover sections 6 and 7. One we pull up rules
from clause 7, we will need to triage.

{ Formatted: Normal }

{ Formatted: Normal }

{ Deleted: E.3 }

6.2,1 Applicability to language

Python abstracts all data as objects and every object has a type (in addition to an identity and a value). Extensions
to Python, written in other languages, can define new types.

© ISO/IEC 2015, All rights reserved 7

Comment [SGM2]: Recommendation from Nick Coghlan:

- the section on typing should discuss the official introduction of
gradual typing, and the availability of static type checkers such
as mypy and pytype (see PEP 484 and 526)

Deleted: E.3 }

Deleted: 3 }

Python is also a strongly typed language — you cannot perform operations on an object that are not valid for that
type. Python’s dynamic typing is a key feature designed to promote polymorphism to provide flexibility. Another
aspect of dynamic typing is a variable does not maintain any type information — that information is held by the
object that the variable references at a specific time. A Python program is free to assign (bind), and reassign
(rebind), any variable to any type of object at any time.

Variables are created when they are first assigned a value (see 6.17 Choice of Clear Names [NAI] for more on this

subject). Variables are generic in that they do not have a type, they simply reference objects which hold the
object’s type information. Variables in an expression are replaced with the object they reference when that
expression is evaluated therefore a variable must be explicitly assigned before being referenced otherwise a run-
time exception is raised:

a=1

if == 1 print (b) # error - b is not defined

When line 1 above is interpreted an object of type integer is created to hold the value 1 and the variable a is
created and linked to that object. The second line illustrates how an error is raised if a variable (b in this case) is

referenced before being assigned to an object.

a =
b
a = "'x'

print(a,b)#=> x 1

a

Variables can share references as above — b is assigned to the same object as a. This is known as a shared
reference. If a is later reassigned to another object (as in line 3 above), b will still be assigned to the initial object
that a was assigned to when b shared the reference, in this case b would equal to 1.

The subject of shared references requires particular care since its effect varies according to the rules for in-place
object changes. In-places object changes are allowed only for mutable (that is, alterable) objects. Numeric
objects and strings are immutable (unalterable). Lists and dictionaries are mutable which affects how shared
references operate as below:

a = [1,2,3]

b =a

al0] = 7

print(a) # [7, 2, 3]
print(b) # [7, 2, 3]

In the example above, a and b have a shared reference to the same list object so a change to that list object
affects both references. If the shared reference effects are not well understood the change to b can cause
unexpected results.

Automatic conversion occurs only for numeric types of objects. Python converts (coerces) from the simplest type
up to the most complex type whenever different numeric types are mixed in an expression. For example:

a=1
b=2.0

/| Deleted: 3

c= a + b; print(c) #=> 3.0

In the example above, the integer a is converted up to floating point (thatis, 1 . 0) before the operation is
performed. The object referred to by a is not affected — only the intermediate values used to resolve the
expression are converted. If the programmer does not realize this conversion takes place he may expect that c is
an integer and use it accordingly which could lead to unexpected results.

Automatic conversion also occurs when an integer becomes too large to fit within the constraints of the large
integer specified in the language (typically C) used to create the Python interpreter. When an integer becomes
too large to fit into that range it is converted to an unlimited precision integer of arbitrary length.

Explicit conversion methods can also be used to explicitly convert between types though this is seldom required
since Python will automatically convert as required. Examples include:

= int(1.6666) # a converted to 1
= float(l) # b converted to 1.0
= int('10') # c integer 10 created from a string

H O Q Q O o
Il

str(10) # d string 'l0' created from an integer
= ord('x'"') # e integer assigned integer value 120
= chr(121) # f assigned the string 'y'

Dynamic typing is a key feature of Python which promotes polymorphism for flexibility. Strict typing can,
however, be imposed:

a = 'abc' # a refers to a string object
if isinstance(a, str): print('a type is string')

Using code to explicitly check the type of an object is strongly discouraged in Python since it defeats the benefit
that dynamic typing provides - flexibility which allows functions to potentially operate correctly with objects of
more than one type.

6.2.2 Guidance to language users | {Deleted: E3

e Use static type checkers such as mypy and pytype to detect typing errors

e Pay special attention to issues of magnitude and precision when using mixed type expressions;

e Be aware of the consequences of shared references;

e Be aware of the conversion from simple to complex; and

e Do not check for specific types of objects unless there is good justification, for example, when calling an
extension that requires a specific type.

6.3 Bit Representations [STR] . Deleted: 4
6.3,1 Applicability to language __.{ Deleted: E4

Python provides hexadecimal, octal and binary built-in functions. oct converts to octal, hex to hexadecimal and

bin to binary:

/| Deleted: 3

© 1SO/IEC 2015, All rights reserved 9

print (oct (256)) # 00400
print (hex (256)) # 0x100
print (bin(256)) # 0b100000000

The notations shown as comments above are also valid ways to specify octal, hex and binary values respectively:

print (00400) # => 256
a=0x100+1; print(a)# => 257

The built-in int function can be used to convert strings to numbers and optionally specify any number base:

int ('256') # the integer 256 in the default base 10
int ('400', 8) # => 256

int ('100', 16) # => 256

int('24', 5) # => 14

Python stores integers that are beyond the implementation’s largest integer size as an internal arbitrary length so
that programmers are only limited by performance concerns when very large integers are used (and by memory
when extremely large numbers are used). For example:

a=2**100 # => 1267650600228229401496703205376

Python treats positive integers as being infinitely padded on the left with zeroes and negative numbers (in two’s
complement notation) with 1’s on the left when used in bitwise operations:

a<<b # a shifted left b bits
a>>b # a shifted right b bits

There is no overflow check for shifting left or right so a program expecting an exception to halt it will instead
unexpectedly continue leading to unexpected results.

6.3,2 Guidance to language users

{ Deleted: E.4

e Keep in mind that using a very large integer will have a negative effect on performance; and
e Don't use bit operations to simulate multiplication and division.

6.4 Floating-point Arithmetic [PLF]

~{ Deleted: E.

6.4,1 Applicability to language

Python supports floating-point arithmetic. Literals are expressed with a decimal point and or an optional e or E:

1., 1.0, .1, 1.e0

There is no way to determine the precision of the implementation from within a Python program. For example, in
the CPython implementation, it’s implemented as a C double which is approximately 53 bits of precision.

10 © I1SO/IEC 2015,— Al rights reserved

| Deleted: 5

{ Deleted: E.5

/| Deleted: 3

6.4.2 Guidance to language users |

B { Deleted: E.5

e Use floating-point arithmetic only when absolutely needed;

e Do not use floating-point arithmetic when integers or booleans would suffice;

e Be aware that precision is lost for some real numbers (that is, floating-point is an approximation with
limited precision for some numbers);

e Be aware that results will frequently vary slightly by implementation (see 6.53 Provision of Inherently

Unsafe Operations [SKL] for more on this subject); and

e Testing floating-point numbers for equality (especially for loops) can lead to unexpected results. Instead,
if floating-point numbers are needed for loop control use >= or <= comparisons, unless it can be shown

that the logic implemented by the equality test cannot be affected by prior rounding errors.

6.5 Enumerator Issues [CCB]

{ Deleted: E.6

6.5,1 Applicability to language

Python has an enumerate built-in type but it is not at all related to the implementation of enumeration as
defined in other languages where constants are assigned to symbols. Given that enumeration is a useful
programming device and that there is no enumeration construct in Python, many programmers choose to
implement their own “enum” objects or types using a wide variety of methods including the creation of “enum”
classes, lists, and even dictionaries. One simple method is to simply assign a list of names to integers:

Red, Green, Blue = range (3)
print (Red, Green, Blue) # => 0 1 2

Code can then reference these “enum” values as they would in other languages which have native support for
enumeration:

a =1

if a == Green: print ("a=Green")# => a=Green

There are disadvantages to the approach above though since any of the “enum” variables could be assigned new
values at any time thereby undoing their intended role as “pseudo” constants. There are many forum discussions
and articles that illustrate other, safer ways to simulate enumeration which are beyond the scope of this annex.

6.5,2 Guidance to language users |

Comment [SGM3]: From Nick Coghlan (2017-09-21)

- the section on enumerations should discuss the standard
library's

enum module (added in Python 3.4, available for 2.7 on PyPI
as enum34)

[Deleted: E.6

{ Deleted: E.6

Use of enumeration requires careful attention to readability, performance, and safety. There are many complex,
but useful ways to simulate enums in Python [[1]]Jand many simple ways including the use of sets:

colors = {'red', 'green', 'blue'}
if "red" in colors: print('valid color')

Be aware that the technique shown above, as with almost all other ways to simulate enums, is not safe since the
variable can be bound to another object at any time.

© 1SO/IEC 2015, All rights reserved 11

/| Deleted: 3

6.6, Conversion Errors [[FLCI] Comment [SM4]: We removed “Numeric” from “Numeric
Conversion Error” and are generalizing the issues. Please try to
ensure that Python 6.6 is in sync.

6.6,1 Applicability to language { Deleted: £.7
: [Deleted: Numeric
Python converts numbers to a common type before performing any arithmetic operations. The common type is [Deleted: E.7
coerced using the following rules as defined in the standard (http://docs.python.org/release/1.4/ref/ref5.html): [C [SM5]: Put in bibliography and reference.
If either argument is a complex number, the other is converted to the complex type;
otherwise, if either argument is a floating point number, the other is converted to floating point;
otherwise, if either argument is a long integer, the other is converted to long integer;
otherwise, both must be plain integers and no conversion is necessary.
Integers in the Python language are of a length bounded only by the amount of memory in the machine. Integers
are stored in an internal format that has faster performance when the number is smaller than the largest integer
supported by the implementation language and platform.
Implicit or explicit conversion floating point to integer, implicitly (or explicitly using the int function), will
typically cause a loss of precision:
a = 3.0; print(int(a))# => 3 (no loss of precision)
a = 3.1415; print(int(a))# => 3 (precision lost)
Precision can also be lost when converting from very large integer to floating point. Losses in precision, whether
from integer to floating point or vice versa, do not generate errors but can lead to unexpected results especially
when floating point numbers are used for loop control.
6.6,2 Guidance to language users .| Deleted: E7
e Though there is generally no need to be concerned with an integer getting too large (rollover) or small, be
aware that iterating or performing arithmetic with very large positive or small (negative) integers will hurt
performance; and
e Be aware of the potential consequences of precision loss when converting from floating point to integer.
6.7 String Termination [CJM] .| Deleted: E8
This vulnerability is not applicable, Python strings are immutable objects whose length can be queried with built-
in functions therefore Python does not permit accesses past the end, or beginning, of a string.
a = '12345"
b = a[5] #=> IndexError: string index out of range
6.8 Buffer Boundary Violation [HCB] .| Deleted: E9
This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.
/| Deleted: 3

12 © I1SO/IEC 2015,— Al rights reserved

6.9, Unchecked Array Indexing [XYZ]

{ Deleted: E.10

This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.

6.10,Unchecked Array Copying [XYW]

= { Deleted: E.11

This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.

6.11 Pointer Type Conversions [HFC]

This vulnerability is not applicable to Python because Python does not use pointers.

6.12 Pointer Arithmetic [RVG]

{ Deleted: E.12

{ Deleted: E.13

This vulnerability is not applicable to Python because Python does not use pointers.

6.13 Null Pointer Dereference [XYH]

{ Deleted: E.14

This vulnerability is not applicable to Python because Python does not use pointers.

6.14 Dangling Reference to Heap [XYK]

= { Deleted: E.15

This vulnerability is not applicable to Python because Python does not use pointers. Specifically, Python only uses
namespaces to access objects therefore when an object is deallocated, any reference to it causes an exception to
be raised.

6.15 Arithmetic Wrap-around Error [FIF]

6.15,1 Applicability to language

{ Deleted: E.16

= { Deleted: E.16

Operations on integers in Python cannot cause wrap-around errors because integers have no maximum size other
than what the memory resources of the system can accommodate.

Normally the OverflowError exception is raised for floating point wrap-around errors but, for
implementations of Python written in C, exception handling for floating point operations cannot be assumed to
catch this type of error because they are not standardized in the underlying C language. Because of this, most
floating point operations cannot be depended on to raise this exception.

6.15,2 Guidance to language users |

{ Deleted: E.16

e Be cognizant that most arithmetic and bit manipulation operations on non-integers have the potential for
undetected wrap-around errors.

e Avoid using floating point or decimal variables for loop control but if you must use these types then
bound the loop structures so as to not exceed the maximum or minimum possible values for the loop
control variables.

© 1SO/IEC 2015, All rights reserved 13

/| Deleted: 3

e Test the implementation that you are using to see if exceptions are raised for floating point operations
and if they are then use exception handling to catch and handle wrap-around errors.

6.16,Using Shift Operations for Multiplication and Division [PIK] [eteted: £17

This vulnerability is not applicable to Python because it does not check for overflow. In addition there is no [Deleted: 6.16E.17.1 Applicability to language .

practical way to overflow an integer since integers have unlimited precision.

e UL

>>> print (-1<<100) #=> -1267650600228229401496703205376 { Formatted: French
>>> print (1<<100) #=> 1267650600228229401496703205376
6.17 Choice of Clear Names [NAI] [Deleted: 6.17E.18 Sign Extension Error [XZI] -
[Deleted: 8
6.17,1 Applicability to language " Deleted: E.19

| Comment [SGM6]: Email from Nick Coghlan (2017-09-21)
. . . - the section on ambiguous naming needs to be updated to
Python provides very liberal naming rules: \

{ account for

i full Unicode identifier support in Python 3:

e Names may be of any length and consist of letters, numerals, and underscores only. All characters in a

name are significant. Note that unlike some other languages where only the first n number of characters
i Confused = True

in a name are significant, all characters in a Python name are significant. This eliminates a common Confused = False

source of name ambiguity when names are identical up to the significant length and vary afterwards i | Confused == Confused
) . R i False
which effectively makes all such names a reference to one common variable.
e All names must start with an underscore or a letter; and Clafit
'Confused

e Names are case sensitive, for example, Alpha, ALPHA, and alpha are each unique names. While this is
ascii("Confused")

a feature of the language that provides for more flexibility in naming, it is also can be a source of "™\u0421onfused"

programmer errors when similar names are used which differ only in case, for example, aLpha versus

i | ascii("Confused")
alpha. i "Confused"

The following naming conventions are not part of the standard but are in common use: | Deleted: 8

Deleted: E.19

e (Class names start with an upper case letter, all other variables, functions, and modules are in all lower
case;

e Names starting with a single underscore (_) are not imported by the from module import *
statement — this not part of the standard but most implementations enforce it; and

e Names starting and ending with two underscores () are system-defined names.

e Names starting with, but not ending with, two underscores are local to their class definition

e Python provides a variety of ways to package names into namespaces so that name clashes can be
avoided:

e Names are scoped to functions, classes, and modules meaning there is normally no collision with names
utilized in outer scopes and vice versa; and

e Names in modules (a file containing one or more Python statements) are local to the module and are
referenced using qualification (for example, a function x in module v is referenced as y . x). Though local
to the module, a module’s names can be, and routinely are, copied into another namespace with a from
module import statement.

Python’s naming rules are flexible by design but are also susceptible to a variety of unintentional coding errors:

/| Deleted: 3

14 © I1SO/IEC 2015,— Al rights reserved

e Names are never declared but they must be assigned values before they are referenced. This means that
some errors will never be exposed until runtime when the use of an unassigned variable will raise an
exception (see 6.22 Initialization of Variables [LAV]).

e Names can be unique but may look similar to other names, for example, alpha and aLpha, xand
%, beta and_beta which could lead to the use of the wrong variable. Python will not detect
this problem at compile-time.

Python utilizes dynamic typing with types determined at runtime. There are no type or variable declarations for
an object ,which can lead to subtle and potentially catastrophic errors:

x =1

lots of code..

if some rare but important case:
X =10

In the code above the programmer intended to set (lower case) x to 10 and instead created a new upper case X
to 10 so the lower case x remains unchanged. Python will not detect a problem because there is no problem — it
sees the upper case X assignment as a legitimate way to bring a new object into existence. It could be argued that
Python could statically detect that X is never referenced and therefore indicate the assignment is dubious but
there are also cases where a dynamically defined function defined downstream could legitimately reference X as
aglobal.

6.17,2 Guidance to language users |

[Deleted: 8

e For more guidance on Python’s naming conventions, refer to Python Style Guides contained in PEP 8 at
http://www.python.org/dev/peps/pep-0008/ .

e Avoid names that differ only by case unless necessary to the logic of the usage;

e Adhere to Python’s naming conventions;

e Do not use overly long names;

e Use names that are not similar (especially in the use of upper and lower case) to other names;

e Use meaningful names; and

e Use names that are clear and visually unambiguous because the compiler cannot assist in detecting
names that appear similar but are different.

6.18 Dead Store [WXQ]

{ Deleted: E.19

[Deleted: 9

6.18,1 Applicability to language

It is possible to assign a value to a variable and never reference that variable which causes a “dead store”. This in
itself is not harmful, other than the memory that it wastes, but if there is a substantial amount of dead stores
then performance could suffer or, in an extreme case, the program could halt due to lack of memory.

Python provides the ability to dynamically create variables when they are first assigned a value. In fact,
assignment is the only way to bring a variable into existence. All values in a Python program are accessed through
a reference which refers to a memory location which is always an object (for example, number, string, list, and so

© 1SO/IEC 2015, All rights reserved 15

{ Deleted: E.20

Comment [SGM7]: Email from Nick Coghlan (2017-09-21)

- the discussion of dead stores may want to mention
ResourceWarning

(which emits a warning when external resources are cleaned
up implicitly rather than explicitly) and the tracemalloc module
(which allows resource warnings to report where the resource
managing object

was allocated)

[Deleted: 9

[Deleted: E.20

[Deleted: 3

on). A variable is said to be bound to an object when it is assigned to that object. A variable can be rebound to
another object which can be of any type. For example:

a = 'alpha' # assignment to a string
a = 3.142 # rebinding to a float
a=Db= (1, 2, 3) # rebinding to a tuple
print(a) # => (1, 2, 3)
del a
print(b)# => (1, 2, 3)
print (a)# => NameError: name 'a' is not defined

The first three statements show dynamic binding in action. The variable a is bound to a string, then to a float,
then to another variable which in turn is assigned a tuple of value (1, 2, 3).The del statementthen unbinds
the variable a from the tuple object which effectively deletes the a variable (if there were no other references to
the tuple object it too would have been deleted because an object with zero references is marked for garbage
collection (but is not necessarily actually deleted immediately)). But in this case we see that b is still referencing
the tuple object so the tuple is not deleted. The final statement above shows that an exception is raised when an
unbound variable is referenced.

The way in which Python dynamically binds and rebinds variables is a source of some confusion to new
programmers and even experienced programmers who are used to static binding where a variable is permanently
bound to a single memory location.

The Python language, by design, allows for dynamic binding and rebinding. Because Python performs a syntactic

analysis and not a semantic analysis (with one exception which is covered in 6.21 Namespace Issues [BJL], { Deleted: E.22.1 Namespace Issues [BJL]

Applicability to language) and because of the dynamic way in which variables are brought into a program at run-
time, Python cannot warn that a variable is referenced but never assigned a value. The following code illustrates
this:

if a > b:
import x
else:
import y

Depending on the current value of a and b, either module x or vy is imported into the program. If x assigns a
value to a variable z and module y references z then, dependent on which import statement is executed first
(an import always executes all code in the module when it is first imported), an unassigned variable reference
exception will or will not be raised.

6.18,2 Guidance to language users { Deteted: 9

e Avoid rebinding except where it adds value;

e Ensure that when examining code that you take into account that a variable can be bound (or rebound)
to another object (of same or different type) at any time; and

e Variables local to a function are deleted automatically when the encompassing function is exited but,
though not a common practice, you can also explicitly delete variables using the de 1 statement when

they are no longer needed. | Deleted: 3

16 © I1SO/IEC 2015,— Al rights reserved

6.19 Unused Variable [YZS] Deleted: 20

‘| Deleted: E.21
The applicability to language and guidance to language users sections of TR 24772-1 clause,6.18 Dead Store the
[wXQ],write-up are applicable to Python, | Deleted: E.19

6.20 Identifier Name Reuse [YOW]

Deleted: here

[
(
| Del
.
[
o
{
o
{

d: 21
‘| Deleted: E.22
6.20,1 Applicability to language 1
‘| Deleted: E.22
Python has the concept of namespaces which are simply the places where names exist in memory. Namespaces
are associated with functions, classes, and modules. When a name is created (that is, when it is first assigned a
value), it is associated (that is, bound) to the namespace associated with the location where the assignment
statement is made (for example, in a function definition). The association of a variable to a specific namespace is
elemental to how scoping is defined in Python.
Scoping allows for the definition of more than one variable with the same name to reference different objects.
For example:
a =1
def x():
a =2
print (a) #=> 2
print(a) #=> 1
The a variable within the function x above is local to the function only — it is created when x is called and
disappears when control is returned to the calling program. If the function needed to update the outer variable
named a then it would need to specify that a was a global before referencing it as in:
a =1
def x():
global a
a =2
print(a) #=> 2
print(a) #=> 2
In the case above, the function is updating the variable a that is defined in the calling module. There is a subtle
but important distinction on the locality versus global nature of variables: assignment is always local unless
global is specified for the variable as in the example above where a is assigned a value of 2. If the function had
instead simply referenced a without assigning it a value, then it would reference the topmost variable a which, by
definition, is always a global:
a=1
def x():
print(a)
x() #=>1
/| Deleted: 3

© 1SO/IEC 2015, All rights reserved 17

The rule illustrated above is that attributes of modules (that is, variable, function, and class names) are global to
the module meaning any function or class can reference them.

Scoping rules cover other cases where an identically named variable name references different objects:

e A nested function’s variables are in the scope of the nested function only; and

e Variables defined in a module are in global scope which means they are scoped to the module only and
are therefore not visible within functions defined in that module (or any other function) unless explicitly
identified as global at the start of the function.

Python has ways to bypass implicit scope rules:

e The global statement which allows an inner reference to an outer scoped variable(s); and
e The nonlocal statement which allows an enclosing function definition to reference a nested function’s
variable(s).

The concept of scoping makes it safer to code functions because the programmer is free to select any name in a
function without worrying about accidentally selecting a name assigned to an outer scope which in turn could
cause unwanted results. In Python, one must be explicit when intending to circumvent the intrinsic scoping of
variable names. The downside is that identical variable names, which are totally unrelated, can appear in the
same module which could lead to confusion and misuse unless scoping rules are well understood.

Names can also be qualified to prevent confusion as to which variable is being referenced:

a=1
class xyz():
a =2

print(a)#=> 2
print(xyz.a, a) #=> 2 1

The final print function call above references the a variable within the xyz class and the global a.

6.20,2 Guidance to language users

[Deleted: 1

e Do not use identical names unless necessary to reference the correct object;

e Avoid the use of the global and nonlocal specifications because they are generally a bad
programming practice for reasons beyond the scope of this annex and because their bypassing of
standard scoping rules make the code harder to understand; and

e Use qualification when necessary to ensure that the correct variable is referenced.

6.21 Namespace Issues [B]L]

{ Deleted: E.22

) [Deleted: 2

[Deleted: E.23

| C [SGMS8]: Email from Nick Coghlan (2017-09-21)

6.21,1 Applicability to language

Python has a hierarchy of namespaces which provides isolation to protect from name collisions, ways to explicitly
reference down into a nested namespace, and a way to reference up to an encompassing namespace. Generally
speaking, namespaces are very well isolated. For example, a program’s variables are maintained in a separate

metaclass __prepare__ methods can inject extra names into a
class body

execution namespace that the compiler knows nothing about
(see

types.prepare_class and
https://docs.python.org/3/reference/datamodel.html#preparing-
the-class-namespace)

[Deleted: 2

[Deleted: E.23

[Deleted: 3

namespace from any of the functions or classes it defines or uses. The variables of modules, classes, or functions
are also maintained in their own protected namespaces.

Accessing a namespace’s attribute (that is, a variable, function, or class name), is generally done in an explicit
manner to make it clear to the reader (and Python) which attribute is being accessed:

n = Animal.num # fetches a class’ variable called num

X mymodule.y # fetches a module’s variable called y

The examples above exhibit qualification — there is no doubt where a variable is being fetched from. Qualification
can also occur from an encompassed namespace up to the encompassing namespace using the global statement:

def x(): |

{ Formatted: Spanish

global y
y =1

The example above uses an explicit global statement which makes it clear that the variable y is not local to the
function x; it assigns the value of 1 to the variable y in the encompassing module 1.

Python also has some subtle namespace issues that can cause unexpected results especially when using imports
of modules. For example, assuming module a . py contains:

a =1
And module b . py contains:

b =1

Executing the following code is not a problem since there is no variable name collision in the two modules (the
from modulename import * statement brings all of the attributes of the named module into the local
namespace):

from a import *
print(a) #=> 1
from b import *
print (b) #=> 1

Later on the author of the b module adds a variable named a and assigns it a value of 2. b.py now contains:

b =1
a = 2 # new assignment

The programmer of module b . py may have no knowledge of the a module and may not consider that a program
would import both a and b. The importing program, with no changes, is run again:

1 values are assigned to objects which in turn are referenced by variables but it's simpler to say the value is assigned to the variable. Also,
the encompassing code could be at a prompt level instead of a module. For brevity this annex uses this simpler, though not as exact,

wording.

/| Deleted: 3

© 1SO/IEC 2015, All rights reserved 19

from a import *
print(a) #=> 1
from b import *
print(a) #=> 2

The results are now different because the importing program is susceptible to unintended consequences due to
changes in variable assignments made in two unrelated modules as well as the sequence in which they were
imported. Also note that the from modulename import * statement brings all of the modules attributes
into the importing code which can silently overlay like-named variables, functions, and classes.

A common misunderstanding of the Python language is that Python detects local names (a local name is a name
that lives within a class or function’s namespace) statically by looking for one or more assignments to a name
within the class/function. If one or more assignments are found then the name is noted as being local to that
class/function. This can be confusing because if only references to a name are found then the name is referencing
a global object so the only way to know if a reference is local or global, barring an explicit global statement, is to
examine the entire function definition looking for an assignment. This runs counter to Python’s goal of Explicit is
Better Than Implicit (EIBTI):

a=1
def f():
print (a)
a =2

f () #=> UnboundLocalError: local variable '

' referenced before

a
assignment
now with the assignment commented out
a=1
def f£():
print(a)#=> 1
#a = 2
Assuming a new session:
a=1
def £():
global a
a =2
£0
print(a)#=> 2

Note that the rules for determining the locality of a name applies to the assignment operator = as above, but also
to all other kinds of assignments which includes module names in an import statement, function and class
names, and the arguments declared for them. See 6.19 Unused Variable [YZS] for more detail on this.

Name resolution follows a simple Local, Enclosing, Global, Built-ins (LEGB) sequence:

e First the local namespace is searched;
e Then the enclosing namespace (thatis, a def or lambda (A lambda is a single expression function
definition));

e Then the global namespace; and

20 © I1SO/IEC 2015,— Al rights reserved

/| Deleted: 3

e Lastly the built-in’s namespace.

6.21,2 Guidance to language users ‘

e When practicable, consider using the import statement without the from clause. This forces the
importing program to use qualification to access the imported module’s attributes. While it is true that
using the from statement is more convenient due to less typing required (for example, no need to qualify
names), the from statement can cause namespace corruption;

e When using the import statement, rather than use the from X import * form (whichimports all of
module X’s attributes into the importing program’s namespace), instead explicitly name the attributes
that you want to import (for example, from X import a, b, c)so thatvariables, functionsand
classes are not inadvertently overlaid; and

e Avoid implicit references to global values from within functions to make code clearer. In order to update
globals within a function or class, place the global statement at the beginning of the function definition
and list the variables so it is clearer to the reader which variables are local and which are global (for
example, global a, b, c).

[Deleted: 2

{ Deleted: E.23

6.22 Initialization of Variables [LAV] [Deleted: 3
{ Deleted: E.24

6.22,1 Applicability of language (Deleted: 3
{ Deleted: E.24

Python does not check to see if a statement references an uninitialized variable until runtime. This is by design in
order to support dynamic typing which in turn means there is no ability to declare a variable. Python therefore
has no way to know if a variable is referenced before or after an assignment. For example:

if y > 0:
print (x)

The above statement is legal at compile time even if x is not defined (that is, assigned a value). An exception is
raised at runtime only if the statement is executed and y>0. This scenario does not lend itself to static analysis
because, as in the case above, it may be perfectly logical to not ever print x unless y>0.

There is no ability to use a variable with an uninitialized value because assigned variables always reference
objects which always have a value and unassigned variables do not exist. Therefore Python raises an exception
when an unassigned (that is, non-existent) variable is referenced.

Initialization of class arguments can cause unexpected results when an argument is set to a default object which is

mutable:
def x(y=[]):
y.append (1)
print (y)
x([2])#=> [2, 1], as expected (default was not needed)
x() # [1]

x() # [1, 1] continues to expand with each subsequent call

© 1SO/IEC 2015, All rights reserved 21

/| Deleted: 3

The behaviour above is not a bug - it is a defined behaviour for mutable objects but it’s a very bad idea in almost
all cases to assign default values to mutable objects.

6.22,2 Guidance to language users

[Deleted: 3

e Ensure that it is not logically possible to reach a reference to a variable before it is assigned. The example
above illustrates just such a case where the programmer wants to print the value of x but has not
assigned a value to x — this proves that there is missing, or bypassed, code needed to provide x with a
meaningful value at runtime.

6.23 Operator Precedence and Associativity [JCW]

6.23,1 Applicability to language

Python provides many operators and levels of precedence so it is not unexpected that operator precedence and
order of operation are not well understood and hence misused. For example:

7, evaluates as 1 + (2 * 3)
> 9, parenthesis are allowed to coerce precedence

Expressions that use and or or are evaluated left-to-right which can cause a short circuit:

a or b or ¢

In the expression above c is never evaluated if either a or b evaluate to True because the entire expression
evaluates to True immediately when any sub expression evaluates to True. The short circuit effect is non-
consequential above but in the case below the effect is subtle and potentially destructive:

def x(i):
if 1i:
return True
else:
1/0 # Hard stop
a=1
b =20
while True:
if x(a) or x(b):
print('a or b is True')

The code above will go into an endless loop because x (b) is never evaluated. If it was the program would
terminate due to an attempted division by zero.

6.23,2 Guidance to language users

{ Deleted: E.24

Deleted: 4

(
{ Deleted: E.25

| Deleted: /Order of Evaluation

‘| Deleted: 4

-
[Deleted: E.25

[Deleted: 4

e Use parenthesis liberally to force intended precedence and increase readability;

e Be aware that short-circuited expressions can cause subtle errors because not all sub-expressions may be
evaluated; and

e Break large/complex statements into smaller ones using temporary variables for interim results.

22 © I1SO/IEC 2015,— Al rights reserved

/| Deleted: 3

6.24 Side-effects and Order of Evaluation of Operands [SAM]

[Deleted: 5

6.24,1 Applicability to language

Python supports sequence unpacking (parallel assignment) in which each element of the right hand side
(expressed as a tuple) is evaluated and then assigned to each element of the left-hand side (LHS) in left-to-right
sequence. For example, the following is a safe way to exchange values in Python:

a=1

b =2

a, b = b, a # swap values between a and b
print (a,b)#=> 2, 1

Assignment of the targets (LHS) proceeds left-to-right so overlaps on the left side are not safe:

a = [0,0]

i=0

i, ali]l] = 1, 2 #=> Index 1is set to 1; list is updated at [1]
print(a) #=> 0,2

Python Boolean operators are often used to assign values as in:

a = b or ¢ or d or None

a is assigned the first value of the first object that has a non-zero (that is, True) value or, in the example above,
the value None if b, ¢, and d are all False. This isa common and well understood practice. However, trouble
can be introduced when functions or other constructs with side effects are used on the right side of a Boolean
operator:

if a() or b{()
If function a returns a True result then function b will not be called which may cause unexpected results.

6.24,2 Guidance to language users |

e Be aware of Python’s short-circuiting behaviour when expressions with side effects are used on the right
side of a Boolean expression; if necessary perform each expression first and then evaluate the results:

x = af()
y = Db()
if x or y ..

e Be aware that, even though overlaps between the left hand side and the right hand side are safe, it is
possible to have unintended results when the variables on the left side overlap with one another so
always ensure that the assignments and left-to-right sequence of assignments to the variables on the left
hand side never overlap. If necessary, and/or if it makes the code easier to understand, consider breaking
the statement into two or more statements;

overlapping
a = [0,0]

© 1SO/IEC 2015, All rights reserved 23

Comment [SGM9]: Email from Nick Coghlan (2017-09-21)

- for order of evaluation: it was noticed a couple of years ago
that dictionary displays didn't actually evaluate in the expected
left to right order (they went value/key rather than key/value).

This has been fixed (in 3.6 if | recall correctly), but may be
useful as an example of the value of ensuring that operations
with side effects don't depend on subtle order of evaluation
details

“\‘ Deleted: 6

Deleted: E.26

[Deleted: 5

{ Deleted: E.26

/| Deleted: 3

i=20

i, a[i] = 1, 2 #=> Index is set to 1; list is updated at

print(a) #=> 0,2
Non-overlapping
a = [0,0]

i, af0o] =1, 2
print(a) #=> 2,0

6.25 Likely Incorrect Expression [KOA]

[1]

[Deleted: 6

6.25,1 Applicability to language

Python goes to some lengths to help prevent likely incorrect expressions:

Testing for equivalence cannot be confused with assignment:
a=>b=1

if (a=b): print(a,b) #==> syntax error

if (a==b): print(a,b) #==> 11

Boolean operators use English words not, and, or; bitwise operators use symbols ~, &, | respectively.
However Python does have some subtleties that can cause unexpected results:
o Skipping the parentheses after a function does not invoke a call to the function and will fail
silently because it’s a legitimate reference to the function object:

class a:
def demo () :
print ("in demo")
a.demo () #=> in demo

a.demo #=> <function demo at 0x000000000342A9C8>

x = a.demo
x() #=> in demo

The two lines that reference the function without trailing parentheses above demonstrate how
that syntax is a reference to the function object and not a call to the function.

Built-in functions that perform in-place operations on mutable objects (that is, lists, dictionaries, and
some class instances) do not return the changed object — they return None:

a =[]

a.append ("x")
print(a) #=> ['x']
a = a.append("y")
print (a) #=> None

6.25,2 Guidance to language users

{ Deleted: E.27

Comment [SGM10]: Email from Nick Coghlan (2017-09-21)

- async/await syntax introduces another opportunity for a "likely
incorrect expression", which is to forget to await a coroutine —
see https://github.com/python-trio/trio/issues/79 for discussion
(it does cause a "Coroutine was never awaited" runtime
warning)

[Deleted: 6

[Deleted: E.27

[Deleted: 6

Be sure to add parentheses after a function call in order to invoke the function; and
Keep in mind that any function that changes a mutable object in place returns a None object — not the

" Deleted: E.27

[Deleted: 3

changed object since there is no need to return an object because the object has been changed by the
function.

Deleted: 7

6.26 Dead and Deactivated Code [XYQ]

Deleted: 7

6.26,1 Applicability to language

| Deleted: E.28

[

{ Deleted: E.28
[
(

There are many ways to have dead or deactivated code occur in a program and Python is no different in that
regard. Further, Python does not provide static analysis to detect such code nor does the very dynamic design of
Python’s language lend itself to such analysis.

The module and related import statement provides convenient ways to group attributes (for example,
functions, names, and classes) into a file which can then be copied, in whole, or in part (using the from
statement), into another Python module. All of the attributes of a module are copied when either of the following
forms of the import statement is used. This is roughly equivalent to simply copying in all of code directly into
the importing program which can result in code that is never invoked (for example, functions which are never
called and hence “dead”):

import modulename
from modulename import *

The import statement in Python loads a module into memory, compiles it into byte code, and then executes it.
Subsequent executions of an import for that same module are ignored by Python and have no effect on the
program whatsoever. The reload statement is required to force a module, and its attributes, to be loaded,
compiled, and executed.

6.26,2 Guidance to language users | { Deleted: 7

| {Deleted: k28

e Import just the attributes that are required by using the £ rom statement to avoid adding dead code; and
e Be aware that subsequent imports have no effect; use the reload statement instead if a fresh copy of
the module is desired.

6.27 Switch Statements and Static Analysis [CLL] Deleted: 8
{ Deleted: E.29
6.27,1 Applicability to language | Deleted: 8
{ Deleted: E.29
By design Python does not have a switch statement nor does it have the concept of labels or branching to a
demarcated “place”. Python enforces structure by not providing these constructs but it also provides several
statements to select actions to perform based on the value of a variable or expression. The first of these are the
if/elif/else statements which operate as they do in other languages so this warrants no further coverage
here.
Python provides a break statement which allows a loop to be broken with an immediate branch to the first
statement after the loop body:
a =1
while True:
/| Deleted: 3

© 1SO/IEC 2015, All rights reserved 25

if a > 3:
break
else:
print(a)
a += 1

The loop above prints 1, 2 and 3, each on separate lines, then terminates upon execution of the break
statement.

6.27,2 Guidance to language users

Use if/elif/else statements to provide the equivalent of switch statements.

Deleted: 8

‘| Deleted: E.29

6.28 Demarcation of Control Flow [EO]]

Deleted: 9

6.28,1 Applicability to language

Python makes demarcation of control flow very clear because it uses indentation (using spaces or tabs — but not
both) and undentation as the only demarcation construct:

(
(
[Deleted: se
(
(

‘| Deleted: E.30

Comment [SGM11]: Email from Nick Coghlan (20170921)
- Python 3 makes mixing tabs and spaces for indentation a
compile-time error

| Deleted: 9

a, b=1,1
if a:

print("a is True")
else:

print ("False")

if b:

print ("b is true")

print ("back to main level")

The code above prints “a is True” followed by “back to main level”.Note how control is passed from
the first i f statement’s True path to the main level based entirely on indentation while in most other languages
the final line would execute only when the second i f evaluated to True.

6.28,2 Guidance to language users

Use only spaces or tabs, not both, to indent to demark control flow.

6.29 Loop Control Variables [TEX]

\
{" I d: E30

Comment [SM12]: Check - is it “dendentation” or
“undentation”?

[Deleted: de

[Deleted: 9

' { Deleted: E.30

Deleted: 30

6.29,1 Applicability to language

Python provides two loop control statements: while and for. They each support very flexible control
constructs beyond a simple loop control variable. Assignments in the loop control statement (that is, while or
for) which can be a frequent source of problems, are not allowed in Python — Python’s loop control statements
use expressions which cannot contain assignment statements.

The while statement leaves the loop control entirely up to the programmer as in the example below:

26 © I1SO/IEC 2015,— Al rights reserved

‘| Deleted: E.31

- in Python 2, a particularly problematic case of loop control
variables leaking is in list comprehensions. In Python 3,
comprehensions use their own scope, so the loop variable
doesn't leak anymore

Deleted: 30

‘ Comment [SGM13]: Email from Nick Coghlan (2017-09-21)

| Deleted: E:31

{ Deleted: 3

a =1
while a:

print ('in loop'")

a = False # force loop to end after one iteration
else:

print ('exiting loop"')

The for statement is unusual in that it does not provide a loop control variable therefore it is not possible to vary
the sequence or number of iterations that are performed other than by the use of the break statement (covered

in 6.28 Demarcation of Control Flow [EQJ]) which can be used to immediately branch to the statement after the |

{ Deleted: E.29

loop block.

When using the for statement to iterate though an iterable object such as a list, there is no way to influence the
loop “count” because it’s not exposed. The variable a in the example below takes on the value of the first, then
the second, then the third member of the list:
x=['a, 'b', 'c']
for a in x:
print (a)

It is possible, though not recommended, to change a mutable object as it is being traversed which in turn changes
the number of iteratons performed. In the case below the loop is performed only two times instead of the three
times had the list been left intact:

x = ['a', 'b', 'c']
for a in x:
print(a) |

print (x)
#=> a
#=> c
#=> ['c']

del x[0] ‘

6.29,2 Guidance to language users ‘

{ Formatted: Spanish

[Deleted: 30

e Be careful to only modify loop control variables in ways that are easily understood and in ways that
cannot lead to a premature exit or an endless loop.

e When using the for statement to iterate through a mutable object, do not add or delete members
because it could have unexpected results.

© 1SO/IEC 2015, All rights reserved 27

{ Deleted: E.31

/| Deleted: 3

6.30, Off-by-one Error [XZH]

Deleted: 1

6.30,1 Applicability to language

Deleted: E.32

Deleted: 1

The Python language itself is vulnerable to off by one errors as is any language when used carelessly or by a

person not familiar with Python’s index from zero versus from one. Python does not prevent off by one errors but

its runtime bounds checking for strings and lists does lessen the chances that doing so will cause harm. It is also

not possible to index past the end or beginning of a string or list by being off by one because Python does not use

a sentinel character and it always checks indexes before attempting to index into strings and lists and raises an
exception when their bounds are exceeded.

6.30,2 Guidance to language users

—N

e Be aware of Python’s indexing from zero and code accordingly.

6.31 Structured Programming [EWD]

Deleted: E.32

[Deleted: 1

{ Deleted: E.32

[Deleted: 2

6.31,1 Applicability to language

Python is designed to make it simpler to write structured program by requiring indentation and dedentation to
show scope of control in blocks of code:

a=1
b =1
if a ==
print("a == b")#=> a == b
if a > b:
print ("a > b")
else:

print("a != b")

In many languages the last print statement would be executed because they associate the e1se with the
immediately prior i £ while Python uses indentation to link the e 1 se with its associated i f statement (that is,

the one above it).

Python also encourages structured programming by not introducing any language constructs which could lead to

unstructured code (for example, GO TO statements).

Python does have two statements that could be viewed as unstructured. The first is the break statement. It’s
used in a loop to exit the loop and continue with the first statement that follows the last statement within the

loop block. This is a type of branch but it is such a useful construct that few would consider it “unstructured” or a

bad coding practice.

The second is the try/except block which is used to trap and process exceptions. When an exception is
thrown a branch is made to the except block:

def divider(a,b):

28 © I1SO/IEC 2015,— Al rights reserved

{ Deleted: E.33

Comment [SGM14]: Email from Nick Coghlan (2017-09-21)

- for structured programming, the use of with statements and
context managers may be preferable to ad hoc try/except and
try/finally statements

[Deleted: 2

[Deleted: E.33

J
J
J
J

/| Deleted: 3

return a/b

try:
print (divider (1,0))

except ZeroDivisionError:
print('division by zero attempted')

6.31.2 Guidance to language users

[Deleted: 2

e Python offers few constructs that could lead to unstructured code. However, judicious use of break
statements is encouraged to avoid confusion.

6.32 Passing Parameters and Return Values [CS]]

{ Deleted: E.33

Deleted: 3

6.32,1 Applicability to language

Deleted: 3

Python’s only subprogram type is the function. Even though the import statement does execute the imported
module’s top level code (the first time it is imported), the import statement cannot effectively be used as a way
to repeatedly execute a series of statements

Python passes arguments by assignment which is similar to passing by pointer or reference. Python assigns the
passed arguments to the function’s local variables but unlike some other languages, simply having the address of
the caller’s argument does not automatically allow the called function to change any of the objects referenced by
those arguments — only mutable objects referenced by passed arguments can be changed. Python has no concept
of aliasing where a function’s variables are mapped to the caller’s variables such that any changes made to the
function’s variables are mapped over to the memory location of the caller’s arguments.

a =1
def f(x):
x +=1

print (x) #=> 2
f(a)
print(a)#=> 1

In the example above, an immutable integer is passed as an argument and the function’s local variable is updated
and then discarded when the function goes out of scope therefore the object the caller’s argument references is
not affected. In the example below, the argument is mutable and is therefore updated in place:

a = [1]
def f(x):
x[0] = 2
f(a)
print (a)#=> [2]

Note that the list object a is not changed — it’s the same object but its content at index 0 has changed.

The return statement can be used to return a value for a function:

def doubler (x):

© 1SO/IEC 2015, All rights reserved 29

[

{ Deleted: E.34
[
(

'| Deleted: E.34

/| Deleted: 3

return x * 2
x =1
doubler (x)
print (x) #=> 2

X =

The example above also demonstrates a way to emulate a call by reference by assigning the returned object to
the passed argument. This is not a true call by reference and Python does not replace the value of the object x,
rather it creates a new object x and assigns it the value returned from the doubler function as proven by the
code below which displays the address of the initial and the new object x:

def doubler (x):
return x * 2
x =1
print (id(x)) #=> 506081728
doubler (x)
#=> 506081760

% =
print (id(x))

The object replacement process demonstrated above follows Python’s normal processing of any statement which
changes the value of an immutable object and is not a special exception for function returns.

Note that Python functions return a value of none when no return statement is executed or when a return
with no arguments is executed.

{ Formatted: French

[Deleted: 3

‘ 6.32,2 Guidance to language users

e Create copies of mutable objects before calling a function if changes are not wanted to mutable
arguments; and

e If a function wants to ensure that it does not change mutable arguments it can make copies of those
arguments and operate on them instead.

‘ 6.33 Dangling References to Stack Frames [DCM]

This vulnerability is not applicable to Python because, while Python does provide a way to inspect the address of
an object, for example, the id function, it does not provide a way to use that address to access an object.

6.34. Subprogram Signature Mismatch [OTR]

6.34,1 Applicability to language

Python supports positional, “keyword=value”, or both kinds of arguments. It also supports variable numbers of
arguments and, other than the case of variable arguments, will check at runtime for the correct number of
arguments making it impossible to corrupt the call stack in Python when using standard modules.

Python has extensive extension and embedding APIs that includes functions and classes to use when extending or
embedding Python. These provide for subprogram signature checking at runtime for modules coded in non-
Python languages. Discussion of this APl is beyond the scope of this annex but the reader should be aware that
improper coding of any non-Python modules or their interface could cause a call stack problem

30

i

W [Deleted: E.36
[
{

{ Deleted: E.34

Comment [SGM15]: This section needs a rewrite to
acknowledge the vulnerability.

Email from Nick Coghlan (2017-09-21)

- reading the section on dangling references to stack frames
reminded me that if you want to write robust, secure, and
reliable code, don't use the ctypes module (since that *does*
let you access arbitrary memory addresses). cffi is a safer third
party alternative, since it will read C header files and generate
safe(r) Python wrappers than direct C ABI access with ctypes.

“‘\ Deleted: 4

Deleted: E.35

Deleted: 5

Deleted: 5

| Deleted: E.36

/| Deleted:

w

6.34,2 Guidance to language users

Deleted: 5

Apply the guidance described in TR 24772-1 clause 6.34,5.

‘| Deleted: E.36

Deleted: 6

6.35 Recursion [GDL]

6.35,1 Applicability to language

| Deleted: E.37

Deleted: 6

Recursion is supported in Python and is, by default, limited to a depth of 1,000 which can be overridden using the
setrecursionlimit function. If the limit is set high enough, a runaway recursion could exhaust all memory
resources leading to a denial of service.

6.35,2 Guidance to language users

[
(
[
= [Deleted: 6
g
[
(

Apply the guidance described in TR 24772-1 clause 6.35,5

‘| Deleted: E.37

Deleted: 6

"'| Deleted: E.37

Deleted:

~

6.36 Ignored Error Status and Unhandled Exceptions [0YB]

6.36,1 Applicability to language

| Deleted: E.38

Deleted: 7

Python provides statements to handle exceptions which considerably simplify the detection and handling of
exceptions. Rather than being a vulnerability, Python’s exception handling statements provide a way to foil denial
of service attacks:

def mainpgm(x, y):
return x/y
for x in range(3):
try:
y = mainpgm(1l, x)
except:
print ('Problem in mainpgm')
clean up code..
else:
print (y)

The example code above prints:

Problem in mainpgm
1.0
0.5

The idea above is to ensure that the main program, which could be a web server, is allowed to continue to run
after an exception by virtue of the try/except statement pair.

6.36,2 Guidance to language users

[
(
[
[Deleted: 7
(
[
(

‘| Deleted: E.38

[Deleted: 7

e Use Python’s exception handling with care in order to not catch errors that are intended for other
exception handlers; and

© 1SO/IEC 2015, All rights reserved 31

{ Deleted: E.38

[Deleted: 3

e Use exception handling, but directed to specific tolerable exceptions, to ensure that crucial processes can
continue to run even after certain exceptions are raised.

6.37 Type-breaking Reinterpretation of Data [AMV] ; % Deleted: 6.38E.39 Termination Strategy [REU] - 7]
| Deleted: 9

This vulnerability is not applicable to Python because assignments are made to objects and the object always [Deleted: E.40 }
holds the type — not the variable, therefore all referenced objects has the same type and there is no way to have
more than one type for any given object.

6.38 Deep vs. Shallow Copying [YAN]

6.38.1 Applicability to ‘]anguage‘ Comment [SGM16]: Comment from Nick Coghlan:

For shallow copying: we don't detect or prevent it, but
reference counting at least ensures the references copied that
TBD < way remain alive.

(Hmm, that does prompt a thought though: memoryview and

. the PEP 3118 buffer protocol do create some interesting new
6.38,2 Guidance to l@g@ze users issues, since the obligation is on the buffer publisher to ensure
that the memory remains valid at least as long as the object
lives, while buffer consumers need to make sure they keep an
TBD o ‘ active reference to the publisher)

Formatted: Normal, Level 1
Deleted: 9

Formatted: Normal, Level 1

[
|
6.39,1 Applicability to language (
[Deleted: 40
[
[
[

Deleted: E.41
Deleted: 40
| Deleted: E.41

Python supports automatic garbage collection so in theory it should not have memory leaks. However, there are

at least three general cases in which memory can be retained after it is no longer needed. The first is when

implementation-dependent memory allocation/de-allocation algorithms (or even bugs) cause a leak — this is

beyond the scope of this annex. The second general case is when objects remain referenced after they are no
longer needed. This is a logic error which requires the programmer to modify the code to delete references to
objects when they are no longer required.

There is a third very subtle memory leak case wherein objects mutually reference one another without any
outside references remaining — a kind of deadly embrace where one object references a second object (or group
of objects) so the second object(s) can’t be collected but the second object(s) also reference the first one(s) so
it/they too can’t be collected. This group is known as cyclic garbage. Python provides a garbage collection
module called gc which has functions which enable the programmer to enable and disable cyclic garbage
collection as well as inspect the state of objects tracked by the cyclic garbage collector so that these, often very
subtle leaks, can be traced and eliminated.

e Release all objects when they are no longer required. [Deleted: 6.40E.41.2 Guid tol users]
6.40 Templates and Generics [SYM] [Deleted: 1)
{ Deleted: E.42 J

This vulnerability is not applicable to Python because Python does not implement these mechanisms.

{ Deleted: 3 }

32 © I1SO/IEC 2015,— Al rights reserved

6.41 Inheritance [RIP]

Deleted: 2

6.41,1 Applicability to language

Deleted: 2

Python supports inheritance through a hierarchical search of namespaces starting at the subclass and proceeding
upward through the superclasses. Multiple inheritance is also supported. Any inherited methods are subject to
the same vulnerabilities that occur whenever using code that is not well understood.

6.41,2 Guidance to language users

(

{ Deleted: E.43
(
(

'| Deleted: E.43

{ Deleted: 2]

e Inherit only from trusted classes; and
e Use Python’s built-in documentation (such as docstrings) to obtain information about a class’ method
before inheriting from it.

6.42 Violations of the Liskov Substitution Principle or the Contract Model [BLP]

6.42.1 Applicability to language

TBD

6.42.2 Guidance to language users

TBD

6.43 Redispatching [PPH]

6.43.1 Applicability to language

TBD

6.43.2 Guidance to language users

TBD

6.44 Polymorphic variables [BKK]

6.44.1 Applicability to language

TBD

6.44.2 Guidance to language users

TBD

© ISO/IEC 2015, All rights reserved 33

{ Deleted: E.43 }

Comment [SGM17]: Note from Nick Coghlan: For
Liskov/redispatch/polymorphism, I'm not really the right person
to ask - the folks working on mypy and other typechecking
tools are.

Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.

[Formatted: Normal, Level 1]

o { Formatted: Normal, Level 1]

Comment [SGM18]: Comment from Nick Coghlan:

For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.

Probably the best way to contact them would be to file an issue

on https://github.com/python/typing/issues asking for their
feedback.

Comment [SGM19]: Note from Nick Coghlan:

For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.

Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.

{ Deleted: 3 }

Deleted: 3

6.45 Extra Intrinsics [LRM]

‘| Deleted: E.44

[
(
6.45,1 Applicability to language % Deleted: 3

‘| Deleted: E.44

Python provides a set of built-in intrinsics which are implicitly imported into all Python scripts. Any of the built-in
variables and functions can therefore easily be overridden:

x = 'abc'
print (len(x))#=> 3
def len(x):
return 10
print (len(x)) #=> 10

If the example above the built-in 1en function is overridden with logic that always returns 10. Note that the def
statement is executed dynamically so the new overriding 1en function has not yet been defined when the first
call to 1en is made therefore the built-in version of 1en is called in line 2 and it returns the expected result (3 in
this case). After the new len function is defined it overrides all references to the builtin-in 1en function in the
script. This can later be “undone” by explicitly importing the built-in Len function with the following code:

from builtins import len
print (len(x))#=> 3

It’s very important to be aware of name resolution rules when overriding built-ins (or anything else for that
matter). In the example below, the overriding 1en function is defined within another function and therefore is
not found using the LEGB rule for name resolution (see 6.21 Namespace Issues [BJL]):

x = 'abc'
print (len(x))#=> 3
def f(x):
def len (x):
return 10
print (len(x))#=> 3

6.45,2 Guidance to language users [Deleted: 3

{ Deleted: E.44

e Do not override built-in “intrinsics” unless absolutely necessary

6.46 Argument Passing to Library Functions [TR]] | Deleted: 4
{ Deleted: E.45
6.46,1 Applicability to language [Deleted: 4
(Deleted: E.45
Refer to 6.34 Subprogram Signature Mismatch [OTR],) { E.35 Subprogram Signature Mismatch [OTR]
A . [Deleted: 4
6.46,2 Guidance to language users (o £45
[Deleted: E.36 Subprogram Signature Mismatch [OTR]
Refer to 6.34 Subprogram Signature Mismatch [OTR], [d: 3

34 © 1SO/IEC 2015, All rights reserved

6.47 Inter-language Calling [D]S]

Deleted: 5

6.47,1 Applicability to language

Deleted: E.46
Deleted: 5

Python has a documented API for extending Python using libraries coded in C or C++. The library(s) are then
imported into a Python module and used in the same manner as a module written in Python. Python’s standard
for interfacing to the “C” language is documented in http://docs.python.org/py3k/c-api/.

—N

Conversely, code written in C or C++ can embed Python. The standard for embedding Python is documented in:
http://docs.python.org/py3k/extending/embedding.html.

The Jython system is a Java-based implementation that interfaces with Java and IronPython provides interfaces to
Microsoft .NET languages.

6.47,2 Guidance to language users |

e Use the language interface APIs documented on the Python web site for interfacing to C/C++, the Jython
web site for Java, the IronPython web site for .NET languages, and for all other languages consider
creating intermediary C or C++ modules to call functions in the other languages since many languages
have documented API’s to C and C++.

6.48 Dynamically-linked Code and Self-modifying Code [NYY]

Deleted: E.46

Comment [SM20]: Put reference in the bibliography and
reference the bibliography (here and 2 lines down).
[Deleted: 5]
{ Deleted: E.46 }

Deleted: 6

6.48,1 Applicability to language

Deleted: 6

Python supports dynamic linking by design. The import statement fetches a file (known as a module in Python),
compiles it and executes the resultant byte code at run time. This is the normal way in which external logic is
made accessible to a Python program therefore Python is inherently exposed to any vulnerabilities that cause a
different file to be imported:

e Alteration of a file directory path variable to cause the file search locate a different file first; and
e Overlaying of a file with an alternate.

Python also provides an eval and an exec statement each of which can be used to create self-modifying code:

x = "print('Hello " + "World")"
eval (x) #=> Hello World

Guerrilla patching, also known as monkey patching, is a way to dynamically modify a module or class at run-time
to extend, or subvert their processing logic and/or attributes. It can be a dangerous practice because once
“patched” any other modules or classes that use the modified class or module may unwittingly be using code that
does not do what they expect which could cause unexpected results.

6.48,2 Guidance to language users |

]
{ Deleted: E.47

[

(

‘| Deleted: E.47

[Deleted: 6

¢ Avoid using exec or eval and never use these with untrusted code}

{ Deleted: E.47

e Be careful when using Guerrilla patching to ensure that all users of the patched classes and/or modules
continue to function as expected; conversely, be aware of any code that patches classes and/or modules

© 1SO/IEC 2015, All rights reserved 35

[Deleted: 3

Comment [SM21]: This may not be dynamically linked code, but
the recommendation is good (just maybe elsewhere).

that your code is using to avoid unexpected results; and
e Ensure that the file path and files being imported are from trusted sources.

6.49 Library Signature [NSQ]

Deleted: 7

6.49,1 Applicability to language

‘| Deleted: E.48

Python has an extensive API for extending or embedding Python using modules written in C, Java, and Fortran.
Extensions themselves have the potential for vulnerabilities exposed by the language used to code the extension
which is beyond the scope of this annex.

Python does not have a library signature checking mechanism but its API provides functions and classes to help
ensure that the signature of the extension matches the expected call arguments and types. See 6.34 Subprogram
Signature Mismatch [OTR].

6.49,2 Guidance to language users

e Use only trusted modules as extensions; and
e If coding an extension utilize Python’s extension API to ensure a correct signature match.

6.50 Unanticipated Exceptions from Library Routines [HJW]

6.50,1 Applicability to language

(
(
[Deleted: 7
(

| Deleted: E.48

[Deleted: 7

{ Deleted: E.48

Deleted: 48

Deleted: 48

Python is often extended by importing modules coded in Python and other languages. For modules coded in
Python the risks include:

e Interception of an exception that was intended for a module’s imported exception handling code (and
vice versa); and
e Unintended results due to namespace collisions (covered in 6.21 Namespace Issues [BJL] and elsewhere in

(

{ Deleted: E.49
(
(

"'| Deleted: E.49

{ Deleted: E.22

this annex).

For modules coded in other languages the risks include:

e Unexpected termination of the program; and
e Unexpected side effects on the operating environment.

6.50,2 Guidance to language users

Deleted: 48

e Wrap calls to library routines and use exception handling logic to intercept and handle exceptions when
practicable.

6.51 Pre-processor Directives [NMP]

[
: {l‘ leted: E.49
{
{

This vulnerability is not applicable to Python because Python has no pre—processor\directives.

36 © I1SO/IEC 2015,— Al rights reserved

Deleted: 49

/| Deleted: E.50

Comment [SGM22]: Email from Nick Coghlan (2017-09-21)

- the "pre-processor directives" section isn't strictly true: "from
__future__ import feature" is a compile-time directive, and the
encoding cookie declarations in source headers allow for
arbitrary source->source translations when loading source
modules. The import hook mechanisms also provide a lot of
flexibility for runtime code to change how imports in other parts
of the program are actually handled.

/| Deleted: 3

6.52 Suppression of Language-defined Run-time Checking [MXB] |

[Deleted: 50

This vulnerability is not applicable to Python because Python does not have a mechanism for suppressing run-
time error checking. The only suppression available is the suppression of run-time warnings using the command
line =W option which suppresses the printing of warnings but does not affect the execution of the program.

6.53 Provision of Inherently Unsafe Operations [SKL]

{ Deleted: E.51

Deleted: 51

6.53,1 Applicability to language

Deleted: 1

Python has very few operations that are inherently unsafe. For example, there is no way to suppress error
checking or bounds checking. However there are two operations provided in Python that are inherently unsafe in
any language:

e Interfaces to modules coded in other languages since they could easily violate the security of the calling of
embedded Python code; and
e Use of the exec and eval dynamic execution functions (see 6.48 Dynamically-linked Code and Self- |

modifying Code [NYY]).

6.53,2 Guidance to language users

(

(Deleted: E.52
(
(

| Deleted: E.52

[Deleted: 1

e Use only trusted modules; and
e Avoid the use of the exec and eval functions.

6.54. Obscure Language Features [BRS]

6.54,1 Applicability of languagel

Python has some obscure language features as described below:

Functions are defined when executed:

a =1
while a < 3:
if a == 1:
def f():
print ("a must equal 1")
else:
def £():
print ("a must not equal 1")
£0
a +=1

The function £ is defined and redefined to result in the output below:

a must equal 1
a must not equal 1

© 1SO/IEC 2015, All rights reserved 37

(Deleted: E.52

[Deleted: 2

{ Deleted: E.53

Comment [SGM23]: Email from Nick Coghlan (2017-09-21)

- the asyncio infrastructure has introduced a number of new
"obscure language features" for use by event loop
implementors (e.g. there's a hook that gets called any time a
native coroutine is created)

[Deleted: 2

[Deleted: E.53

/| Deleted: 3

A function’s variables are determined to be local or global using static analysis: if a function only references a
variable and never assigns a value to it then it is assumed to be global otherwise it is assumed to be local and is

added to the function’s namespace. This is covered in some detail in 6.22 Initialization of Variables [LAV],) { Deleted: E.23

A function’s default arguments are assigned when a function is defined, not when it is executed:

def f(a=1, b=[]):
print(a, b)
a +=1
b.append ("x"

The output from above is typically expected to be:

1 1]
1 1]
1 11

But instead it prints:

1 0]

1 ['x"]

1 ['x', 'x']
This is because neither a nor b are reassigned when f£ is called with no arguments because they were assigned
values when the function was defined. The local variable a references an immutable object (an integer) so a new

object is created when the a += 1 statement is created and the default value for the a argument remains
unchanged. The mutable list object b is updated in place and thus “grows” with each new call.

The += Operator does not work as might be expected for mutable objects:

x =1
x +=1
print(x) #=> 2 (Works as expected)

But when we perform this with a mutable object:

x =11, 2, 3] 7,,,4,—»"{Formatted:Spanish
y = X

print (id(x), id(y))#=> 38879880 38879880

X += [4] { Formatted: French

print (id(x), id(y))#=> 38879880 38879880
x = x + [5]

print (id(x), id(y))#=> 48683400 38879880
print(x,y)#=> [(1, 2, 3, 4, 5] [1, 2, 3, 4]

/| Deleted: 3

38 © I1SO/IEC 2015,— Al rights reserved

The += operator changes x in place while the x = x + [5] creates a new list object which, as the example
above shows, is not the same list object that v still references. This is Python’s normal handling for all
assignments (immutable or mutable) — create a new object and assign to it the value created by evaluating the
expression on the right hand side (RHS):

x =1

print (id(x)) #=> 506081728
x =x + 1

print (id(x)) #=> 506081760

Equality (or equivalence) refers to two or more objects having the same value. It is tested using the == operator
which can thought of as the ‘is equal to test’. On the other hand, two or more names in Python are considered
identical only if they reference the same object (in which case they would, of course, be equivalent too). For

example:
a = [0,1]
b =a
c = [0,1]
a is b, b is ¢, a == ¢ #=> (True, False, True)

a and b are both names that reference the same objects while c references a different object which has the
same value as both a and b.

Python provides built-in classes for persisting objects to external storage for retrieval later. The complete object,
including its methods, is serialized to a file (or DBMS) and re-instantiated at a later time by any program which has
access to that file/DBMS. This has the potential for introducing rogue logic in the form of object methods within a
substituted file or DBMS.

Python supports passing parameters by keyword as in:

2 = myfunc(x =1, y = "abc") M,,,,»«'{Formatted: Spanish

This can make the code more readable and allows one to skip parameters. It can also reduce errors caused by
confusing the order of parameters.

6.54,2 Guidance to language users (Deleted: 2

{ Deleted: E.53

Ensure that a function is defined before attempting to call it; Be aware that a function is defined dynamically so its
composition and operation may vary due to variations in the flow of control within the defining program;

e Be aware of when a variable is local versus global;

e Do not use mutable objects as default values for arguments in a function definition unless you absolutely
need to and you understand the effect;

e Be aware that when using the += operator on mutable objects the operation is done in place;

e Be cognizant that assignments to objects, mutable and immutable, always create a new object;

e Understand the difference between equivalence and equality and code accordingly; and

e Ensure that the file path used to locate a persisted file or DBMS is correct and never ingest objects from

/| Deleted: 3

© 1SO/IEC 2015, All rights reserved 39

an untrusted source.

6.55 Unspecified Behaviour [BQF]

Deleted: 3

6.55,1 Applicability of language

Deleted: 3

Underst
strings):

In the example above c references the same object as a and b even though c was never assigned to either a or

anding how Python manages identities becomes less clear when a script is run using integers (or short

a=1
b=a
c=1
a is b, b is ¢, a == ¢ #=> (True, True, True)

b. This is a nuance of how Python is optimized to cache short strings and small integers. Other than in a test for

identity as above, this nuance has no effect on the logic of the program (for example, changing the value of c to 2

will not

When p
already

affect a or b). Refer also to 4. Language concepts;

[

{ Deleted: E.54
[
(

'| Deleted: E.54

{ Deleted: E.2.2 Key Concepts

ersisting objects using pickling, if an exception is raised then an unspecified number of bytes may have
been written to the file.

6.55,2 Guidance to language users

Do not rely on the content of error messages — use exception objects instead;
When persisting object using pickling use exception handling to cleanup partially written files; and

Do not depend on the way Python may or may not optimize object references for small integer and string

objects because it may vary for environments or even for releases in the same environment.

6.56 Undefined Behaviour [EWF]

[Deleted: 3

{ Deleted: E.54

Deleted: 4

6.56,1 Applicability to language

Deleted: 4

Python has undefined behaviour in the following instances:

40

Caching of immutable objects can result in (or not result in) a single object being referenced by two or
more variables. Comparing the variables for equivalence (thatis, if a == b) will always yield a True
but checking for equality (using the is built-in) may, or may not, dependent on the implementation:

a =1

b =2-1

print(a == b, a is b) #=> (True, ?)
The sequence of keys in a dictionary is undefined because the hashing function used to index the keys is
unspecified therefore different implementations are likely to yield different sequences.
The Future class encapsulates the asynchronous execution of a callable. The behaviour is undefined if
the add done callback (fn) method (which attaches the callable £n to the future) raises a
BaseException subclass.

Modifying the dictionary returned by the vars built-in has undefined effects when used to retrieve the

(

“{ Deleted: E55
(
{

| Deleted: E.55

/| Deleted: 3

dictionary (that is, the namespace) for an object.

e Form feed characters used for indentation have an undefined effect on the character count used to
determine the scope of a block.

e Thecatch warnings function in the context manager can be used to temporarily suppress warning
messages but it can only be guaranteed in a single-threaded application otherwise, when two or more
threads are active, the behaviour is undefined.

e When sorting a list using the sort () method, attempting to inspect or mutate the content of the list will

result in undefined behaviour.

e The order of sort of a list of sets, using 1ist.sort (), is undefined as is the use of the function used on

a list of sets that depend on total ordering suchasmin () , max (), andsorted().
e Undefined behaviour will occur if a thread exits before the main procedure from which it was called
itself exits.

6.56,2 Guidance to language users |

[Deleted: 4

e Understand the difference between testing for equivalence (for example, ==) and equality (for example,
is) and never depend on object identity tests to pass or fail when the variables reference immutable
objects;

e Do not depend on the sequence of keys in a dictionary to be consistent across implementations.

e When launching parallel tasks don’t raise a BaseException subclass in a callable in the Future class;

e Never modify the dictionary object returned by a vars call;

e Never use form feed characters for indentation;

e Consider using the id function to test for object equality;

e Donottrytousethe catch_warnings function to suppress warning messages when using more than
one thread; and

e Never inspect or change the content of a list when sorting a list using the sort () method.

{ Deleted: E.55

6.57 Implementation-defined Behaviour [FAB] [Deleted: 5]
{ Deleted: E.56 J
6.57,1 Applicability to language | Deleted: 5]
{ Deleted: E.56 J
Python has implementation-defined behaviour in the following instances:
e Mixing tabs and spaces to indent is defined differently for UNIX and non-UNIX platforms;
e Byte order (little endian or big endian) varies by platform;
e Exit return codes are handled differently by different operating systems;
e The characteristics, such as the maximum number of decimal digits that can be represented, vary by
platform;
e The filename encoding used to translate Unicode names into the platform’s filenames varies by platform;
and
e Python supports integers whose size is limited only by the memory available. Extensive arithmetic using
integers larger than the largest integer supported in the language used to implement Python will degrade
performance so it may be useful to know the integer size of the implementation.

© 1SO/IEC 2015, All rights reserved 41

/| Deleted: 3

6.57,2 Guidance to language users

[Deleted: 5

e Always use either spaces or tabs (but not both) for indentations;

e Consider using the -tt command line option to raise an IndentationError;

e Consider using a text editor to find and make consistent, the use of tabs and spaces for indentation;

e Either avoid logic that depends on byte order or use the sys.byteorder variable and write the logic to
account for byte order dependent on its value ('1little'or 'big').

e Use zero (the default exit code for Python) for successful execution and consider adding logic to vary the
exit code according to the platform as obtained from sys.platform (such as,'win32','darwin’, or
other).

e Interrogate the sys. float.info system variable to obtain platform specific attributes and code
according to those constraints.

e Callthe sys.getfilesystemcoding () function to returnthe name of the encoding system used.

e When high performance is dependent on knowing the range of integer numbers that can be used without
degrading performance use the sys.int info struct sequence to obtain the number of bits per
digit (bits per digit)andthe number of bytes used to represent a digit (sizeof digit).

6.58 Deprecated Language Features [MEM]

Deleted: 6

6.58,1 Applicability to language

‘| Deleted: E.57

The following features were deprecated in the latest (as of this writing) version of E 3.1. These are documented at
http://docs.python.org/release/3.1.3/whatsnew/3.1.html}:

| Deleted: E.57

[
(
[Deleted: 6
(

C [SM247]: Put in bibliography and reference

e The string.maketrans() function is deprecated and is replaced by new static methods, bytes.maketrans()
and bytearray.maketrans(). This change solves the confusion around which types were supported by the
string module. Now, str, bytes, and bytearray each have their own maketrans and translate methods with
intermediate translation tables of the appropriate type.

e The syntax of the with statement now allows multiple context managers in a single statement:

with open('mylog.txt') as infile, open('a.out', 'w') as outfile:
for line in infile:
if '<critical>' in line:
outfile.write (line)

e With the new syntax, the contextlib.nested () functionis no longer needed and is now
deprecated.

e Deprecated PyNumber Int ().Use PyNumber Long () instead.

e AddedanewPyOS string to_double() function to replace the deprecated functions
PyOS ascii strtod() and PyOS ascii atof ().

e Added PyCapsule as a replacement for the PyCObject API. The principal difference is that the new
type has a well defined interface for passing typing safety information and a less complicated signature
for calling a destructor. The old type had a problematic APl and is now deprecated.

42 © I1SO/IEC 2015,— Al rights reserved

bibliography.

/| Deleted: 3

Deleted: 7 J

6.58,2 Guidance to language users (
{ Deleted: E.57 }

e When practicable, migrate Python programs to the current standard.

6.59 Concurrency - Activation [CGA]

Deleted: .

[Formatted: Heading 3
TBW: Analyze the standard Python libraries: i { Formatted: Highlight

‘| Formatted: Normal, Level 1

‘| Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight

e threading; Reference implementation seems to always raise an exception if start (), method is not

able to create the thread, but is not documented in the specification and thus the user cannot rely on

| Formatted: List Paragraph, Space After: 6 pt, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at: 1.27 cm, No
widow/orphan control, Suppress line numbers, Don't allow
hanging punctuation

\ [Formatted: Highlight]

Formatted: Font:(Default) Courier New, English (UK), Kern at
|| 14 pt, Highlight

Formatted: Highlight]
[Formatted: Highlight]
Formatted: Highlight J

Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight

Formatted: Highlight J
Formatted: Font:(Default) Calibri, Highlight]

Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight

‘[Formatted: Font:(Default) Calibri, Highlight]

Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight

Formatted: Highlight
Formatted: Normal, Level 1

this. Furthermore, even if the standard library / OS can create the new thread, it can die during the

initialization phase when executing the user’s code, Method join() does not return if the thread died
through an unhandled exception? Method is alive (), to check whether is still running, and timeouts

for lock objects. Timer object TBA

e multiprocessing: Exception raised if not activated? TBA

e concurrency.futures:TBA

6.59.2 Guidance to language users

TBW

6.60 Concurrency - Directed termination [CGT]

TBW: Analyze the standard Python libraries:

e threading: No mechanism to abort another thread, the thread has to terminate itself. Alien threads

cannot be terminated nor joined. Deleted: . J

e multiprocessing:TBA | Deleted: - J
e concurrency.futures: TBA Formatted: Heading 3]
R { Formatted: Normal]

6.60.2 Guidance to language users

TBW: e { Formatted: Normal, Level 1]

6.61 Concurrent Data Access [CGX]

6.61.1 Applicability to language < | Deleted: J
‘ [Formatted: Heading 3 J

TBW: Analyze the standard Python libraries:

e threading: Different mechanisms TBA:: Lock, RLock (recursive lock), Semaphore, Condition, Event,

Barrier. Use ‘with statement’ with locks { Deleted: 3 }

© ISO/IEC 2015, All rights reserved 43

e mnultiprocessing:TBA

e concurrency.futures: TBA

< { Formatted: Normal
6.61.2 Guidance to language users
TBW R { Formatted: Normal, Level 1
e threading: Use ‘with statement’ with locks
e mnultiprocessing:TBA
e concurrency.futures: TBA
D R { Formatted: Normal
6.62 Concurrency - Premature Termination [CGS] | Deleted: .
{ Deleted: .

{ Formatted: Heading 3

TBW: Analyze the standard Python libraries:

e threading:TBA

e mnultiprocessing:TBA

e concurrency.futures: TBA

e o { Formatted: Normal
6.62.2 Guidance to language users
TBW R { Formatted: Normal, Level 1
6.63 Protocol Lock Errors [CGM] | peleted:0
- [Deleted: 3
{Deleted: .
{ Formatted: Heading 3

TBW: Analyze the standard Python libraries:

e threading: Use ‘with statement’ with locks

e mnmultiprocessing:TBA

e concurrency.futures: TBA

- o { Formatted: Normal
6.63,2 Guidance to language users | Deleted: 0
TBW { Formatted: Highlight
e threading:TBA
e multiprocessing:TBA
{ Deleted: 3

a4 1SO/IEC 2015,~ Al rights reserved

e concurrency.futures:TBA

6.64 Reliance on External Format String [SHL]

6.64.1 Applicability to language

1BD

6.64.2 Guidance to language users

TBD

7. Language specific vulnerabilities for Python

8. Implications for standardization or future revision

Future standardization efforts should consider the following items to address vulnerability issues identified earlie

/| Formatted: Normal

/[comment [SGM25]: Note from Nick Coghlan:

[

A
[Deleted: .
[
[

i that.
‘| Comment [SGM26R25]:

Formatted: Normal, Level 1

Formatted: Normal, Level 1

JEns

Deleted:

Speaking of clocks & timing, there are some use cases that
should be updated to use time.monotonic() rather than
time.time() or time.clock()

: https://www.python.org/dev/peps/pep-0418/#time-monotonic

Windows applications should also be aware of the fact that
Python 3.6

always uses utf-8 for binary filesystem and console interfaces:
https://docs.python.org/dev/whatsnew/3.6.html#pep-529-
change-windows-filesystem-encoding-to-utf-8

Non-Windows applications should be aware of the fact that
Python 3.7+

will attempt to coerce the C locale to C.UTF-8 (or an equivalent
locale), and that implementing that behaviour is an approved
option

for redistributor's Python 3.6 implementations (e.g. the system
Python

in Fedora implements the option).
https://www.python.org/dev/peps/pep-0538/ has the details of

S
1o

in this Technical Report.

Formatted: Heading 1

Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.

Deleted:)
Deleted: 34

]
Deleted: .]
[This is a dummy citation with the Word bibliography feature, [2],, and the following one using bookmars J1]. [Formatted: Normal]
| Formatted: Highlight]
v | Formatted: Not Highlight]
Bibliography | Formatted: Not Highlight]
[Formatted: Not Highlight]
| Formatted: Not Highlight]
[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2004 [Field Code Changed]
i i i 1 d Page Break: }
[2] ISO/?EC TR 10000-1, Informai:‘lm? technology — Frame'work and taxonomy of International Standardized 1 Formatted [10]1
Profiles — Part 1: General principles and documentation framework [Deleted: 1 J
. . [Deleted: 2]
[3] 1SO 10241 (all parts), International terminology standards
{ Deleted: 3]
14] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04 (Deleted: [4] - ISO/IEC 9899:2011, Information fechnalom
' [Deleted: 25]
I5] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3" edition, ISBN-0-471-10426-4, John { Deleted: [26] . ARIANE 5: Flight 501 Failure, Report by ‘[ﬁﬂ
Wiley & Sons, 1998 | Deleted: 28)
p { Deleted: [29] - Lions, J. L. ARIANE 5 Flight 501 Failure R{" | [13]
J6] John David N. Dionisio. Type Checking. http://myweb.Imu.edu/dondi/share/pl/type-checking-v02.pdf { Formatted: English (US)
. . . . [Deleted: 31
7] The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/), -
""" { Deleted: [32] . MISRA Limited. "MISRA C: 2012 Guideli 141
[8] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM % Deleted: 33

© ISO/IEC 2015, All rights reserved 45

/| Deleted: 3

M0

[9] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard \ Deleted: 35 \
754-2008. Institute of Electrical and Electronics Engineers, New York, 2008.

[10] Robert W. Sebesta, Concepts of Programming Languages, 8™ edition, ISBN-13: 978-0-321-49362-0, ISBN- \ Deleted: 36 |
10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[11] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005 \ Deleted: 37 |
http://www.nsc.liu.se/wg25/book

| | Moved (insertion) [1])

[1] "Enums for Python (Python recipe)," [Online]. Available: http://code.activestate.com/recipes/67107/. Formatted: French)

[2] M. Pilgrim, Dive Into Python, 2004.

[3] M. Lutz, Learning Python, Sebastopol, CA: O'Reilly Media, Inc, 2009.

[4] "The Python Language Reference," [Online]. Available: Formatted: French
http://docs.python.org/reference/index.html#reference-index.

[5] A. Martelli, Python in a Nutshell, Sebastopol, CA: O'Reilly Media, Inc., 2006.
[6] M. Lutz, Programming Python, Sebastopol, CA: O'Reilly Media, Inc., 2011.

[7] A.G. Isaac, "Python Introduction," 23 06 2010. [Online]. Available:
https://subversion.american.edu/aisaac/notes/python4class.xhtml#introduction-to-the-interpreter.
[Accessed 12 05 2011].

[8] H. Norwak, "10 Python Pitfalls," [Online]. Available:
http://zephyrfalcon.org/labs/python_pitfalls.html. [Accessed 13 05 2011].

[9] "Python Gotchas," [Online]. Available: http://www.ferg.org/projects/python_gotchas.html.

[10] G. source, "Big List of Portabilty in Python," [Online]. Available: | Formatted: French
http://stackoverflow.com/questions/1883118/big-list-of-portability-in-python. [Accessed 12 6 2011].

[Comment [SM27]: Rationalize with rest of bibliography.

Deleted: [38] . GAO Report, Patriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http:

{ Formatted: English (US)
.| Formatted: English (US)

]
]
.| Formatted: English (US) }
J
J

[Formatted: English (US)

[Deleted: 3

46 © I1SO/IEC 2015,— Al rights reserved

Index

-

{ Formatted: Number of columns: 2 }

LHS (left-hand side), 22

v { Deleted: ————Section Break (Continuous)——————
| - .. [16]

[Deleted: 3 }

© ISO/IEC 2015, All rights reserved 47

Page iv: [1] Deleted Santiago Uruefia 5/26/15 12:38:00 PM

FOTrEWO T e iiieeuierteenieeteranieetenaseeerenaseesensssessenassessensssessenssssssennsssssennssssssnnsssssennsssssennsssssennsssssennsssssennssannnnn XVi
INEFOTUCTION teeeniiirieenierteneeeertnnnieetenesieerenesseerensssesrenassessensssessensssssaensssssesnssssseensssssssnnssssssnnssssssnnssesssnnsassnen Xvii
R oo 1
2. NOIM AtV FE I ENCES e iiiteuieitienierttenieetttnieetenaseeerenessesrenessessensssssssnsssssesnsssssesnsssssesnsssssennsssssennssesssnnssanaes 1
3. Terms and definitions, SYMbOIS aNd CONVENTIONS tuuiiieeiiteuierenrertenerteeireeseereniersaseresssrenserensessnssssssssesssessssesens 1
3.1 Terms and defiNitioNS ciueeiceereereeeienreeetenerieeteneseerrenessesrensssessenssseseenssseseensssessennssssssnnssssssnsssssssnnssssssnnssannen 1
3.2 SYMDbOIS AN CONVENTIONS wueirererieerrnneerreneeeereneseesrenssseseensssessenssssseenssssseenssssssensssssssnnssssssnnssssssnsssssssnnssassen 5
4. BaSIiC CONCEPES utteeitneerarrenrensrassrasrassessrassrassrssteestesstsssrsssssssssstassrsssssstesstossssssssssssssasssasssassssssssssasssnsssnssssssas 6
4.1 Purpose of this TEChNICAl REPOI ceuu iiiieeuieeriennieeriennieettennieeetenseesernsseesesnsssesssnsssssssnsssssesnsssssennssssssnnssssssnnns 6
4.2 INtENAEA QUAIENCE .uireeeeniiiiemniiitenneertenneertenneereensseessenssesssenssessssnssessesnsssssesnsssssssnsssssennssssssnnssssssnnssssssnnns 6
4.3 HOW t0 USE thiS dOCUMENT teeeuuiiitenueerienneettennneettenneeseensseeseenssesssenssassesnsssssssnsssssssnsssssennssssssnnssssssnnssssssnnns 7
5 VUINEIability ISSUES teeureerrenneerrennierieneeerieneiestenessesrensssessensssessensssssesnsssssesnsssssssnnssssssnnssssssnsssssssnnssssssnnssasnen 8
5.1 Predictable EXECULION ciii i cerereeertteeeereneeeeteneneesreneseseenasssseenssssseennsssseennsssseennssssesnnssssesnnssssasnnssssssnnssannes 8
5.2 Sources of unpredictability in language speCifiCation c.iiicceeiiieeeceiiieeriirieensieieeeneereenncesnennseessennseessennseesnes 9
5.2.1 Incomplete or evolving SPeCifiCatioN ciiecccieieeereirienreiiienerieiieneseereenneereenneereennseeseennssessensssessennssesssnnssasnes 9
5.2.2 UNdefined DENaVIOUT ciueciiiiicciiriiceesrtieiesteneeeseeneseeseeneseeseennseeseennssseensssssesnssessesnsssssasnsssssssnssasssenssnnns 10
5.2.3 UNSPeCified DENAVIOU e iiiieicietiicietitneeeiteieeereenesieseenesereennseseennsseseenssesseenssssssnssssssnsssssssnssssssnssnnns 10
5.2.4 Implementation-defined DEhaViOUr ..ttt e rrenn s cereenaseeseensseessensseessennsasssennnanns 10
5.2, 5 DiffiCUI FEATUMES uueertreeeerirnereerteneeertenesiereeneseeseennsseseenssssseensssssesnssssseensssssesnsssssssnsssssssnsssssssnssssssenssnnns 10
5.2.6 Inadequate |anNgUAZE SUPPOIT ciiieeereerieeeriereeneierrennsiereennseereennseeseensssessenssessssnssessssnssessssnssessssnssassssnssanns 10
5.3 Sources of unpredictability in [aNZUAZE USAEE wuucirremeeirremniireenniireennsiereennseereensseersenssesssenssesssenssessssnssnes 10
5.3.1 POrting and iNtErOPEratioN wuiciiieeeceeereneseereeneseereensseeseensssereenssessesnssssssensssssssnssessssnssessssnssessssnssassssnssnnes 10
5.3.2 Compiler SEleCtion @Nd USAEE «iiieerirreireeuiereniereerereeserenrertnsierssseesssssessessnsessssssessssssssessssessnsssansssanssssnnnes 11
6. Programming Language VUINerabilities ciuceeceeieeceiiremsiereemnieiiemnsieieennsiereenneeseensseessensseessenssesssenssessssnssanns 11
[=Y V=T = | U PUTPUURPRRt 11
5.2 TEIMINOIOEY teeurerrenirtunirteeierenieteerereestrenssresssersssersssssessssensessnssssssssssssssessessnsssssssesssssnssessssessnsssensssansassnnnes 11
6.3 TYPE SYSTEM [THN] tteuitteuiiieuierenertenirteeereeseetanerssssressrensessnssesssssssssssensessnsessssssesssssnssessnsessnsssansssansassnnnns 12
6.4 Bit Representaltions [STR] tieccereecereesereenereeseerenseresseresserensessnssersssssssssssssessnsessssssessssssssessssessasssansssansassnnnns 14
6.5 Floating-point ArithMETiC [PLF] ceiiiieeceirremerierieneniereenesiereennscereennseeseennseessensssssesnssessssnssessssnsssssssnssassssnssnnns 16
6.6 ENUMETrator ISSUES [CCBuucceteeereerreneseerreneseersennseeseensssessenssssssensssssssnsssssssnsssssssnsssssssnssssssnsssssssnssassssnssnnns 18
6.7 Numeric ConVersion Errors [FLC] iieeeeeeenescereensseerrennsaereenssseseensssessensssesssnsssssssnsssssssnssessssnssessssnssassssnssnnes 20
6.8 STriNG TErmMiNAtioN [CIIM] eeeeueieeiereeiieeireeeiereniereeseresserensessnssersssssssssssssessnsessssssessssssssessnsessnsssansssanssssnnnes 22
6.9 Buffer Boundary Violation (Buffer OVErflow) [HCB] weccieeeecereemncereenniereenneereensneessensseessensseessenssasssenssnnns 23
6.10 Unchecked Array INdeXing [XYZ].iceceeteeereereeneseereenniereennscereennsseseennssessensssssesnssessssnssessssnssessssnsssssssnssnes 25
6.11 Unchecked Array CoPYING [XYW] e ieeereeeeerenierenserenssrenrerenneersnssssssssessessnsessssssessssssssessssessnsssansssansassnnnes 27
6.12 Pointer Casting and Pointer Type Changes [HFC] ceccciiieeceireemnieieenniereenncereennseessensseessenssesssenssassssnssnnns 28
6.13 Pointer ArithmMetic [RVG] cieieeeceerrenereerieneeeriennseereenssaereennsseseenssssseensssessensssssssnsssssssnssessssnssessssnssassssnssnnns 29
6.14 Null Pointer Dereference [XYH] ciicceceeteeereereeneeereenneereennsceseennseeseensssessenssessssnssessssnssessssnssessssnssassssnssnnes 30
6.15 Dangling Reference t0 HEap [XYK] eiiiirereertemereereenniereenncereennseereennseeseensssesssnssessssnssessssnssessssnssassssnssnnns 31
6.16 Arithmetic Wrap-around Error [FIF] cieieeeceiiemreereemeseereenniereenneeseennseessensseessenssessssnssessssnssessssnssassssnssnnns 34
6.17 Using Shift Operations for Multiplication and DiviSion [PIK] ceeeceieeeneeereennscereenneereennseersenseessenssesssenssens 35
6.18 Sign EXTENSION ErTOr [XZI]eeeeeeeereeneeerrenescerrennseereenssseseennsseseensssssesnsssssssnsssssssnsssssssnssessssnssssssnssassssnssnnns 36
6.19 Choice Of Clear Names [NAI] cuccciieeceerrenereereeneseereennsereenseeseenssaeseensssessensssssssnssessssnssessssnssessssnssassssnssnes 37
6.20 Dead StOre [WXQJ «ceereeecerrenneerrennnsesseneseessenssasssenssssseensssssssnsssssesnsssssssnsssssssnsssssssnssessssnsssssssnssassssnssnnns 39

6.21 UNUSEd Variable [YZS] e cceieeceerieneeerteneiestenesiereenssseseenssssssenssessesnsssssssnsssssssnssssssnssessssnssssssnssassssnssnnns 40

6.22 ldentifier Name REUSE [YOW] cuuiieeiiterireeeierenierenerenserensessnsserssssssssssessessssessssssessssssssessnsessnsssansssenssssnnnes 41

6.23 NameSPACE ISSUES [BIL] eeerrrnereerrennneerrenenierrennseereennsseseenssseseensssssesnsssesssnsssssssnsssssasnssessssnssessssnssasssenssnnns 43
6.24 Initialization of Variables [LAV] cieeeccceeieerieiiemerieiienesieitenneereenneeseensseessenssessssnssesssensssssssnssessssnsssssssnssnes 45
6.25 Operator Precedence/Order of EValuation [JCW] e cciieeeeeererneeirrernneierennnsesresnssesresnssessesnsssssssnsssssssnssnnns 47
6.26 Side-effects and Order of Evaluation [SAM] ceeeciiieeriiriemeiireenneereennseereennseeseensseessenssessssnssessssnssessssnssanes 49
6.27 Likely Incorrect EXPression [KOA] .uciiiicecertemeseereennseereennseereensseeseennseessenssessssnsssssssnsssssssnsssssssnssassssnssnes 50
6.28 Dead and Deactivated Code [XYQ] eeeererereerrenneerrennscereennscereensseeseensssessensssessenssessssnssessssnssessssnssassssnssnes 52
6.29 Switch Statements and Static ANAlYSiS [CLL] veueerremereireenniereennseereennseereenneereensseessenssesssenssessssnssasssenssanns 54
6.30 Demarcation of CoONtrol FIOW [EOJ] ciiieeereiriemeeireenesiereenniereennseereennseessensseessenssessssnsssssssnssessssnssassssnssnnns 56
6.31 Loop Control Variables [TEX].cecereeeeeerreneseerrennseereennsaeseenssssseenssaeseensssesssnsssssssnssessssnssessssnsssssssnssassssnssnnss 57
6.32 Off-DY-0NE ErTOr [XZH] euuuceeteeereerreneeerreneeeriennsiereensseeseenssseseennsesseensssssssnsssssssnssessssnsssssssnsssssssnssassssnssnnns 58
6.33 Structured Programming [EWD] .icuecceeieeereeriemeeereeneniereennscereensseereennseessensssssssnssessssnssessssnssessssnsssssssnssnes 60
6.34 Passing Parameters and RetUrn Values [CSJ] e iiitemreirremniereenniereenncereennseereensseessenssesssenssessssnssassssnssnnns 61
6.35 Dangling References to Stack Frames [DCM] ceuiieeeecereenencereennscereennscereennseeseensseessenssessssnssessssnssassssnssnnns 63
6.36 Subprogram Signature MismatCh [OTR] «cceeeeeeceerrenniereenecereenneereennseereensseessensseessenssessssnssessssnssassssnssnnns 65
6.37 RECUISION [GDL]tteeureereennneeerennseerrennssessensssessenssssssensssssssnsssssesnsssssesnsssssssnsssssssnsssssssnssessssnssessssnssassssnssnnns 67
6.38 Ignored Error Status and Unhandled EXceptions [OYB] ceecceieeeecereemncereenncereennneessensseessennseessenssesssenssnnns 68
6.39 Termination Strategy [REU] cueciiiieceiiriemeriirieneiireeneiereennsereennseereensssessensssssssnssesssenssessssnssssssnssassssnssnnns 70
6.40 Type-breaking Reinterpretation of Data [AMV] wcecceieererteieieeiereneienerenserreeseesssssssessssessasssensesenssssnnnes 72
6.41 MEMOIY LEAK [XY L] teuttteurereurereuereanereanerenseeranserenseresssrensessnssessssssssssssssessnsessssssesssssssssssssessnsssansssensassnnnes 74
6.42 Templates and GENEriCS [SYM] i iiicreerteuereereenneereennsiereensseereennsesseensssessensssssssnssessssnssessssnsssssssnssassssnssnes 76
6.43 INNErItaNCE [RIP]ieeuceerteeerierienereerrenesierreneseersenssaeseenssseseenssssseensssssesnsssssssnsssssssnsssssssnssessssnssessssnssassssnssnnns 78
6.44 EXtra INTrinSiCS [LRM] cieeuuceereueeerreneneerieneseersensseeseenssseseenssssseenssssesnsssssssnsssssssnsssssssnssessssnssssssnssassssnssnnns 79
6.45 Argument Passing to Library FUNCEIONS [TRJ] ceceerremeiireemniereenneereenniereennsceseensseessennsesssenssesssenssessssnssnnns 80
6.46 Inter-1anguage Calling [DJS] ceeceeereeereerrenereerienneereennsaereennseereenssaeseensseessensssssssnssessssnssessssnssessssnssassssnssanss 81
6.47 Dynamically-linked Code and Self-modifying Code [NYY] .ciiiccriiiiemeiiriennnierienneermenneersenneessensseessensnnns 83
6.48 Library Signature [NSQJ «cceeeeeeceerreneseerreneeerrenneeseenssseseenssseseenssessesnsssssssnsssssssnsssssssnsssssssnssessssnssassssnssnnns 84
6.49 Unanticipated Exceptions from Library ROUtINES [HIW] ceuiiieeeriiiiemnciiiiennncerienncennenncensenneessenssesssennnanns 86
6.50 Pre-processor DIireCtives [NIVIP] ciceecciieeereeriemesiereenesiereennscereennseeseennseessensssssesnssessssnsssssssnssessssnsssssssnssanns 87
6.51 Suppression of Language-defined Run-time ChecKing [MXB] c.ccteceereeiereeerrenireenierenierennersnnseensesenseesnnnes 89
6.52 Provision of Inherently Unsafe Operations [SKL] .iececeieemceereemncereenneereenneereenncersensseessensseessenssasssenssanns 90
6.53 Obscure Language FEatures [BRS] ccceieeereereeneseereennseereennseereensseereensssessensssesssnssessssnssessssnssessssnssassssnssanns 91
6.54 Unspecified BENaVIioUr [BQF] «cccereeeeerteneiertenneereennseereennseereensseeseensseessensssssssnssessssnsssssssnssessssnssassssnssses 92
6.55 Undefined BEhaVvioUr [EWF] . ciiiiceeeeteneseerieneeereennseereennsseseennseeseensseessensssssssnssessssnssessssnsssssssnssassssnssnnns 94
6.56 Implementation-defined Behaviour [FAB] ciicecciiiecreiitemeiiitenneeieennceseennsceseensseessenssesssenssessssnssessssnssnnns 95
6.57 Deprecated Language FEatures [IMEM] cuciiiccceiiiemeieieemeniereennsiereennseeseensseeseensseessenssessssnssessssnssessssnssnnns 97
6.58 Concurrency — Activation [CGA] cieeeceeriemereeriemeiereennssereennseereensseeseensssessensssssssnssessssnssessssnssessssnsssssssnssnnes 98
6.59 Concurrency — Directed termination [CGT] ceeceeeeeeeecereeenneerreenseersennsecssennseessensssessensssssssnsssssssnsssssssnssnns 100
6.60 Concurrent Data ACCESS [CGX] cererurreerernnserrennseerennseseennseessennssessennssesssnnssesssnsssssssnsssssssnsssssssnsssssssnssnns 101
6.61 Concurrency — Premature Termination [CGS] eciieeeeereeennccrieennierreennccsrennscessensseessensssssssnsssesssnsssssssnssnns 103
6.62 ProtoCOl LOCK Errors [CGIM] uuuciiiruereereennesiennnscerennscseennssessennssessennssessensssssssnsssesssnsssssssnsssssssnsssssssnnnnns 105
6.63 Inadequately Secure Communication of Shared Resources [CGY].uuccirrmmeerrenneerrennneerrennssessenssesssennnnns 107
6.64 Use of unchecked data from an uncontrolled or tainted source [EFS].iccecrreencerrennncerrennncensennnceneennnnes 109
6.65 Uncontrolled FOrmat String [SHL] ecceieeeeerienmneirienmncirieenneernennseessennseessensssessensseesssnssssssensssssssnsssssssnsnnns 110
7. Application VUINErabilities cuueeeiieereumnsssieeeiiieimmnnsiiiieniiiemmmmiiieriiieemmmmistimeemmssssissstmssssssssssssssssssssssssss 111
8 R =T U= - 1 TP 111
7.2 T MINOIOZY ctturertnuirteeiitenierenrereanertnnstenessesssersssersnsssensssensssssssessssssessesensessnssesssssssssssessessnssssnsssenssesnnsesans 111
7.3 Unspecified FUNCEIONAlITY [BYQ]eueereeerrenrreeniereeerennerennerennseransersssssesserensesssssesssssssssessnsessnssssssssssssesnssesens 111

7.4 Distinguished Values in Data TYPES [KLK] ieietrrerrnrerennerenneerenrerseserenserensessnsserssssssssesensessassssssssesssessssesens 112

7.5 Adherence to Least Privilege [XYN] ccccieecceiriemmceirieemncirieensseriennsiessennseessennssessensssssssnsssssssnsssesssnsssssssnssnns 113

7.6 Privilege SandboX [SSUES [XY O] eeeeereeereenrreeniereaerennsrenserensserssserssssssssesensessnssesssssssssessssessnssssssssssssssnnsesans 114
7.7 Executing or Loading Untrusted Code [XYS] iireeiitemmeirtenmncerieenneernennscessennscessensssessenssssssensssesssnsssssssnssnns 116
7.8 MEMOTY LOCKING [XZX] eeeeurerenrerearerranereenseennersasersnssrensesenssessssesssssssssessnsessnssssssssessssssnsessnsssssssssnssesnnsesans 117
7.9 ResSoUrce EXNAUSTION [XZP]uciieereerernneeerennnnesiennnsesrennssessennssessennssessennssessensssssssnsssssssnsssssssnsssssssnssssssnnnsnns 118
7.10 Unrestricted File Upload [CBF] ciiirceeereeanceriennncesiennseereennscersennssessennssesssnnssessensssssssnsssssssnsssssssnsssssssnsnnns 119
7.11 ReSOUICE NAMES [HTS] uueerteuereertranneereennisrennssesrennsseseennsessennsessensssesssnsssessensssssssnsssssssnsssssssnssssssnnsnnns 120
7.02 INJECEION [RST] teeeuerreurerenerenserennerrnnsrennssenssersssersnsssensssenssesssssssssssessssensessnssesssssssssssensessnssssnsssenssesnssesans 122
7.13 Cross-5ite SCrPLING [XYT] ceeteereerernnseereennseerennnsesrennsseseennssessennssessennssessensssesssnsssesssnsssssssnsssssssnssnssssnssnns 125
7.14 Unguoted Search Path or Element [XZQ] .cccccceerreerenereeniereniereeserenserensessnsserssssssssesensessassssssssssssesassesens 127
7.15 Improperly Verified SigNature [XZR] ciiceececeieemeirteenneirreenneerienniersennseessennssessensssesssnsssssssnsssssssnsssssssnssnns 128
7.16 Discrepancy INformation LEAK [XZL] ceceeecerreenneerreennccreeenneernennseersennsecssennssessensssesssnsssssssnsssssssnsssssssnnnnns 129
7.17 Sensitive Information Uncleared Before Use [XZK].cciccceeeerreenneerieennccrneenneessennseeesenssesssensssessensssssssnsnnns 130
7.18 Path Traversal [EWR] cieecceeeeeereereranseereenssesrennsseseennssessennssesssnnssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 130
7.19 Missing Required Cryptographic SteP [XZS] ceeeereemeerreemncerieennierrennsecssennseessennssessenssssssensssssssnsssssssnssnns 133
7.20 Insufficiently Protected Credentials [XYM] cieecciieeceiiieemcirieeniernennneeerennseessennssessensssessensssesssnsssssssnssnns 133
7.21 Missing or Inconsistent Access CONTrol [XZN]u.ciieeeeeerreenneerieennierreenneersennseessennseessenssssssensssesssnsssssssnssnns 134
7.22 Authentication LOZIC Error [XZ0] cueecereeeeeerrennneeerennnsesnennseessennssessennssesssnsssessensssesssnsssssssnsssesssnsssssssnssnns 135
7.23 Hard-coded PasSWOrd [XYP] eucciiicceeereeenceriennneierennssernennssesnennssessennssessensssessensssssssnsssssssnsssssssnsssssssnssnns 136
7.24 Download of Code Without Integrity Check [DLB].ecciceeeeeerreenncerreenncerrennscessensseessensseessensssessenssssssansnnns 137
7.25 Incorrect AUthOrization [BJE] ceceiceeceeereemeeriennieerennssereennseernennseessennssessensssessensssessenssssssensssssssnsssssssnsnnns 138
7.26 Inclusion of Functionality from Untrusted Control Sphere [DHUJ ccuuciieeeceriimnceirenncennennnceerennseessennnnes 139
7.27 Improper Restriction of Excessive Authentication AttemMpPtSs [WPL]..ccereeureerrenncerrennceerennncensensneessennnnns 140
7.28 URL Redirection to Untrusted Site ('Open Redirect') [PYQ]..cceeeerreennccrrennncerrennseerrennseesrensssessenssssssennnnns 140
7.29 Use of a One-Way Hash Without @ Salt [IMVX] ceeeeeereeereenietenieieeeiennerennertnniereessessserensessnssssnsssesssessnsesens 141
8. NEW VUINEIADIlITIES tuureerrrnreerrrnnserrrrnseerennssistennssesrennssesnennssessennssessennssessensssessensssssssnsssssssnsssssssnsssssssnssnns 142
L= V=T - | USROS TRRPPRRRY 142
8.2 TEIMINOIOEY cieurerreuirreeirtenierenrerennerensireneseenssersssersssssesssenssesssssssssssessssensessnssesssssessssesessessnssssnsssenssesnssesans 142
Annex A (informative) Vulnerability TaX0NOMY @Nd LiSTeuiieererenrerenerreniereeserenserenerransreasseesssessssessassssnsssannes 142
N L= Y=Y - | PO RRON 142
A.2 Outline of Programming Language VulNerabilities coceeieeeeeerrenreereenseereensiereennseeneensseeneenssesseenseessennssennes 143
A.3 Outline of ApPlication VUINEIrabiliTieS.ceeesereerereenierenierenserenrerennertnnieeenserenserensessasssensssessssssssessnssssnsssannes 144
A4 VUINEIADIlITY LISt coeeerreenneerreeneerreenseerrennseesrennseessensssessensssssssnsssssssnsssssssnsssssssnsssssssnssssssnnsssssssnssssssnnssasnen 145
Annex B (informative) Language Specific Vulnerability TEMPIate ccccceeeeeeereemeciiieemciireenieeieencerneenneeesennseeenes 148
Annex C (informative) Vulnerability descriptions for the 1anguage Ada ..cceeeceerieeciiiieeiiiieenccnneenceenennneennes 150
C.1 Identification of standards and associated docUMENTAtION ciieeeeeerieennicrieeneertennierrenneeerennsseesennssessennnnns 150
C.2 General terminology aNd CONCEPLS wureereruerirremnniirrennneerreensserrennseessennseessensssessensssesssnsssssssnsssssssnsssssssnssnns 150
C.3 TYPE SYSTEM [THN] teuueertrnneertrnneertranseerennssesrennssessennssessennssessennssessensssesssnsssessensssesssnsssssssnsssssssnsssssssnnnnns 156
C.4 Bit Representation [STR].cccccceeeereranseereensseerennssesrennssessennssessennssesssnnssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 156
C.5 Floating-point ArithmMetic [PLF] cicccecceeereeecereenmncerrennnsereennseersennssessennsscessnsssessensssssssnsssssssnsssssssnsssssssnssnns 157
C.6 ENUMErator ISSUES [CCBJ wucerereereerernneereensnesrennsessennsesesnnssessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 157
C.7 Numeric Conversion Errors [FLC] ciuececeieeeeeiriemnneeereennsesnennseesnennseessennssesssnnssessensssssssnsssssssnsssssssnsssssssnssnns 158
C.8 String Termination [CIM] ceiieeeeerereereereennseeiennssesrennsseseennssessennssessennssesssnsssessensssesssnsssssssnsssssssnsssssssnssnns 158
C.9 Buffer Boundary Violation (Buffer OVerflow) [HCB] «.ciieeeeciiieennierieennccereenscersennseeenennseessensssessensssssssnsnnns 159
C.10 Unchecked Array INdeXinNg [XYZ] ceeceeereeeeerrennneeerennneesnennssersennssessennssesssnnssessensssesssnssssssensssssssnsssssssnssnns 159
C.11 Unchecked Array Copying [XYW] e cceieeceirtemnneeereenneesnennseesnennssessennssessennssessensssssssnsssssssnsssssssnsssssssnssnns 159

C.12 Pointer Casting and Pointer Type Changes [HFC] ceciiiiereiiieenierieenniernennncertennseessenssesssensssesssnsssssssnssnns 159

C.13 Pointer Arithmetic [RVG] ciiieeeceerereereereemnsiriennneesiennssesnennssessennssessennssessensssesssnsssesssnsssssssnsssssssnsssssssnssnns 160

C.14 Null Pointer Dereference [XYH] ciceeceiteeeeertemmeiereemneernennseesnennseessennseessennssessensssesssnssssssensssssssnsssssssnsnnns 160
C.15 Dangling Reference t0 HEap [XYK] o iiiiceeertemmeietenmnsirieenneeriennscesrennseessennssessensssssssnssssssensssssssnsssssssnnsnns 160
C.16 Arithmetic Wrap-around Error [FIF] ceeeeeecciieeecieieemnceieeenneernennseessennseessennssessensssesssnsssssssnsssssssnsssssssnssnns 160
C.17 Using Shift Operations for Multiplication and Division [PIK] ceeecceteencerreencerrennneeenenneeerensssessensssessennnnns 161
C.18 Sign EXtENSION ErTOr [XZ1]eeeeeeeseereranseereennsesrennnsesrennssessennssessennssesssnnssesssnsssesssnsssesssnsssssssnsssssssnsssssssnssnns 161
C.19 Choice of Clear Names [INAI] cccciceceeereeeeerienmneeerennssereennseessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 161
C.20 Dead Store [WXQY «eeeeeeeeeeereenneerennnseereenssessennssessennssssssnnssesssnnssssssnsssssssnsssssssnsssesssnsssssssnsssssssnsssssssnssnns 162
C.22 UNUSEA Variabhle [YZS] cucceiteecreertruseereenncisiennnsesrennssesnennssessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 162
C.22 Identifier Name REUSE [YOW] .iiiteeureereennieriennnsesrennnsesnennssessennssessennsscsssnnssesssnsssssssnssssssensssssssnsssssssnsnnns 163
C.23 NameSPACE ISSUES [BIL] eeerrruererrernnseereensesrennsesrennssessennssessennssessennssesssnsssessensssesssnsssssssnssssssenssssssnnssnns 163
C.24 Initialization of Variables [LAV] cieeecciieeeceirienmeiiieemeirieenseestennseessennssessennssessensssesssnsssssssnsssssssnsssssssnssnns 163
C.25 Operator Precedence/Order of Evaluation [JCW]. i eeeeeuceeeeeeiieeeeenneeeeeeeeeennnnsseeeseeeesnnnssssssssessssnnnnnnes 164
C.26 Side-effects and Order of EValuation [SAM].eeeciieeceiiieemniirieencertennscessennseessensssessensssssssnsssesssnsssssssnssnns 164
C.27 Likely Incorrect EXpression [KOA] ..cciceeeeteeneeerenmneerrennseessennseessennssessennssessensssssssnsssssssnsssssssnsssssssnssnns 165
C.28 Dead and Deactivated Code [XYQ] cceeeeeeeerrennncerrennnserrennseersennssessennssessennssessensssesssnsssssssnsssssssnsssssssnssnns 166
C.29 Switch Statements and Static ANAlySis [CLL] veeerreeneeereeenneermeennierrennseerrennseessennseessenssssssensssesssnsssssssnssnns 166
C.30 Demarcation of CONtrol FIOW [EOJ] ceeieeeeiriemmnierieenncirneenniereennseessennssessennssessennssesssnsssssssnsssssssnsssssssnssnns 167
C.31 Loop Control Variables [TEX].eeeeeereeeereensseseennsseerennsseseennssessennssessennssesssnnssessensssssssnsssssssnsssssssnssssssnnsnnns 167
C.32 Off-DY-0NE ErTOr [XZH] uueerteeereerernnseereennseerennnsesrennssessennssesssnnssesssnnssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 167
C.33 Structured Programming [EWD].cueeceeeeeeeerrennneeereennsesnennseesnennssessennssesssnnssessensssssssnsssssssnsssssssnssssssnnssnns 168
C.34 Passing Parameters and Return Values [CSJ] ccciiecceirieemiirieennierieenncernennseesnennseessenssssssensssessensssssssnssnns 168
C.35 Dangling References to Stack Frames [DCM] cueciieeeeccrieenneerieenncerrennsecesennseessennseessenssssssensssesssnsssssssnsnnns 169
C.36 Subprogram Signature MismatCh [OTR] .ciceeeeeereemncirreenncerieenierrennscersenneessennssessenssssssensssesssnsssssssnssnns 169
C.37 RECUISION [GDL]cteuuueererunneereennneereransaerennssessennssessennsssssennssssssnnsssssensssssssnsssesssnsssssssnsssssssnsssssssnssnsssnnnsnns 170
C.38 Ignored Error Status and Unhandled EXCeptions [OYB] ceccceteeucerreennccrrennncernennseeenenssecssensssessenssssssennnnns 170
C.39 Termination Strate@8Y [REU] iieceieeeereeerieeuiereeerennsrenserensserssserssssressssensessnssssssssssssesensessnssssssssesssesnssesans 171
C.40 Type-breaking Reinterpretation 0f Data [AMV] ccieccieeieteeieieeseienerenertnniereesseenseressessassssssssesssessssesens 171
C.A1 MEMOIY LEAK [XYL]ttuteeeurerenrerennerenneeennsernssersssersnsssensesenssessssesssssssssssensessnsssssssssssssssnsessnssssnssssnssesnnsesans 172
C.42 Templates anNd GENETICS [SYM] erreireeurreeniereererrnnirennerenssersserssssssssssensesssssssssssssssessnsessnssssssssesssesnssesans 172
C.43 INNETITANCE [RIP] tuureertruereerirnneerenanseerennsseseennssessennssessennssesssnnssessensssesssnsssessensssssssnsssssssnsssssssnsssssssnsnnns 173
C.44 EXTra INtrinSiCS [LRIM] eeuuueereeueneerernnseerennncerennssesrennssessennssessennssesssnsssesssnsssesssnsssssssnsssssssnsssssssnssssssnnssnns 173
C.45 Argument Passing to Library FUNCLIONS [TRJ] ceeeeeeeeecrieennierieennierieenncernennscessensseessensssessensssessensssssssnsnnns 173
C.46 Inter-1anguage CalliNg [DJS] cececeeereeereenrreeniereeerennsrenserennsersnsersssssessssensessnssssssssessssssnsessnssssssssssssesnssesans 174
C.47 Dynamically-linked Code and Self-modifying Code [NYY] cicceteceereererenertnniereeseeenerensereaneerenssesssessnsesens 174
C.48 Library Signature [NSQJ .eceeeeereeeeeeeereeererenierenerennseenserensserssserssssssssessnsesssssssssssssssessnsessnssssnssssnssesnssesans 174
C.49 Unanticipated Exceptions from Library ROUTINES [HIW] weeeuereereienerennertnniereeseeenerensersnneesenssesssessnsesens 174
C.50 Pre-Processor DIireCtives [NIMIP] ciueuceieeeeeeetennnseereennsesnennssesnennssessennssesssnnssessensssssssnsssssssnsssssssnsssssssnsnnns 175
C.51 Suppression of Language-defined Run-time Checking [MXB]...cccteeeerrrnnncerrennncernennneesrensssessensssessennnnns 175
C.52 Provision of Inherently Unsafe Operations [SKL] .ecceeceeeeescerreencerreenseeerennseesnenneessensssessensssesssnsssssssnssnns 175
C.53 Obscure Language FEatures [BRS] ccciicceeriemaneirtennncerieenseeriennseessennssessennssessensssesssnsssssssnsssssssnsssssssnsnnns 176
C.54 Unspecified BEhaviour [BQF] «ceceeeeeereenecerienmnseerennseireennseessennssessennssesssnsssesssnsssesssnsssssssnsssssssnsssssssnssnns 176
C.55 UNdefined BEhaVioUr [EWF] e cciteeteeeiieeniereeereensrenserenssersssersssssessssensessnssesssssssssessnsessnssssssssssssesnnsesans 177
C.56 Implementation-Defined Behaviour [FAB] .iccceeciteeeeirieenncerieenniernennscersennseessensssessenssssssensssesssnsssssssnssnns 178
C.57 Deprecated Language Features [MEM] cciiiicceiiieeeiirieeniirieenniertennseessennseessensssessenssssssensssssssnsssssssnssnns 179
C.58 Implications for standardization..ceeceeeeeceerieneeiiieemeirieeneerieeneertennseessennseessensseessenssessssnsssessensssssssnssnns 179
Annex D (informative) Vulnerability descriptions for the [anguage C....cccciiiiiiieeeeeiiiiininiieenneesisinninieessssesss 181
D.1 Identification of standards and associated dOCUMENTS ..ciiiiireemmniseeniiiiirenmnsssseeniiinmeansessssesssnesssnssssssssnns 181

D.2 General terminology aNd CONCEPLS cererereerrenereerrenesierrennsierrennseereenssseseennssessennssesssnnssssssnsssesssnsssssssnnssssnes 181

D.3 TYPE SYSEEM [IHN] cereeuueerrennnierreneieerenesseerennssesrensssessenssssssennssssssnsssssssnsssssesnnssssssnnssssssnsssssssnnssssssnnssssnen 184

D.4 Bit Representations [STR] .iccceereeeceeerennsseerennssesrenessessennsssssenssssssensssssssnssssssensssssssnnssssssnsssssssnsssssssnnsssnen 185
D.5 Floating-point ArithmMetiC [PLF] .eeccceteeeceerremeeerrenesserrennsseseennseeseennsseseennssessennssssssnnssssssnnssssssnnssssssnnsssnes 186
D.6 ENUMErator ISSUES [CCB cieeeeeeerererierrennnaeerennssesrennssessennssessensssssssnsssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnssesnen 187
D.7 Numeric ConVersion Errors [FLC] wceiieeceeetemeeerrenesseseennseessennssessensssessenssssssensssssssnnssssssnnssssssnnssssssnnsssnes 188
D.8 String Termination [CIM] i ceeieeereerreneierrenenserrenessessensssessenssssssensssssesnsssssssnsssssssnnssssssnnssssssnsssssssnnsssnen 190
D.9 Buffer Boundary Violation (Buffer Overflow) [HCB] ciiceeciiiemeiiriemnnieriemnncereennneereennseesnennseessennssessennsecsnes 190
D.10 Unchecked Array INdeXing [XYZ] ccccieeeceeerenencerrenensereennseeseennsseseennsssseennsessennsssssnnssssssnnssssssnnsssssnnsssnes 192
D.11 Unchecked Array COPYINE [XYW] cieieeeeeeremeeerremeniereennssersennseersennsseseennssssennssssssnnssssssnnssssssnnssssssnnssssnes 192
D.12 Pointer Casting and Pointer Type Changes [HFC] ..ciicceeiiiemeeireennniereennneereennseersennseessennssesssnnssesssnnsssnes 193
D.13 Pointer ArithmetiC [RVG] cuuceereeereerienecerreneneerrenessessensssessensssessensssssesnsssssssnnssssssnnssssssnnssssssnsssssssnnssssnen 193
D.14 Null Pointer Dereference [XYH] wiciccciiiecriirieneniirieneiesrennsseseennsseseennssessennssssssnnssesssnnssssssnnssssssnsssssnes 194
D.15 Dangling Reference t0 HEap [XYK] cieecceeerenereerrenesserrennneerrennseeseennsseseennsessennsesssnnssssssnnssssssnnssesssnnssssnes 194
D.16 Arithmetic Wrap-around Error [FIF] ccceieeceerreneeernennnsereennseeseenssseseennseeseennssessennssssssnnssssssnnssssssnnssssnes 196
D.17 Using Shift Operations for Multiplication and DiviSion [PIK] ..c.ceeeeeereemnnecreennncerrennncessennsecssennseessennssesnes 197
D.18 Sign EXEENSION ErrOr [XZI] veeeeereeeeeereneneerrenensesrenessessennsssssenssssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 197
D.19 Choice of Clear Names [NAI]ciiccccceieeceerrenesierrenesserrennssessennssessenssssssennssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 197
D.20 Dead Store [WXQ] .eeeeeeeereenscerrenesseerennssessensssessenssssssensssssssnsssssasnsssssssnsssssssnsssssssnnssssssnnssssssnnssssssnnssssnen 198
D.21 UNUSEd Variable [YZS] ceeiteceerreeerierieneiertenessesrenessessennssessennsssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 198
D.22 Identifier Name REUSE [YOW] cuuuiiiituereerreneierrenessersennsseseennsseseenssssssennsssssennssssssnnssssssnnssssssnnssesssnnsssnes 198
D.23 NamesSPaCE ISSUES [BJL] ceeeureerrerareerrennnaerrenanserrenessessennssssenssssssensssssssnsssssssnsssssssnnssssssnnssssssnnssssssnnssssnen 199
D.24 Initialization of Variables [LAV] cccceiecceeeremeeerrenenseriennsseseennseeseennsseseennssessennssssssnnssssssnnssssssnsssssssnnssssnes 199
D.25 Operator Precedence/Order of EValuation [JCW] wuuecceeiiieieemmmsieeeereieeennnssseeeeseeeeennssssseessesessnnnnssnsesens 200
D.26 Side-effects and Order of Evaluation [SAM] .ciieeecciiiemereiiiemeiiiiemnsiereennsseseennssessennssessennssessennssesssnnsssnes 200
D.27 Likely Incorrect EXPression [KOA . ceceerenereerrenessereennssesrennsseseennssessennsssssennssssssnnssssssnsssssssnnssssssnnssssnes 201
D.28 Dead and Deactivated Code [XYQ] cieeeeeeereneneerrenasaerrennsaeseennsaessensssssssnnsssssennssesssnnssssssnsssssssnnssssssnnsssnes 202
D.29 Switch Statements and Static ANAlYSis [CLL] ceererereerrennseerrennseereennssereennsecseennssessennssesssnnssssssnnssssssnnssasnes 203
D.30 Demarcation of Control FIOW [EOJ] ceeeceiremereeriemeeirienensireennseereennsseseennsseseennssessennssesssnnssssssnnssssssnnsssnes 204
D.31 Loop Control Variables [TEX] cieeeceeereneceeerenenaeerenessersensssessennssessensssssssnnsssssennssssssnnssssssnnssssssnnssesssnnsssnen 205
D.32 Off-by-0N€ Error [XZH] ceeeeecerremeierieneierrenenserrenessessennssessenssssssensssssesnsssssssnnssssssnnssssssnnssssssnsssssssnnsssnen 206
D.33 Structured Programming [EWD] ..ccceeecceeremeeerrenensernennssersennseeseenssssseennssessennssssssnnssssssnsssssssnnssssssnnsssnes 206
D.34 Passing Parameters and Return Values [CSJ] ciieeereerremeiirremnneiriennneereennseeseennseessennssesssnnssesssnnssessennsesnes 207
D.35 Dangling References to Stack Frames [DCM] ciieeeeciieemeeiirrennneireennssereennsecseennseessennsscsssnnssssssnnssesssnnssesnes 208
D.36 Subprogram Signature Mismatch [OTR] cieeeceeremeeerreneneerrennseereennssereennsseseennssessennssesssnnssssssnsssssssnsssesses 208
D.37 RECUISION [GDL] eeereeureeerennnserrenassesrennssessensssessensssessenssssssensssssasnsssssesnsssssesnsssssssnnssssssnsssssssnnssssssnnssannen 209
D.38 Ignored Error Status and Unhandled EXceptions [OYB] .cicccceereemnecereemnncereennnecrnennncessennsecssennseessennsssnes 209
D.39 Termination STrate@gY [REU] cceiieeciiriteeierieneierienesiertenesaesrennseeseensssseennssseennssesssnnssssssnnssssssnnssssssnnsssnen 210
D.40 Type-breaking Reinterpretation of Data [AMV] ccciieecceiiiemeiiiiemnieieennneereennseesseenseessennssesssnnseessennssssnes 210
D.41 MEMOTY LEAK [XYL] treurerrurerrunireeneeeenierennereassrenserensesssssessssssssssssssessnssssssssensssessssssssessnssssnsssensessnsssnnnses 211
D.42 Templates and GENETICS [SYM] ceuieeeuiereerereerirenerennerreniereeseesssesessessnssssssssesssssssssssssessnssssnsssensessnssssnnsses 211
D.43 INNEIITANCE [RIP] teuuerenrerennereenireenierenierenerenssrenserensesssssersssessssessssesssssssssssessssssssessssessnssssnsssensessnssssnnnses 211
D.44 EXEra INTIINSICS [LRIM] wuereeuereenireenieeenierennereeserenserensessesserssssssssessssessnssssnsssessssansssssssessnsssensssansessnssssnnnes 211
D.45 Argument Passing to Library FUNCEIONS [TRI] teeeteeertenieteeierenierennerennerennieensseeessersnsessnssssnsssensessnssssnnnses 212
D.46 Inter-1anguage CalliNg [DJS] ceucieeeeeeeuiereererenerennerennerreniersnsessssessnsessnsessasssesssssssssssssesssssssnsssensessnssssnnsses 212
D.47 Dynamically-linked Code and Self-modifying Code [NYY] iicceeeierereererreireenireeneerenersnssrenserensessnneesnnnes 212
D.48 Library Signature [NSQJ ciceeeceereeeeeerennneerrennssesrennssessennssessensssesssnsssssssnsssssssnsssssssnnssssssnnssssssnnssssssnnsssnen 213
D.49 Unanticipated Exceptions from Library ROUtines [HIW] ceeeeeeciiiemeiiiiemnciriemncerieenncernennsccsnennscessennssennes 213
D.50 Pre-processor DIir€CHiVES [NIVIP] cucieeuieieerereererennerenneeteniereeseesnsersssessnssssnsssensssensssssssessnsssensssensessnssssnnnses 214

D.51 Suppression of Language-defined Run-time Checking [MXB] «iccceceereemnecereennncereeenncereennsccssennscessennseennes 215

D.52 Provision of Inherently Unsafe Operations [SKL] .ccceeceeereennseereennscereennneereennscessennseessennsscsssnnssessennssssnes 215

D.53 Obscure Language Features [BRS] . iccceceeremeeerrenenaerrennsaerrennseeseennssessennssssennssssssnnssssssnnssssssnnssssssnnssssnen 215
D.54 Unspecified Behaviour [BOF] ciceecceereneeerreneeerrenessessennssessennssessensssessennssssssnsssssssnnssssssnnssssssnnssssssnsssssnes 216
D.55 Undefined BehaVioUr [EWF] ciieeecieeiemceeeremeeeerenessestennssessennssessensssssesnnsssssennssssssnnssssssnnssssssnnssssssnnsssnen 216
D.56 Implementation-defined BehaVioUr [FAB] ..ciiceereeerteeietenierenerenerensereanssessssesssessssessnssssssssensessnssssnnnes 217
D.57 Deprecated Language FEAatures [IMEM] iiicciierereeerteeieteeietenerenserenseseanssensssesssessssessnssssnsssensessnsssnnnses 217
D.58 Implications for standardizationiececeeeeecceeereneseirneneierreneseereennssereennsseseennsseseennssesssnnssssssnnssssssnnsssnes 218
Annex E (informative) Vulnerability descriptions for the |anguage PYthon ...ccieeceieecirieirienieienereeerenncrennes 221
E.1 Identification of standards and associated dOCUMENTS..cciiiiiieemmeiieeiiiiiimenmniiseeniiiimeansesssesniieesesssssssssnns 221
E.2 General Terminology aNd CONCEPES cceeeteerereererennerennerreniereeserensersssersnsessssssesssssssssssssessnssssnsssensessnssssnnsses 222
E.3 TYPE SYSTEM [THN] cetttruiieirinnierieteieetenenceerenessesrenessessensssessennssssaensssssesnsssssesnsssssssnnssssssnnssssssnnssssssnnssasnen 226
E.4 Bit Representations [STR] ticcccereeeceeereneeerrennssesrenessessennsssssenssssssensssssssnsssssssnnssssssnnssssssnnssssssnsssssssnnssssnen 228
E.5 Floating-point ArithmMetiC [PLF] ceecceereeeceeereneserrenessesrennssessennseessensssessennssssensssssssnnssssssnnssssssnnssssssnnsssnen 229
E.6 ENUMErator ISSUES [CCBJutitrereeerernraerrennsaeerennsesrensssessennsssssenssssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnssannen 229
E.7 Numeric Conversion Errors [FLC].uciiieeceeereneneerrenensesnennssesrennseeseennsseseenssssssennssssssnnssssssnnssssssnnssssssnnsssnes 230
E.8 String Termination [CIM] cieeecceieeeierienenieerenessessenessessensssessenssssssensssssesnsssssesnsssssssnnssssssnnssssssnnssssssnnsssnen 231
E.9 Buffer Boundary Violation [HCB] .u.cceieeeceerremeeerremensertennseesrennseereenssseseennssessennssssssnnssssssnnssssssnnssesssnnsssnes 231
E.10 Unchecked Array INdeXiNg [XYZ].cccceeeeerreneeerrenesseseennsseseennssessennssessennsssssennssssssnnssssssnnssssssnnssssssnnssssnes 231
E.11 Unchecked Array CopYing [XY W] cciieceeerremereeerenensereennseersennseessennssessennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 231
E.12 Pointer Casting and Pointer Type Changes [HFC] .ciiiecceiiiemeiiieemnieriennneereennneersennseessennssesssnnssesssnnssssnes 231
E.13 Pointer ArithmetiC [RVG] ceeceereeereeeieneceerenenierrenessessennssessennsssssensssssssnsssssssnnssssssnnssssssnnssssssnsssssssnnsssnen 231
E.14 Null Pointer DereferenCe [XYH] occciieceeeetemeeerienensereennsserrennseereennsseseennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 231
E.15 Dangling Reference to HEap [XYK] ciiceceertmreerremeieriennniereeneseereennsseseennsseseennssessennssssssnnssssssnnssssssnnssssnes 231
E.16 Arithmetic Wrap-around Error [FIF] e cciieereeeienecireennnserrennseereenssseseennsseseennssessennssssssnnssssssnnssesssnnsssnes 232
E.17 Using Shift Operations for Multiplication and Division [PIK] ..ceceeeeeereemmeereemncerieenneereennscessennscessennseennes 232
E.18 Sign EXtENSION ErTOr [XZ1]cuuueeereueeeriennnierrenensesrenessessennssessennsssssensssssssnsssssesnnssssssnnssssssnnssssssnnssssssnnssssnen 232
E.19 Choice of Clear Names [NAI] ciiceccceeieeceerteneierrenessernennsseseensssessennssssesnnsssseennssssssnnssssssnnssssssnnssssssnnsssnen 232
E.20 Dead STOre [WXQ] ceeeeeeeerennneerrennsserrennssessensssessensssessenssssssensssssasnsssssesnsssssssnsssssssnnssssssnnssssssnnssssssnnssasnen 234
E.21 UNUSEA Variabhle [YZS] . ciituceerieterieeitneieerenenieetenessessennssessennsssssensssssesnnssssssnnsssssennssssssnnssssssnnssssssnnsssnen 235
E.22 Identifier Name REUSE [YOW] cieuuceriemeeerrenenierrenessessennssessennsseseennsessenssssssennssssssnnssssssnnssssssnnssssssnnsssnen 235
E.23 NamesSPacCe ISSUES [BJIL] cieeereerrerereerrennnaerrennsaesrenassessennssessenssssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 237
E.24 Initialization of Variables [LAV] i iececeiitnerieireneiirtenessesrenesseseenssseseennssessennssesssnnssssssnnssssssnnssssssnnssssnes 240
E.25 Operator Precedence/Order of EValuation [JCW] e ccceiiiiieeemeieeeereeeeeennnseeeeeeeeeeennssssseessseessnnnnssnenens 240
E.26 Side-effects and Order of EValUation [SAM] .iecciecerteeieteeietenierenserenserennssessssesssessssessssssessssensessnsssssnnes 241
E.27 Likely Incorrect EXPression [KOA] cicceceereerereeerenneetenierenseeessersssessnsessnsssessssensssssssesssssssssssensessnssssnnsses 242
E.28 Dead and Deactivated Code [XYQ] cieeeeeerremeeerrenenaerrennsserrennseessensssessennsssssennssssssnnssesssnnssssssnnssssssnnssssnes 243
E.29 Switch Statements and Static ANalYSiS [CLL] vieevereererrenierenrerenserenserensereansrensseesssessssessnssssnsssensessnssssnnnes 244
E.30 Demarcation of CONTrol FIOW [EOJ]eeueieeiereererennerennertenierenserensersnsersnsessnsssesssssssssssssessnssssnsssensessnssssnnnses 244
E.31 Loop Control Variables [TEX] ciieeeeeereneseeerenenaeerenassessennssessennssessensssssesnnssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 245
E.32 Off-DY-0NE ErTOr [XZH] ceetteueeeremeieriennnierrenessesrenessessensssessenssssssensssssssnsssssssnnssssssnnssssssnnssssssnsssssssnnssssnen 246
E.33 Structured Programming [EWD] ..cccieeeceeeremencerrenesseseennssesrennssessensssessennssessennsssssnnssssssnnssssssnnssssssnnsssnes 246
E.34 Passing Parameters and RetUrN Values [CSJ] . eueieererrenietenrerenerenserensereanssensssenssessssessnssssnsssensessnssssnnnses 247
E.35 Dangling References 1o Stack Frames [DCM] iiceeeciriemeeiiiremnneireennsiereennseereennssessennssesssnnssssssnsssssssnnssesnes 249
E.36 Subprogram Signature MismatCh [OTR]..iceeceeereneeeerreneneerrennseereennsseseennseeseennssessennssesssnnssssssnsssssssnssssnes 249
E.37 RECUISION [GD L] ueeereeuneerrennnierrenaniesrennssessennssessensssessenssssssennssssssnsssssssnsssssesnnssssssnnssssssnsssssssnnssssssnnssannen 249
E.38 Ignored Error Status and Unhandled EXCeptions [OYB]..ciiccceeereemneeereemnnecrrennncereennncessennsscssennseessennscsnes 249
E.39 Termination Strategy [REU . ciicceeeieuereerreneierrenesseerennsseseennsseseennssessennssssesnnssesssnnssssssnnssssssnnssssssnnsssnes 250
E.40 Type-breaking Reinterpretation of Data [AMV] iieeceiiiemeiiiieneieiienneereenneertennseessennssessennseesssnnssesnes 250

E.41 MeEMOIY LEAK [XYL] tteueeererueerrennnierrennsserrennssesrensssessenssssssenssssssensssssssnsssssssnsssssssnnssssssnsssssssnnssssssnnsasnen 250

E.42 Templates and GENEriCS [SYM] e ceiieuereerremeaerienesseriennseereennssereenssseseennsssssennssssssnnssssssnnssssssnnssssssnnssssnes 251

E.43 INNEriTanCe [RIP].ccitteucertenunierrenuieereneseesrennssesrenessessenssssssensssssaensssssesnsssssesnnssssssnnssssssnsssssssnnssssssnnssssnan 251
E.44 EXTra INtrinSiCS [LRIM] uueeteueuceerenenierienenseerenessesrenessessensssessennsssssensssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnssssnen 251
E.45 Argument Passing to Library FUNCLIONS [TRJ]ceieeeeeerreneneerrennneireennssereennseeseennssessennssesssnnssssssnnssssssnnsesnes 252
E.46 Inter-language Calling [DJS].cccceeeceerrennreerrennsaerrenassessennssessennssessenssssesnnssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 252
E.47 Dynamically-linked Code and Self-modifying Code [NYY] cccciiieceiiiiemmiirienncerieenneerrennscessennseessennssennes 253
E.48 Library Signature [NSQ] cieeeceereeeeeerennneerrenessesrenessessensssessenssssssensssssssnsssssssnsssssssnnssssssnsssssssnsssssssnnssssnen 253
E.49 Unanticipated Exceptions from Library ROULINES [HIW] eeeeeeiiiiemeiiiiemnciiieencerieenneesnennncesnennseessennseennes 254
E.50 Pre-processor DIireCtives [NIMIP] «..ciiceecceetemeierienessestenessessenssseseennsseseennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 254
E.51 Suppression of Language-defined Run-time Checking [IMXB]...ccceeeereemmeeerrennncerrennncerrennnccrsennscessennsaesnes 254
E.52 Provision of Inherently Unsafe Operations [SKL] cecciiccceeerremneereennncereennneereennseessennseessennsscsssnnssesssnnssesnes 254
E.53 Obscure Language FEatures [BRS] ciiceceereuereerrenenieriennseerrennseeseennssessennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 255
E.54 Unspecified BEhaviour [BQF] ciccecceetemeeeerenneeerenesseseennssessennseessensssessennssessensssesssnnssssssnnssssssnnssesssnsssssnes 257
E.55 Undefined BEhaVioUr [EWF] .. ciiiieeeceeieneneerteneseestennssessennseessenssseseennssssensssssssnnssssssnnssssssnnssssssnnsssnen 258
E.56 Implementation—defined Behaviour [FAB]..cciiccceeertemeeireemnneereennssereennseeseennseessennssessensssssssnnssssssnnsesnes 259
E.57 Deprecated Language Features [MEM .. ccciieereirieneneereemnneiinennssereennseeseennssessennssesssnnssssssnnsssssnnssssnes 260
Annex F (informative) Vulnerability descriptions for the language RUbY......ccviieeeeeiiiiiniiiiieeneniiiiininneeeennene. 261
F.1 Identification of standards and associated dOCUMENTS..cciiiiireeumniseeriiiiirennnissesiiinirsanssssssssssasesensssssssssns 261
F.2 General Terminology and CONCEPTS cieueeerremeeerrenesserrennseerrennssersensssessennsssssennssssssnnssssssnsssssssnsssssssnnssssnen 261
F.3 TYPE SYSEEM [IHN] ceetteuiiiitiinieireneieeteneniertenessesrenessessennssessensssssaensssssesnsssssesnnssssssnnssssssnnssssssnnssesssnnssssnen 262
F.4 Bit Representations [STR] iieccceereeereerrenesserrennseesrenessessensssessenssssssensssssssnssssssennssssssnnssssssnnssssssnsssssssnnssesnen 263
F.5 Floating-point ArithmMeETiC [PLF] ceeeccieieeeceeriemeeerrenesieeeenesseseennsseseenssseseennssessennsssssnnssssssnnssssssnnssssssnnsssnen 264
F.6 ENUMErator ISSUES [CCBJuiitruueeererurierrennsierrennsserrenassessennsessenssssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 264
F.7 Numeric Conversion Errors [FLC .ucceeieueeeeerenesceerenessessennssessennssessensssssssnnsssssennssssssnnssssssnnssssssnnssssssnnssssnen 265
F.8 String Termination [CIM] cieeeceeieeereerienenieerenenserienessessennssessensssessensssssesnsssssssnnssssssnnssssssnnssssssnnssesssnnssssnen 265
F.9 Buffer Boundary Violation (Buffer OVerflow) [HCB] . .iccceeerremaneireemnncereennneereennneessennseessennssessennseesssnnsssnes 265
F.10 Unchecked Array INdeXing [XYZ].ccccceeeeereneeerrenessereennssessennsseseenssssssennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 265
F.11 Unchecked Array CoOPYING [XYW] .ciiieccerremeeerrenenserrennssessennssessennsssseennssssennssssssnnssssssnnssssssnnssssssnnsssnes 265
F.12 Pointer Casting and Pointer Type Changes [HFC] .cccieecceirremeeireemnniereennneereennseessennseessennsscsssnnseesssnnssesnes 265
F.13 Pointer ArithmetiC [RVG] cuuceiieeerierieneieereneierienesiessennsseseensssessenssssssenssssssennssssssnnssssssnnssssssnsssssssnnsssnes 266
F.14 Null Pointer Dereference [XYH] occcicceceereneierieneiistennssesrennseeseennsseseennssessennssssssnnssssssnnssssssnnssssssnnsssnes 266
F.15 Dangling Reference t0 HEap [XYK] ciieceeeeremeseerrenenserrennsserrennseeseennsseseennssssennsssssnnssssssnnssssssnnssssssnnssssnes 266
F.16 Arithmetic Wrap-around Error [FIF] e ceieeeeeeiemeeernennneeeeennseeseennsseseennssessennssesssnnssesssnnssssssnnssssssnnssssaes 266
F.17 Using Shift Operations for Multiplication and DiviSion [PIK] ..ccceeeeeereemnneereennncereennnceseennsecssennseessennsaesnes 266
F.18 Sign EXTENSION ErTOr [XZI] eeeeeeereneeerrennneerrennnaesrenessessenssssssennssessensssssssnsssssesnnssssssnnssssssnnssssssnnssssssnnssssnen 266
F.19 Choice of Clear Names [NAI] ciicecceeiemceeetenesierrenessessennsseseennseessenssseseennsssssennssssssnnssssssnnssssssnnssssssnnsssnen 266
F.20 Dead Store [WXQ] cieeeeceereeencerrennnserrennssesrennssessensssessenssssssensssssasnsssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnssasnen 267
F.21 UNUSEd Variable [YZS] . ciicceiietcierieneierrenenserienessessensssessennsssssensssssesnsssssssnnssssssnnssssssnnssssssnnssssssnnsssnen 267
F.22 Identifier Name ReUSE [YOW] ciuuciiieeeeerrenenierienenseseennsseseensssessenssssssennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 267
F.23 NamesPace ISSUES [BIL] cieeeeerremuierrennierrennnierrenessessennssessennsssssennssssesnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 268
F.24 Initialization of Variables [LAV] e cceieeceeerrenereerieneniesiennsserrennseereenssseseennssessennssssssnnssssssnnssssssnnssssssnnssssnes 268
F.25 Operator Precedence/Order of EValuation [JCW] cuuucceeiiieieeemnnieeerieeeeeennnsseeesseeeesnnssssseessseessnnnnsnnneeens 268
F.26 Side-effects and Order of EvValuation [SAM] ..ciiceecciiiemeiiriemniereennsiereennseeseennssessennssessennssssssnnssssssnnsssnes 269
F.27 Likely Incorrect EXPression [KOA] iiiicceereeereeeremessertennssesrennssessennssessennssssssnnssssssnnssssssnnssssssnnssssssnnsssnes 270
F.28 Dead and Deactivated Code [XYQ]u.ieereerreneraerrenasserrennsaerrennssessenssssssennssesssnnssssssnnssssssnnssssssnnssssssnnsssnes 270
F.29 Switch Statements and Static ANAIYSiS [CLL]vieurerenerrenierenrerenierenserenserransrensseesssersssessnsssensssensessnssssnnnes 271
F.30 Demarcation of CONtrol FIOW [EOJ]eeuceieiereeriienerennerteniereeserenersnserensessnnssesssssssssssssessnssssnsssensessnssssnnnes 271
F.31 LoOP CoNtrol Variables [TEX] ceeeeeeeeeeeereererenserenserennerrensersnsessssessssessnsessasssesssssssssssssessnssssnsssensessnssssnnnses 271

F.32 Off-bY-0N€ ErTOr [XZH] ceeeeeerreereenieeenierenereaerenserensestnssersssessssessssessnssssnsssesssssssssssssessnsssensssensessnssssnnnses 271

F.33 Structured Programming [EWD] .ucieccceteererenerennerennerteniereeseesnsesssserensessnsssessssensssssssesssssssnsssensessnssssnnnses 272

F.34 Passing Parameters and REtUrN Values [CSJ] iueierertenieteererenerennerenserranssensssesssersssesssssssssssensessnssssnnnes 272
F.35 Dangling References to Stack Frames [DCM . ciceeceeeeneeeereennnecreennscereennsecssennseessennssssssnnsssssnnssssssnnssssnes 273
F.36 Subprogram Signature MismatCh [OTR]..iceeccerremeeerrennncirrennseereennssereennseeseennssessennssesssnnssssssnnssssssnnsssnes 273
F.37 RECUISION [GDL] tteuuereuuerennerrensreeneeeenerenserenssrenserensesssssssssssssssessssessnssssnsssenssssssssssssessnsssensssensessnsssnnsees 274
F.38 Ignored Error Status and Unhandled EXCEpPtions [OYB].cicceeteererenrerennerennerennseenseerensersnsssenssrensessnssesnnnes 274
F.39 Termination STrategY [REU cciiceeieeiereeiereesirennerennerenniereeseesssessssessnsessssssensssessssssssessassssnsssensessnssssnnnses 274
F.40 Type-breaking Reinterpretation of Data [AMV] . ccceeeieteeietenierenrerenereansreeseeesssersssesssssssnsssensessnssssnnnes 274
F.42 MEMOTY LEAK [XYL] teteurereuertunireeneerenierennereassrenserensesssssersssessssessssessnssssssssensssessssssssessnssssnsssensessnssssnnsses 274
F.42 Templates and GENEriCS [SYM] e iiiitureeeremeeerrenensesrennseessennsseseennsseseennssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 275
F.43 INNEritance [RIP].ccitteeceertennierreneierrenesiessennssesrenessessenssssssenssssssensssssesnsssssesnnssssssnnssssssnsssssssnnssssssnnssasnen 275
F.44 EXtra INTrinSiCS [LRIM] cucereeeeeeerenenierienenseerennssesrenessessenssssssenssssssensssssssnsssssesnnssssssnnssssssnsssssssnnssssssnnssannen 275
F.45 Argument Passing to Library FUNCEIONS [TRJ].ceieeeeirteneneireennniireennniereennsecreennseessennssessennsesssennssesssnnsennes 275
F.46 Inter-1anguage Calling [DJS].cccieeceertenneerrenenierrenesaereennsseseennsseseenssseseennsssesnnssssssnnssssssnnssssssnnssssssnssssnen 275
F.47 Dynamically-linked Code and Self-modifying Code [NYY] e ciiiereeiriemmeereennnceriennncereennscessennseessennssesnes 276
F.48 Library Signature [NSQ]...ccceeeerereeerrennnserrennnserrennssessensssessennsssssensssssssnsssssssnsssssssnnssssssnsssssssnsssssssnnsssnen 276
F.49 Unanticipated Exceptions from Library RoOUtings [HIW .. iueeeeiiiemeiiiiemnciriennnceriennncesnennsecenennscessennseennes 276
F.50 Pre-processor DireCtives [NIVIP] ...ciiceecccereeeierrenesseseennssesrensseeseennsssseennssessennssesssnnssssssnnssssssnnssssssnnsssnes 276
F.51 Suppression of Language-defined Run-time Checking [IMXB] ..cccceereeerrenereenireenierenereancrenserensessnneesnnnes 277
F.52 Provision of Inherently Unsafe Operations [SKL] cecceeceeereeeerenrerenrerensereensrenseeeessersnsessassssnsssensessnssssnnnes 277
F.53 Obscure Language FEatUres [BRS] ticceeiceereererenrerennertenierenseeensersssersnsessnsssessssessssssssessnssssnsssensessnsssssnsses 277
F.54 Unspecified BEhaVioUr [BQF]..ccceeeeeueereerereaerenserennertensersnsessssessssessnssssasssesssssssssssssesssssssssssenssssnsssssnsses 277
F.55 Undefined BehaVioUr [EWF] i ieciieeiereeiereeseienerenneeteniereesesessessnsesensessnsssessssessssssssessssssensssensessnssssnnsses 277
F.56 Implementation-defined Behaviour [FAB .. cciiccceirtemeeirtemeneirtennsiereennseeseennssessennssesssnnssssssnnssssssnnsssnes 278
F.57 Deprecated Language FEatures [IMEM] .. cciiieeeiirienencereennneireennssereennseeseennssessennssesssnnsssssnnsssssnnssesnes 278
Annex G (informative) Vulnerability descriptions for the language SPARK c.c..ciiieeciiieennccrteennccrteennecenennneennes 279
G.1 Identification of standards and associated docUMENTALION..cciiiierreeniiiiiniiieeennsiiiierireeennesssssssensesnnansss 279
G.2 General terminology aNd CONCEPES ceeeerrrunririennnierrenmneerteenseertennseessennseessensssessensssesssnsssssssnsssssssnsssssssnssnns 279
G.3 TYPE SYSEEM [IHN] tereerrrnnreerernnieerennnseerennssesrennssesrennssessennssessennssessensssesssnsssessensssesssnsssssssnsssssssnssssssnnssnns 280
G.4 Bit Representation [STR] cicciceeceeereruseereensseerennssesrennssessennssessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 281
G.5 Floating-point ArithMetic [PLF].cccccceeeereemsiriennnieerenmnsernennseernennssessennssessennssessensssesssnsssssssnsssssssnsssssssnsnnns 281
G.6 ENUMErator ISSUES [CCBJ .ceitreereereraneerennnneerennsesrennsessennssessennssessennssessensssesssnsssesssnsssssssnsssssssnsssssssnssnns 281
G.7 Numeric Conversion Errors [FLC] ciueeeieeeecertennnceerennssesnennseessennseessennssesssnnssessensssssssnsssssssnsssssssnsssssssnsnnns 281
G.8 String Termination [CIM] iiieeceeierenneereennneeiennnsesrennseessennssessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 281
G.9 Buffer Boundary Violation (Buffer Overflow) [HCB] «.ciieeeeirieencerieenncceneenscernennseeesensseessensssessensssssssnsnnns 281
G.10 Unchecked Array INdeXing [XYZ] cueccereeecerrennneeerennnccsnennneessennseessennssesssnnssessensssssssnssssssensssssssnsssssssnssnns 281
G.11 Unchecked Array CoPYINE [XYW] cucceiteeceiriemmiierennnsisnennscernennssessennssessensssessensssssssnsssssssnsssssssnsssssssnssnns 281
G.12 Pointer Casting and Pointer Type Changes [HFC] .uuuciiiieercirieenierieennceetennseernennseessensseessensssesssnsssssssnssnns 282
G.13 Pointer ArithmMetic [RVG] cciieeceeertrereereennsiriennniesiennsseseennssessennssessennssessensssesssnssssssensssssssnsssssssnsssssssnssnns 282
G.14 Null Pointer Dereference [XYH] ciccccciieceiriemmeiiieemeiiieeneernennsiessennseessennssessensssssssnsssssssnsssssssnsssssssnssnns 282
G.15 Dangling Reference t0 HEap [XYK] ciceieeceerremmncirreennserreenneernennscessennssessennssessensssssssnsssssssnsssesssnsssssssnnnnns 282
G.16 Arithmetic Wrap-around Error [FIF] ceeeeeecciieeeeciireemsereeenncertenneesnennseessennssessensssesssnsssssssnsssssssnsssssssnssnns 282
G.17 Using Shift Operations for Multiplication and Division [PIK].e..cceteeucerreencermennceerenneesrensssessensssessennnnns 282
G.18 Sign EXtENSION EITOT [XZI] ceeeeeeerernnseerennnneerennnesrennsseseennsessennssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnsnnns 282
G.19 Choice of Clear Names [INAI] . ccciceeeereeeeertenmnieereenneereennseersennseessennssesssnsssessensssssssnssssssensssssssnsssssssnssnns 282
G.20 Dead store [WXQ] ceeeeereeeeereenneerernneerennssessennssessennsssssennssesssnnssesssnsssssssnsssssssnsssssssnsssssssnsssssssnsssssssnssnns 282
G.21 UNUSEA Variable [YZS] cuucceiteereertruseeieennsisiennnseseennssessennssessennssessensssesssnsssesssnsssssssnsssssssnsssssssnsssssssnssnns 283
G.22 Identifier Name REUSE [YOW] . iiirueeereeensiriennneeerennssereennssessennssessennssesssnnssessensssesssnsssssssnsssssssnsssssssnsnnns 283

G.23 NamesSPaACE ISSUES [BJL] ceeereruererreranneerennneerennnsesrennseseennsessennssessennssesssnsssessensssssssnsssssssnsssssssnssssssnnsnnns 283

G.24 Initialization of Variables [LAV] cieecciieeeeeiriemneieieemneeriennneerteenseessennssessennssessensssesssnsssssssnsssssssnsssssssnssnns 283

G.25 Operator Precedence/Order of Evaluation [JCW] cieeeeeeucceeeeeieeeemmnnnieseeeeeeeenmnsssseeeeeeesennnsssssssssssssnnnnnnes 283
G.26 Side-effects and Order of EValuation [SAM] ceeciieeecciiieemnccrieenniertennscessennseessennseessenssssssensssesssnsssssssnssnns 283
G.27 Likely Incorrect EXpression [KOA] w.cciicecceceiemeceereemneeeneenseernennscessennseessennssessensssssssnsssssssnsssssssnsssssssnssnns 283
G.28 Dead and Deactivated Code [XYQ] .cceeeeneeerrennneeerennneereennseernennseessennssessennssessensssssssnsssssssnsssssssnsssssssnssnns 283
G.29 Switch Statements and Static ANAlYSiS [CLL] eeerreemneerreenneerreennierrennsccrrennseessennseessensssssssnsssesssnsssssssnssnns 284
G.30 Demarcation of Control FIOW [EOJ] ceeieeeeeriemmcirreemncirneenniernennscessennssessennssessensseessensssssssnsssssssnsssssssnssnns 284
G.31 Loop Control Variables [TEX] ceceeeeeceeereenecerrennneeerennseesnennseessennssessennssesssnnssesssnsssssssnsssssssnsssssssnsssssssnssnns 284
G.32 OFf-DY-0NE ErTOr [XZH] eeecerteeereerernnseereennsesrennssesrennssessennssesssnnssessennssesssnsssesssnsssssssnsssssssnsssssssnsssssssnsnnns 284
G.33 Structured Programming [EWD] ceeecceieeeeceriemmneeereemnsesnennscessennseessennssesssnnssessensssssssnssssssensssssssnsssssssnssnns 284
G.34 Passing Parameters and Return Values [CS)] ceeciieeeeirreenneirirennierteenscernennseessennseessensssessensssesssnsssssssnssnns 284
G.35 Dangling References to Stack Frames [DCM] cu.ciieeeeecreeenneerieenncerreensecssennseessennseessensssssssnsssesssnsssssssnsnnns 285
G.36 Subprogram Signature Mismatch [OTR] cceceeeeeerreemncerienmncerieenseerrennseeerennseessennseessenssessssnsssssssnsssssssnssnns 285
G.37 RECUISION [GDL] teuureerrrnneaereennneerenasneerennssessennssessennssssssnnssesssnsssssssnsssesssnsssesssnsssssssnsssssssnsssssssnssssssnnnnnns 285
G.38 Ignored Error Status and Unhandled EXCeptions [OYB] .ccciteeucerreennccrrennncernennseeenensseessensssessensssssssnnnnns 285
G.39 Termination StrategY [REU] cucciiieceeereeeiiriennnieerennssereennssersennssessennssessensssessensssesssnsssssssnsssssssnsssssssnssnns 285
G.40 Type-breaking Reinterpretation of Data [AMV] e ciiiieecirieemierieennccrtenneernennseeerensseessensssessensssssssnssnns 286
G.41 MeEMOTY LEAK [XYL] tertruureerrranreerernnseereensesrennssessennssessennssesssnnssessensssesssnsssesssnsssssssnsssssssnsssssssnsssssssnsnnns 286
G.42 Templates and GENEriCS [SYM] ciiruriereeunciriennniirreennsirnennseesnennssessennssesssnnssessensssesssnsssssssnsssesssnsssssssnssnns 286
G.43 INNEritanCe [RIP] cueeertruereertranseerernnseerennssesrennssessennsessennssessennssessensssesssnsssessensssssssnsssssssnsssssssnsssssssnssnns 286
G.44 EXEra INtrinSiCS [LRIM] ceeeucereeuecerernneereensseerennssessennssessennsssssennssessensssssssnsssesssnsssssssnsssssssnsssssssnssnssssnssnns 286
G.45 Argument Passing to Library FUNCEIONS [TRJ] ceeeereeeecereeennierieenniermeennccssennseessensssessensssessensssesssnsssssssnsnnns 286
G.46 Inter-language Calling [DJS] ceccceetreceeereenneerrennnseerennssereennssessennssessennssessensssessensssesssnsssssssnsssssssnsssssssnssnns 286
G.47 Dynamically-linked Code and Self-modifying Code [NYY] .ciccecerttemreerieeneerienneeenenneesrensssessenssssssennnnns 287
G.48 Library Signature [NSQJ .ccceeeeeeereraneeereensseerennsscsrennsseseennssesssnnssessennssesssnsssessensssssssnsssssssnsssssssnsssssssnssnns 287
G.49 Unanticipated Exceptions from Library ROULINES [HIW] ceeciieeeiiiitemciiieeniernennnceenennseesnennssessenssssssennnnns 287
G.50 Pre-Processor DIreCtives [NIMIP] ciuecceieeeeeeeiemeneeereemnscsnennseesnennssessennscsssnnsessensssssssnssssssensssssssnssssssnnsnnns 287
G.51 Suppression of Language-defined Run-time Checking [MXB] «.cciteeucerrrenceriennsceerennncesrensssessenssesssennnnns 287
G.52 Provision of Inherently Unsafe Operations [SKL] cccecieeeeceerreencerreenneeerenncesnennseessenssesssensssesssnsssssssnssnns 287
G.53 Obscure Language Features [BRS] . iiccceeerteraneirteemneirieenniernennseessennseessennssessensssssssnsssssssnsssssssnsssssssnssnns 287
G.54 Unspecified BEhaViour [BQAF] ..cccceeceeereeeecerienmnseeienmseereennseessennssessennssesssnnssesssnsssesssnsssssssnsssssssnsssssssnssnns 288
G.55 Undefined BEhaVioUr [EWF] ce.ciiiiececeieeeeeriinmnieeieensseriennseesnennssessennssesssnnssessensssssssnssssssensssssssnsssssssnssnns 288
G.56 Implementation-Defined Behaviour [FAB]..cccccciteeecerieenncerieenncerrennsiessennseessennssessenssssssensssssssnsssssssnssnns 288
G.57 Deprecated Language Features [MEM] i iicceiiieemiirieenniirieenncertennseesnennseessensssessensssssssnsssesssnsssssssnnsnns 288
G.58 Implications for standardization .ueccceceeeeceieeeceieieemeeirieeeeerienneerrennseesrenneessensseessenssesssensssesssnsssssssnssnns 288
Annex H (informative) Vulnerability descriptions for the [anguage PHP.....ciiiieeeeeiiiiiniiiieeeneniisiininieeessnenss 289
H.1 Identification of standards and associated doCUMENTAtiON ciieeeueeiieeiiiiiiremmniiieeniiiiiennsesssesniinesennssssssnns 289
H.2 General Terminology and CONCEPLS cieeeeerremereerrenesaerrennseesrennseeseensssessenssssssennssesssnnssesssnnssssssnnssssssnnsssnes 290
H.3 TYPE SYSEEM [IHN] tereeuuieiiinnierieneierienenieetenessesrenessessensssessenssssssensssssesnsssssesnsssssssnnssssssnnssssssnnssssssnnssssnen 291
H.4 Bit Representations [STR] .iccccereeereeerennsserrennssesrenessessennsssssenssssssensssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnssssnen 292
H.5 Floating-point ArithmMetiC [PLF] .eecceeteeceerremeeerrenenseerenesseseennseeseenssseseennssessensssssssnnssssssnnssssssnnssssssnnsssnes 293
H.6 ENUMErator ISSUES [CCBJ citeureeererurierrennnierrennssesrenessessensssessenssssssensssssssnsssssssnsssssssnnssssssnsssssssnnssssssnnssssnen 293
H.7 Numeric Conversion Errors [FLC] ceeeeieeeceeerenesceerenessessennssessensssessenssssssensssssssnnssssssnnssssssnnssssssnnssssssnnsssnes 294
H.8 String Termination [CIM] ceeieeereerieneeerrenenserrenessessensssessennssessensssssssnssssssennssssssnnssssssnnssssssnnssssssnnssssnen 295
H.9 Buffer Boundary Violation (Buffer Overflow) [HCB] c.iceecirieeeneireemnniereemnncereennseereennseessennsecssennssessennsessnes 296
H.10 Unchecked Array INdeXing [XYZ] ccciceceeeeremeeerrenensernennsaereennseereennsseseennssessennssssssnnssssssnnssssssnnssssssnnsssnes 296
H.11 Unchecked Array CoOPYINg [XYW] oiieecceiiemerieriemensirnennssesrennseereennsseseennssessennssssennssssssnsssssssnnssssssnnsssnes 296
H.12 Pointer Casting and Pointer Type Changes [HFC] ..ciiccceeerremeneireennniereennneereennseersennseessennssesssnnseesssnnssssnes 296

H.13 Pointer ArithmetiC [RVG] cuuceereeereerieneierrenenierrenessessennsseseennssessenssssssensssssennssssssnnssssssnnssssssnsssssssnnsssnen 296

H.14 Null Pointer Dereference [XYH] woiiicccciiiicrierieneiiiieneniertennseeseennsseseennssessennssessennssesssnnssssssnnsssssnnsssnes 297

H.15 Dangling Reference 10 HEap [XYK] cieeceeeremeceerreneneerrennneerrennseeseennsseseennssessennsesssnnssesssnsssssssnnssesssnnssesnen 297
H.16 Arithmetic Wrap-around ErTor [FIF] coeeceeieeeceeeremeeirtennnsereennseeseennsseseennssessennssssssnnssesssnsssssssnnssssssnnssssnes 297
H.17 Using Shift Operations for Multiplication and DiviSion [PIK]..ccccceeereemnneereennncerrennncersennsecssennseessennsaesnes 298
H.18 Sign EXENSION ErTOr [XZI] ceeeeereeeeerrennncerreneneerrenessessennssessensssssesnssssssensssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 299
H.19 Choice of Clear Names [NAI] . ciccceeieuceertenereerreneseestennsseseennsaessennsssseennsssesnnssssssnnssssssnnssssssnnssesssnnsassnen 299
H.20 Dead Store [WXQ] .ieeeeeeereenseeerennssesrennssessensssessensssessenssssssensssssasnsssssssnsssssssnsssssssnnssssssnnssssssnnssssssnnsasnen 301
H.21 UNUSEd Variable [YZS] cieiiecceiienrieiitneieeteneiesrenesiessennssessennssessensssssssnssssssennssssssnnssssssnnssssssnnssesssnnssssnen 301
H.22 Identifier Name REUSE [YOW] ciuuiiiituereirreneierienessesrennsseseennseessenssseseennsssssensssssssnnssssssnnssssssnnssssssnnsssnes 301
H.23 NamesPace ISSUES [BJL] cieeureerremueerrennnierrenenaesrennssessennssessensssessennssssesnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 302
H.24 Initialization of Variables [LAV] ceccccieecceeeremeeerrenenseriennssersensseessenssseseennsssssennssesssnnssssssnnssssssnnssssssnsssssnes 303
H.25 Operator Precedence/Order of EValuation [JCW] ceueecceiiiiireemnnieeeeieeeeeennnsseeeeeeeeeennnsssseesseeessnnnnsnnneeens 304
H.26 Side-effects and Order of Evaluation [SAMI] .eieeeceiiiemeiiiiemeiiriemnniereennseereennssessennssessennssssssnnssesssnnsssnes 304
H.27 Likely Incorrect EXPression [KOA] . iccceeieeeceeerenencereennsserrennseeseennsseseennsssssennssssssnnssssssnnssssssnnssssssnnssssnes 305
H.28 Dead and Deactivated Code [XYQ] .ieeeeeeereneraerrenasaerrennsaereennsaeseensssessennsssssennssesssnnssesssnsssssssnnssssssnnsssnes 306
H.29 Switch Statements and Static ANalYsis [CLL] ceererereerrennneerrennseereennssereennseeseennssessennssesssnnssesssnnssesssnnsasnes 307
H.30 Demarcation of Control FIOW [EOJ] ceeeciireueeeriemeiireennniereennseersenssseseennsesseennssessennssesssnsssssssnnssssssnnsssnes 307
H.31 Loop Control Variables [TEX] cieeceeereneceerrenenseerenassersennssessennsssssensssssssnnsssssnnssssssnnssssssnnssssssnnssssssnnssssnen 308
H.32 Off-by-0N€ Error [XZH] ceeeeeieiiiieiieiiineieitenenieerenessestennssessennssessensssesesnssssssennssssssnnssssssnnssssssnnssssssnnssesnen 309
H.33 Structured Programming [EWD] ..cciceecceeremeieriemensireennseerrennsseseennsseseennssessennssssssnnssssssnnssssssnnssssssnnssssnes 309
H.34 Passing Parameters and Return Values [CSJ] ciieureirremeiiiremnneireennniereennneereennseessennssessennsessennsessssnnssennes 310
H.35 Dangling References to Stack Frames [DCM] ciiceeeceereeeeeirrennneireennssereennsscseennsecssennsscsssnnssesssnsssssssnnssesnes 310
H.36 Subprogram Signature Mismatch [OTR] cieeecerremeeeerreneneerrennseernennseeseennseessennssessennssesssnnssssssnnssssssnnssesnes 310
H.37 RECUISION [GDL] ceeereeureerrennncerrennnseerennssessensssessensssessenssssssensssssssnsssssesnsssssssnsssssssnnssssssnsssssssnnssssssnnssssnen 311
H.38 Ignored Error Status and Unhandled EXceptions [OYB] .cccccceereemeecereemnneereennneereennncessennsecssennseessennsessnes 311
H.39 Termination Strategy [REU] ceeieeeciiriteecierieneierieneniesnenessessennsseseensseseennssseennsssssennssssssnnssssssnnssssssnnssssnen 313
H.40 Type-breaking Reinterpretation of Data [AMV] cecciieeceiiremeeiriennsieriennneereennseessennssessennssesssnnsessssnnssssnes 313
H.41 MemMOrY LEAK [XYL] ceueeerenneerrenneerrennsserrennssesrensssessenssssssennssssssnsssssesnsssssssnsssssssnnssssssnsssssssnnssssssnnssssnen 313
H.42 Templates and GENEriCS [SYM] cuuciiieurierremeierienenieriennssereenssseseennssessensssessennssesssnsssssssnnssssssnnssssssnnssssnen 314
H.43 INNEritanCe [RIP] ceeteeeueeereunnierrennniesrennssesrennssessensssessenssssssenssssssensssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnsssnnen 314
H.44 EXtra INTrinSiCS [LRIM] rceieeeeceeremenierrenenseerenessesrenessessenssssssennssessensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 314
H.45 Argument Passing to Library FUNCEIONS [TRJ] ceeeeeeertemeniiiremnneireennniereennseeseennssessennsscsssnnssessennssssssnnsennes 314
H.46 Inter-language Calling [DJS] cecieeeceeriemereerteneierrenesiernennssessennssessennsseseennsssssennssssssnnssssssnnssssssnnsssssnnssssnen 314
H.47 Dynamically-linked Code and Self-modifying Code [NYY] .ucrciitereeiriemmeireemneeriennncernennncesnennseessennsseenes 315
H.48 Library Signature [NSQJ .icceeeeerereeeerenneerrennsserrennsseseennssessennssessennssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnssssnen 315
H.49 Unanticipated Exceptions from Library ROUtines [HIW] ceceeeeciiieeeiiiiemmiiiiennncerieenncernennscessennscessennseesnes 315
H.50 Pre-processor Dir€Ctives [NIVIP] ... icccceeremeeeerenensestenessesrennseeseenssseseennsssssennssesssnnsssssnnssssssnnssssssnnssssnes 316
H.51 Suppression of Run-time Checking [MXB] ceccciieeceirremeeereennseereennssereennseeseennssessennssesssnnssssssnnssssssnnssesses 316
H.52 Provision of Inherently Unsafe Operations [SKL] .ccceeceeerremeeereennscereennncereennncersennseessennssesssnnssessennssssnes 316
H.53 Obscure Language FEatures [BRS] . iccceceeteueeerrenesserrennsaerrennseeseensssessennssssennssssssnnssssssnnssssssnnssssssnnsssnen 316
H.54 Unspecified BEhaviour [BOF] ciccecceeteeeceerrenneerrenessertennseesrennsaessenssseseennssessensssssssnnssssssnnssssssnnssssssnsssssnes 317
H.55 Undefined BEhaVioUr [EWF] ciieeecieiieeceeiieneneertenessestenesseseennssessenssseseennssssennssssssnnssssssnnssssssnnssesssnnssssnes 318
H.56 Implementation—defined Behaviour [FAB] «.cciiccceiitemeeiiremnneireennsiereennseeseennseessennssessennsssssennssesssnnsesnes 319
H.57 Deprecated Language Features [IMEMY] ciiiccciiieeeeirieneneereennneireensssereennseeseennssessennsssssnnsssssnnssssssnnssssnes 319
Annex | (informative) Vulnerability descriptions for the |language FOrtran....cccveeeeeisciininiieeeneesssisnnnneeensnnnss 320
[.1 Identification Of StaNdardS...cceceeeeiiiiiremmiiiiiiiiiiireniiiiiiiiisesmieeiiiiissssssesiitersassssssssssssssssssssssssssss 320
[.2 General Terminology aNd CONCEPLS cereeereerreneseerrenesaereennseerrennssessenssseseennssssssnnssssssnnssssssnnssssssnsssssssnnssesnen 320
[.3 TYPE SYSEEM [IHN] eeeteeuneerrennneerreneierrenesseerennssesrenessessenssssssensssssaensssssesnsssssssnsssssssnnssssssnsssssssnnssssssnnssasnen 323

[.4 Bit Representations [STR] cieeceeereeereeerennsseerennsseerensssessensssessensssssssnsssssssnsssssssnnssssssnnssssssnsssssssnnssssssnnssssnen 324

.5 Floating-point ArithmMetic [PLF] ciceecceereeceerreneseeerenenseenenessereennseeseenssseseennssssennssssssnnssssssnsssssssnnssesssnnsssnes 325

[.6 ENUMErator ISSUES [CCBJ ciieeercerrenerierrennnserrennssesrensssessensssessenssssssensssssesnsssssssnnssssssnnssssssnnssssssnnssssssnnssesnen 326
[.7 Numeric Conversion Errors [FLC].uiiiieureeereneneerrenessessennssessennseeseenssseseennssssssnsssssssnnssssssnnssssssnnssssssnssssnes 326
1.8 String Termination [CIIM] ciieeeceeieeeieeienenierrenensesrenessessennssessennsssssensssssesnsssssesnsssssssnnssssssnnssssssnnssssssnnssssnen 327
1.9 Buffer Boundary Violation [HCB] .uuccceieeeceerremenaerrenessesnennssessennseeseennsseseennsssssennssssssnnssssssnnssssssnnssssssnnssssnes 327
[.10 Unchecked Array INdeXing [XYZ].uccceieeeeeereneneerrenensesnennssereennsseseennsssseennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 328
[.11 Unchecked Array COPYINE [XYW o ciiiecceeeteneeerrenensestennssesrennsseseenssseseennsssssennsssssnnssssssnnssssssnnssssssnnsssnes 329
[.12 Pointer Casting and Pointer Type Changes [HFC] «..ciieeceiiiemeeiriemnniereemnneereennseereennseessennssesssnnssesssnnssssnes 330
[.13 Pointer Arithmetic [RVG] cieeceeieeerierieneieeieneierrenessessenssseseensssessensssessenssssseennssssssnnssesssnnssssssnsssssssnnsssnen 330
[.14 Null Pointer Dereference [XYH] occirceeeeremesieereneneirtennsseseennseeseenssseseennsssssennsssssennssssssnsssssssnnssssssnnsssnes 330
[.15.1 Applicability tO |aNGUAEE ceeeeerereieritnecerteieierrenesiertennssesrennsesseennssssennsssseennssessennssssssnnssssssnnssssssnnssasnen 331
1.16 Arithmetic Wrap-around Error [FIF] ceeecceieceeeriemeeerteneneereennseereennsseseennseeseennssessennssssssnsssssssnnssesssnnssssnes 331
.17 Using Shift Operations for Multiplication and DiviSion [PIK] cecceeeeeeeereennneereennneerrennncersennncessennseessennssesnes 332
[.18 Sign EXtENSION ErTOr [XZI] eeeeeeereneneerrennnaerrennnsesrennssessennsssssennsssssensssssssnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 332
1.19 Choice Of Clear Names [NAI] cicicecceeiemeeerremeeerrenesseerennssessensseessensssessenssssssennssssssnnssssssnnssssssnnssssssnnsssnen 332
[.20 Dead StOre [WXQ ceeeeeeeeerennnceerennssesrennssessensssessensssessenssssssensssssssnsssssesnsssssssnnssssssnnssssssnnssssssnnssssssnnssssnen 333
[.21 UNUSEd Variable [YZS] ecereeeceerremerierieneieerenesserrenessessensssessensssssssnsssssssnsssssssnnssssssnnssssssnnssssssnsssssssnnsssnen 333
[.22 Identifier Name REUSE [YOW] cieeuieriemeeerienenierienesiernennssessennsseseensssssennsssssensssssssnnssssssnnssssssnnssessennssssnes 333
[.23 NamMeSPACE ISSUES [BIL] ceeeeureerrereneerrennsaerrennsserrenassessennssessennsssssensssssssnsssssssnsssssssnnssssssnnssssssnnssesssnnssesnen 334
[.24 Initialization Of Variables [LAV] ceccieceeerremereeeienescertenesseseennseeseenssseseennsssssennssssssnnssssssnnssssssnnssssssnnssssnes 334
.25 Operator Precedence/Order of EValuation [JCW e cceeiiiieeemmnnceeeereeeeeennnsseeeeseeesennnsssseessessssnnnnsnnenens 334
1.26 Side-effects and Order of EValuation [SAM] ...ciiceceiriemeeiriemencereennneereennseersennseessennssesssnnssssssnnssesssnnssesnes 335
.27 Likely Incorrect EXPression [KOA] ..iccceeeeremeeeeremessereennseeseennseeseennsssssennssssennssssssnnssssssnnssssssnnssssssnnsssnes 335
.28 Dead and Deactivated Code [XYQ] cieeeeeerremeneerrenencerrennseerrennseessensssessennsssssennssssssnnssssssnnssssssnnssssssnnsssnes 336
1.29 Switch Statements and Static ANAlYSis [CLL] ceeiierereerremeneereennneireennsiereennseereennseessennssesssnnsscsssnnssssssnnsesnes 336
[.30 Demarcation of Control FIOW [EOJ] cieeeceertemereerrenenieriennnserrennseeseenssseseennssessennssessennssesssnnssssssnnssssssnnssssnes 336
[.31 Loop Control Variables [TEX].cccceeeeereneeerrenenaeerenessessennssessennsaessenssssssennsssssennssssssnnssssssnnssssssnnssssssnnsssnen 337
[.32 Off-DY-0NE ErTOr [XZH] . eetteueeereneieerenenieerenessesrenessessensssessennssessensssssssnsssssssnsssssssnnssssssnnssssssnsssssssnnsssnen 337
[.33 Structured Programming [EWD] ... cceieeecceeremeneerrenensernennssessennseessennsssssennssssennssssssnnssssssnnssssssnnssssssnnsssnes 338
[.34 Passing Parameters and Return Values [CS)]uciiireerremneirrennneireennniereennseeseennssessennssesssnnsscsssnnsssssennsesnes 338
1.35 Dangling References to Stack Frames [DCM] .ciieeeecirreneneeriennneireennscereennseeseennssessennssessennssssssnnsssssnnssesnes 339
[.36 Subprogram Signature Mismatch [OTR] cieeeeeerrenereerreneseereennseereennseereennseeseennssessennssesssnsssssssnnssesssnsssssnes 339
[.37 RECUISION [GDL]euueereeuneeerennnserrenansessennssessensssessensssessenssssssensssssasnsssssesnsssssssnnssssssnsssssssnsssssssnnssesssnnssannen 339
1.38 Ignored Error Status and Unhandled EXCeptions [OYB] cciieeeceereemnncereennnecreennncersennseessennsecssennseessennsssnes 340
[.39 Termination STrategY [REU] .cciieeecceritneeerienenierrenessesrennsseseennssessensssseennssssesnnssssssnnssssssnnssssssnnssssssnnsssnes 340
1.40 Type-breaking Reinterpretation of Data [AMV] ceeciieeceiiiemeiiiiemnieieennneereennseesseenseessennssessennssesssnnssssnes 341
[.41 MEMOTY LEAK [XYL]ttteuteeerenueerrennserrennssesrennssesrensssessenssssssennssssasnsssssssnsssssesnnssssssnnssssssnsssssssnnssssssnnssasnen 341
.42 Templates and GENEriCS [SYM] iuuieeieureerremeierreneniesrennssereennsseseenssseseennssessennssssssnnssssssnnssssssnnssssssnnssssnen 341
[.43 INNErtANCE [RIP]uuccttteucerrennnierrenenierrennsaesrennssessenessessenssssssenssssssensssssssnsssssesnnssssssnnssssssnsssssssnnssssssnnsssnnen 341
[.44 EXEra INtrinSiCS [LRIM] uuuceteueeeeerenenieerennnseerenessesrenessessenssssssensssssssnsssssssnsssssssnsssssssnnssssssnsssssssnnssssssnnssasnen 342
.45 Argument Passing to Library FUNCLIONS [TRJ] ceereeeeeirrennncireennneereennniereennsecseennssessennssesssnnssessensssesssnnssesnes 342
1.46 Inter-language Calling [DJS] cccieeeceerremneerrennierrenessesrennssessennsssssennsssssennssssesnsssssssnnssssssnnssssssnnssssssnnsssnen 342
1.47 Dynamically-linked Code and Self-modifying Code [NYY] ciecrciiiemriiriemmieriennceriennncernennsccssennscessennssennes 343
.48 Library Signature [NSQJ ciceeeceeereneeerrenencerrenasserrennssessensssessennsssssensssssssnssssssennssssssnnssssssnnssssssnsssssssnnsasnen 343
1.49 Unanticipated Exceptions from Library ROUtines [HIW] ceeeeeeiiiemeiiiiemeiiiiennieriennneesnennseessennscessennseennes 343
[.50 Pre-processor DireCtives [INIMIP] cuucciiceecceereneierienensesiennsseseennsseseenssssssennssessensssssssnnssssssnnssssssnnssssssnnssssnes 343
I.51 Suppression of Language-defined Run-time Checking [MXB]..ciccceeeereemmneirrenneerieenncereennseessennscessennseennes 344
[.52 Provision of Inherently Unsafe Operations [SKL]..cceccceeeereennneereennscereennneereennseessennssessennssesssnnseessennssssnes 344

[.53 Obscure Language FEatures [BRS] ciiiiceceeremereerrenenierrennsierrennseereennssereennssessennssssennssssssnnssssssnnssssssnnsssnes 345

[.54 Unspecified Behaviour [BAF] ciceeecceeremereerremeeerrenessesrennssessennssessennsssssennssssssnsssssssnnssssssnnssssssnnssssssnsssssnes 345

[.55 Undefined BehaVioUr [EWF]..ciieecceeitmecerreneieerenesseesennssessennssessenssseseennssssesnnssssssnnssssssnnssssssnnssssssnnsssnen 345
[.56 Implementation-defined Behaviour [FAB] c.ccciieeceirtemeiereennseereennssereennseeseennseessennssesssnnssssssnsssssssnnsssnes 346
I.57 Deprecated Language Features [MEM] .ciiccciiieeriirieneieiiennneireennseereennseeseennssessennssesssnnssssssnnssssssnnsssnes 346
[.58 Implications for STanNdardization ...ciecceceereecceeeiemrieiienriirteneseereennsiereennsseseennseessennssessennssssssnnsssssennsssnes 347
BIDlIOZIAPNY eeiiiiiirennniiieiiiiiiirenneiiseitiiiirensssssseeeiititsssssssssssssteessssssssssssssstssssssssssssssssessnssssssssssssssssnnssssssssss 348
Index 351

Page vi: [2] Deleted Santiago Uruefia 5/26/15 1:35:00 PM

Furthermore, to focus its limited resources, the working group developing this report decided to defer
comprehensive treatment of several subject areas until future editions of the report. These subject areas
include:

Object-oriented language features (although some simple issues related to inheritance are described in
6.43 Inheritance [RIP])

Numerical analysis (although some simple items regarding the use of floating point are described in 6.5
Floating-point Arithmetic [PLF])

Inter-language operability

Page 1: [3] Moved to page 46 (Move #1) Stephen Michell 9/18/15 3:14:00 PM

Achour, M. (n.d.). PHP Manual. Retrieved 3 5, 2012, from PHP: http://www.php.net/manual/en/

Brueggeman, E. (n.d.). Retrieved 3 5, 2012, from The Website of Elliott Brueggeman :
http://www.ebrueggeman.com/blog/integers-and-floating-numbers

Enums for Python (Python recipe). (n.d.). Retrieved from ActiveState: http://code.activestate.com/recipes/67107/

Goleman, S. (n.d.). Extension Writing Part I: Introduction to PHP and Zend. Retrieved 5 5, 12, from Zend Developer
Zone: http://devzone.zend.com/303/extension-writing-part-i-introduction-to-php-and-zend/

Isaac, A. G. (2010, 06 23). Python Introduction. Retrieved 05 12, 2011, from
https://subversion.american.edu/aisaac/notes/python4class.xhtml#tintroduction-to-the-interpreter

Lutz, M. (2009). Learning Python. Sebastopol, CA: O'Reilly Media, Inc.
Lutz, M. (2011). Programming Python. Sebastopol, CA: O'Reilly Media, Inc.
Martelli, A. (2006). Python in a Nutshell. Sebastopol, CA: O'Reilly Media, Inc.

Norwak, H. (n.d.). 10 Python Pitfalls. Retrieved 05 13, 2011, from 10 Python Pitfalls:
http://zephyrfalcon.org/labs/python_pitfalls.html

Pilgrim, M. (2004). Dive Into Python.
Python Gotchas. (n.d.). Retrieved from http://www.ferg.org/projects/python_gotchas.html

source, G. (n.d.). Big List of Portabilty in Python. Retrieved 6 12, 2011, from stackoverflow:
http://stackoverflow.com/questions/1883118/big-list-of-portability-in-python

The Python Language Reference. (n.d.). Retrieved from python.org:
http://docs.python.org/reference/index.html#treference-index

Will Dietz, P. L. (n.d.). Understanding Integer Overflow in C/C++. Retrieved 3 5, 2012, from
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf

Page 5: [4] Deleted Stephen Michell 9/22/17 9:29:00 AM |

Section 6.42 Violations of the Liskov Substitution Principle or the Contract Model
[BLP]

6.42.1 Applicability to language
TBD
6.42.2 Guidance to language users

TBD

6.43 Redispatching [PPH]

6.43.1 Applicability to language
TBD

6.43.2 Guidance to language users
TBD

6.44 Polymorphic variables [BKK]
6.44.1 Applicability to language
TBD

6.44.2 Guidance to language users

TBD

6.45 Extra Intrinsics [LRM]6.43 Extra Intrinsics [LRM]

Page 7: [5] Deleted Stephen Michell 9/22/17 9:38:00 AM

19 Avoid fall-through from one case (or switch) statement into the following
case statement: if a fall-through is necessary then provide a comment to
inform the reader that it is intentional.

Page 14: [6] Deleted Stephen Michell 6/25/15 4:35:00 AM

6.17E.18 Sign Extension Error [XZI]

This vulnerability is not applicable to Python because Python converts between types without ever extending the
sign.

Page 32: [7] Deleted Stephen Michell 3/7/17 11:09:00 AM

6.38E.39 Termination Strategy [REU]

6.38E.39.1 Applicability to language

Python has a rich set of exception handling statements which can be utilized to implement a termination strategy
that assures the best possible outcome ranging from a hard stop to a clean-up and fail soft strategy. Refer to 6.37
Ignored Error Status and Unhandled Exceptions [OYB]E.38 for an example of an implementation that cleans up
and continues.

6.38E.39.2 Guidance to language users

Use Python’s exception handling statements to implement an appropriate termination strategy.

Page 45: [8] Deleted Stephen Michell 3/7/17 11:27:00 AM

Page 45: [9] Commented Stephen Michell 9/27/17 10:22:00 AM |

Note from Nick Coghlan:

Speaking of clocks & timing, there are some use cases that should be updated to use time.monotonic() rather than time.time()
or time.clock() : https://www.python.org/dev/peps/pep-0418/#time-monotonic

Windows applications should also be aware of the fact that Python 3.6
always uses utf-8 for binary filesystem and console interfaces:
https://docs.python.org/dev/whatsnew/3.6.html#pep-529-change-windows-filesystem-encoding-to-utf-8

Non-Windows applications should be aware of the fact that Python 3.7+
will attempt to coerce the C locale to C.UTF-8 (or an equivalent

locale), and that implementing that behaviour is an approved option

for redistributor's Python 3.6 implementations (e.g. the system Python
in Fedora implements the option).
https://www.python.org/dev/peps/pep-0538/ has the details of that.

Page 45: [10] Formatted Santiago Urueiia 5/26/15 12:37:00 PM |

Space After: 6 pt, No widow/orphan control, Suppress line numbers, Don't allow hanging punctuation

| Page 45: [11] Deleted Santiago Urueiia 5/26/15 12:47:00 PM |

(4] ISO/IEC 9899:2011, Information technology — Programming languages — C

[5] ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

[6] ISO/IEC 30170:2012, Information technology — Programming languages — Ruby

[7] ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point arithmetic

[8] ISO/IEC 1539-1:2010, Information technology — Programming languages — Fortran — Part 1: Base
language

[9] ISO/IEC 8652:1995, Information technology — Programming languages — Ada
[10] ISO/IEC 14882:2011, Information technology — Programming languages — C++
[11] R.Seacord, The CERT C Secure Coding Standard. Boston,MA: Addison-Westley, 2008.

[12] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle Based
Software, 2012 (third edition) 1.

[13] ISO/IEC TR24731-1, Information technology — Programming languages, their environments and system
software interfaces — Extensions to the C library — Part 1: Bounds-checking interfaces

[14] ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the
Ada programming language in high integrity systems

[15] Joint Strike Fighter Air Vehicle: C++ Coding Standards for the System Development and Demonstration
Program. Lockheed Martin Corporation. December 2005.

[16] Motor Industry Software Reliability Association. Guidelines for the Use of the C++ Language in critical
systems, June 2008

[17] ISO/IEC TR 24718: 2005, Information technology — Programming languages — Guide for the use of the
Ada Ravenscar Profile in high integrity systems

[18] L. Hatton, Safer C: developing software for high-integrity and safety-critical systems. McGraw-Hill 1995

[19] ISO/IEC 15291:1999, Information technology — Programming languages — Ada Semantic Interface
Specification (ASIS)

[20] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the
Requirements and Technical Concepts for Aviation (document RTCA SC167/D0-178B) and in Europe by the
European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.

[21] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).
[22] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.

[23]) Barnes, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.

| Page 45: [12] Deleted Santiago Urueiia 5/26/15 12:48:00 PM

[26] ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, July 19, 1996
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

1 The first edition should not be used or quoted in this work.

[27] Hogaboom, Richard, A Generic API Bit Manipulation in C, Embedded Systems Programming, Vol 12, No 7,
July 1999 http://www.embedded.com/1999/9907/9907feat2.htm

| Page 45: [13] Deleted Santiago Uruefia 5/26/15 12:48:00 PM

[29] Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National
Center for Space Study (CNES) Inquiry Board, July 1996.

[30] Seacord, R. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding for news and errata.

| Page 45: [14] Deleted Santiago Uruefia 5/26/15 12:48:00 PM

[32] MISRA Limited. "MISRA C: 2012 Guidelines for the Use of the C Language in Critical Systems."
Warwickshire, UK: MIRA Limited, March 2013 (ISBN 978-1-906400-10-1 and 978-1-906400-11-8).

| Page 46: [15] Deleted Santiago Uruefia 5/26/15 1:31:00 PM

[38] GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf

[39] Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page
11, http://www.siam.org/siamnews/general/patriot.htm

[40] CERT. CERT C++ Secure Coding
Standard. https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=637 (2009).

[41] Holzmann, Garard J., Computer, vol. 39, no. 6, pp 95-97, Jun., 2006, The Power of 10: Rules for Developing
Safety-Critical Code

[42] P.V.Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT
Software Engineering Notes, v.28 n.4, July 2003

[43] Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: Software
Productivity Consortium, 1992. Available from: http://www.adaic.org/docs/95style/95style.pdf

[44] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of
Object Technology , 127-134.

[45] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Constraint Violation Detection in Safety-
Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 -
116.

[46] Lundqvist, K and Asplund, L., “A Formal Model of a Run-Time Kernel for Ravenscar”, The 6th International
Conference on Real-Time Computing Systems and Applications — RTCSA 1999

| Page 47: [16] Deleted Santiago Urueiia 5/26/15 12:38:00 PM
Apple
Ada, 13, 59, 63, 73, 76 0SX, 120
AMV — Type-breaking Reinterpretation of Data, 72 application vulnerabilities, 9
API| Application Vulnerabilities
Application Programming Interface, 16 Adherence to Least Privilege [XYN], 113

APL, 48 Authentication Logic Error [XZ0], 135

Cross-site Scripting [XYT], 125

Discrepancy Information Leak [XZL], 129

Distinguished Values in Data Types [KLK], 112

Download of Code Without Integrity Check [DLB], 137

Executing or Loading Untrusted Code [XYS], 116

Hard-coded Password [XYP], 136

Improper Restriction of Excessive Authentication
Attempts [WPL], 140

Improperly Verified Signature [XZR], 128

Inclusion of Functionality from Untrusted Control
Sphere [DHU], 139

Incorrect Authorization [BJE], 138

Injection [RST], 122

Insufficiently Protected Credentials [XYM], 133

Memory Locking [XZX], 117

Missing or Inconsistent Access Control [XZN], 134

Missing Required Cryptographic Step [XZS], 133

Path Traversal [EWR], 130

Privilege Sandbox Issues [XYO], 114

Resource Exhaustion [XZP], 118

Resource Names [HTS], 120

Sensitive Information Uncleared Before Use [XZK], 130

Unquoted Search Path or Element [XZQ], 127

Unrestricted File Upload [CBF], 119

Unspecified Functionality [BVQ], 111

URL Redirection to Untrusted Site (‘Open Redirect')
[PYQ], 140

Use of a One-Way Hash without a Salt [MVX], 141

application vulnerability, 5
Ariane 5, 21

bitwise operators, 48

BJE — Incorrect Authorization, 138
BJL — Namespace Issues, 43
black-list, 120, 124

BQF — Unspecified Behaviour, 92, 94, 95
break, 60

BRS — Obscure Language Features, 91
buffer boundary violation, 23

buffer overflow, 23, 26

buffer underwrite, 23

BVQ — Unspecified Functionality, 111

C, 22,48,50, 51, 58, 60, 63,73
C++,48,51, 58, 63, 73, 76, 86
C11,192

call by copy, 61

call by name, 61

call by reference, 61

call by result, 61

call by value, 61

call by value-result, 61

CBF — Unrestricted File Upload, 119
CCB — Enumerator Issues, 18

CGA — Concurrency — Activation, 98

CGM - Protocol Lock Errors, 105

CGS — Concurrency — Premature Termination, 103

CGT - Concurrency — Directed termination, 100

CGX — Concurrent Data Access, 101

CGY — Inadequately Secure Communication of
Shared Resources, 107

CJM = String Termination, 22

CLL — Switch Statements and Static Analysis, 54

concurrency, 2

continue, 60

cryptologic, 71, 128

CSJ — Passing Parameters and Return Values, 61, 82

dangling reference, 31

DCM — Dangling References to Stack Frames, 63

Deactivated code, 53

Dead code, 53

deadlock, 106

DHU — Inclusion of Functionality from Untrusted
Control Sphere, 139

Diffie-Hellman-style, 136

digital signature, 84

DJS — Inter-language Calling, 81

DLB — Download of Code Without Integrity Check,
137

DoS
Denial of Service, 118

dynamically linked, 83

EFS — Use of unchecked data from an uncontrolled
or tainted source, 109
encryption, 128, 133
endian
big, 15
little, 15
endianness, 14
Enumerations, 18
EQJ — Demarcation of Control Flow, 56
EWD - Structured Programming, 60
EWF — Undefined Behaviour, 92, 94, 95
EWR — Path Traversal, 124, 130
exception handler, 86

FAB — Implementation-defined Behaviour, 92, 94, 95
FIF — Arithmetic Wrap-around Error, 34, 35

FLC — Numeric Conversion Errors, 20

Fortran, 73

GDL — Recursion, 67
generics, 76

GIF, 120

goto, 60

HCB — Buffer Boundary Violation (Buffer Overflow),
23,82
HFC — Pointer Casting and Pointer Type Changes, 28

HJW — Unanticipated Exceptions from Library
Routines, 86

HTML
Hyper Text Markup Language, 124

HTS — Resource Names, 120

HTTP
Hypertext Transfer Protocol, 127

IEC 60559, 16

IEEE 754, 16

IHN —Type System, 12
inheritance, 78

IP address, 119

Java, 18, 50, 52, 76
JavaScript, 125, 126, 127
JCW — Operator Precedence/Order of Evaluation, 47

KLK — Distinguished Values in Data Types, 112
KOA — Likely Incorrect Expression, 50

language vulnerabilities, 9
Language Vulnerabilities
Argument Passing to Library Functions [TRJ], 80

Arithmetic Wrap-around Error [FIF], 34

Bit Representations [STR], 14

Buffer Boundary Violation (Buffer Overflow) [HCB], 23
Choice of Clear Names [NAI], 37

Concurrency — Activation [CGA], 98

Concurrency — Directed termination [CGT], 100

Concurrency — Premature Termination [CGS], 103

Concurrent Data Access [CGX], 101

Dangling Reference to Heap [XYK], 31

Dangling References to Stack Frames [DCM], 63

Dead and Deactivated Code [XYQ], 52

Dead Store [WXQ], 39

Demarcation of Control Flow [EQJ], 56

Deprecated Language Features [MEM], 97

Dynamically-linked Code and Self-modifying Code
[NYY], 83

Enumerator Issues [CCB], 18

Extra Intrinsics [LRM], 79

Floating-point Arithmetic [PLF], xvii, 16

Identifier Name Reuse [YOW], 41

Ignored Error Status and Unhandled Exceptions [OYB],
68

Implementation-defined Behaviour [FAB], 95

Inadequately Secure Communication of Shared
Resources [CGY], 107

Inheritance [RIP], 78

Initialization of Variables [LAV], 45

Inter-language Calling [DJS], 81

Library Signature [NSQ], 84

Likely Incorrect Expression [KOA], 50

Loop Control Variables [TEX], 57

Memory Leak [XYL], 74
Namespace Issues [BJL], 43
Null Pointer Dereference [XYH], 30
Numeric Conversion Errors [FLC], 20
Obscure Language Features [BRS], 91
Off-by-one Error [XZH], 58
Operator Precedence/Order of Evaluation [JCW], 47
Passing Parameters and Return Values [CSJ], 61, 82
Pointer Arithmetic [RVG], 29
Pointer Casting and Pointer Type Changes [HFC], 28
Pre-processor Directives [NMP], 87
Protocol Lock Errors [CGM], 105
Provision of Inherently Unsafe Operations [SKL], 90
Recursion [GDL], 67
Side-effects and Order of Evaluation [SAM], 49
Sign Extension Error [XZI], 36
String Termination [CIM], 22
Structured Programming [EWD], 60
Subprogram Signature Mismatch [OTR], 65
Suppression of Language-defined Run-time Checking
[MXB], 89
Switch Statements and Static Analysis [CLL], 54
Templates and Generics [SYM], 76
Termination Strategy [REU], 70
Type System [IHN], 12
Type-breaking Reinterpretation of Data [AMV], 72
Unanticipated Exceptions from Library Routines [HIW],
86
Unchecked Array Copying [XYW], 27
Unchecked Array Indexing [XYZ], 25
Uncontrolled Fromat String [SHL], 110
Undefined Behaviour [EWF], 94
Unspecified Behaviour [BFQ], 92
Unused Variable [YZS], 40
Use of unchecked data from an uncontrolled or tainted
source [EFS], 109
Using Shift Operations for Multiplication and Division
[PIK], 35
language vulnerability, 5
LAV — Initialization of Variables, 45
LHS (left-hand side), 241
Linux, 120
livelock, 106
longjmp, 60
LRM — Extra Intrinsics, 79

MAC address, 119
macof, 118
MEM — Deprecated Language Features, 97
memory disclosure, 130
Microsoft
Win1l6, 121
Windows, 117
Windows XP, 120

MIME software vulnerabilities, 9

Multipurpose Internet Mail Extensions, 124 sqL
MISRA C, 29 Structured Query Language, 112
MISRA C++, 87 STR — Bit Representations, 14
mlock (), 117 strcpy, 23
MVX — Use of a One-Way Hash without a Salt, 141 strncpy, 23
MXB — Suppression of Language-defined Run-time structure type equivalence, 12
Checking, 89 switch, 54
SYM — Templates and Generics, 76
NAI — Choice of Clear Names, 37 symlink, 131
name type equivalence, 12
NMP — Pre-Processor Directives, 87 tail-recursion, 68
NSQ — Library Signature, 84 templates, 76, 77
NTFS TEX — Loop Control Variables, 57
New Technology File System, 120 thread, 2
NULL, 31, 58 TRJ — Argument Passing to Library Functions, 80
NULL pointer, 31 type casts, 20
null-pointer, 30 type coercion, 20
NYY — Dynamically-linked Code and Self-modifying type safe, 12
Code, 83 type secure, 12

type system, 12
OTR — Subprogram Signature Mismatch, 65, 82

OYB - Ignored Error Status and Unhandled UNC

Exceptions, 68, 163 Uniform Naming Convention, 131

Universal Naming Convention, 131

Pascal, 82 Unchecked Conversion, 73
PHP, 124 UNIX, 83, 114, 120, 131
PIK — Using Shift Operations for Multiplication and unspecified functionality, 111

Division, 34, 35, 197 Unspecified functionality, 111
PLF — Floating-point Arithmetic, xvii, 16 URI
POSIX, 99 Uniform Resource Identifier, 127
pragmas, 75, 96 URL
predictable execution, 4, 8 Uniform Resource Locator, 127
PYQ — URL Redirection to Untrusted Site (‘Open

Redirect'), 140 VirtualLock (), 117
real numbers, 16 white-list, 120, 124, 127
Real-Time Java, 105 Windows, 99
resource exhaustion, 118 WPL - Improper Restriction of Excessive
REU — Termination Strategy, 70 Authentication Attempts, 140
RIP — Inheritance, xvii, 78 WXQ — Dead Store, 39, 40, 41
rsize t,22
RST — Injection, 109, 122 XSS
runtime-constraint handler, 191 Cross-site scripting, 125
RVG - Pointer Arithmetic, 29 XYH — Null Pointer Deference, 30

XYK — Dangling Reference to Heap, 31

safety hazard, 4 XYL - Memory Leak, 74
safety-critical software, 5 XYM — Insufficiently Protected Credentials, 9, 133
SAM - Side-effects and Order of Evaluation, 49 XYN —Adherence to Least Privilege, 113
security vulnerability, 5 XYO — Privilege Sandbox Issues, 114
SelmpersonatePrivilege, 115 XYP — Hard-coded Password, 136
setjmp, 60 XYQ — Dead and Deactivated Code, 52
SHL — Uncontrolled Format String, 110 XYS — Executing or Loading Untrusted Code, 116
size_t,22 XYT — Cross-site Scripting, 125
SKL — Provision of Inherently Unsafe Operations, 90 XYW — Unchecked Array Copying, 27

software quality, 4 XYZ — Unchecked Array Indexing, 25, 28

XZH — Off-by-one Error, 58

XZI — Sign Extension Error, 36

XZK — Senitive Information Uncleared Before Use,
130

XZL — Discrepancy Information Leak, 129

XZN — Missing or Inconsistent Access Control, 134

XZO — Authentication Logic Error, 135

XZP — Resource Exhaustion, 118

XZQ - Unquoted Search Path or Element, 127

XZR — Improperly Verified Signature, 128

XZS — Missing Required Cryptographic Step, 133

XZX — Memory Locking, 117

YOW - Identifier Name Reuse, 41, 44
YZS — Unused Variable, 39, 40

