
Document: WG14 N1302
Date: 2008-04-17

Various models used for the [type-generic FP] comparision macros of 7.12.14.

Integer args? Mixed FP types? Solution

yes yes int _isless(long double x, long double y);
 #define isless(x,y) _isless(x,y)

 This is the slowest as extra conversions
 would be done if x and y are the same type
 and not long double. It is the easiest to
 implement as no magic is required.

yes yes int _islessl(long double x, long double y);
 int _islessd(double x, double y);
 int _islessf(float x, float y);
 #define isless(x,y) _tg_isless(x,y)

 This treats isless(x,y) just like pow(x,y)
 in <tgmath.h>; they both use the same magic
 of type-generic macros.

yes yes ?< [[an operator in the language]]

 This should be equivalent to the above
 unless the hardware supports compares
 between different FP types; in which case
 it would be faster as it avoids an explicit
 conversion. Unless the above were inline
 functions, this would be faster in that it
 avoids the function call overhead.

 The above 3 are most general and slowest.

 The next 2 honor the last sentance of
 7.12.14 in that they require the arguments
 to be real floating types. Since they
 use compiler magic, they could result in
 inline instructions and avoid a function
 call.

no yes int isless(real-floating x, real-floating y);
 #define isless(x,y) _cm_isless(x,y)
 along with compiler magic

 This is intermediate between the other two
 models. This is what Tydeman believes that
 C99 requires.

no no int isless(real-floating x, real-floating y);
 #define isless(x,y) _cm_isless(x,y)
 along with compiler magic

 This is the most restrictive and the fastest
 (of the function based solutions) as no
 conversions need be done. I heard P.J.
 Plauger favor this model.

IEEE-754 only covers comparisons between floating-point values and
comparisons involving mixed FP types shall be supported. So, C doing
IEEE-754 comparisons where one operand is an integer value and the
other is a floating-point value is an extension to IEEE-754.

The classification macros of 7.12.3 need similar compiler magic.
fpclassify() and isnormal() are the only macros that truely require

magic as they must use the type of the argument (and isnormal() can be
done as fpclassify()==FP_NORMAL). The others can all be done using
functions of long double parameters; at a cost in performance.

