
IEC 60559-3 ANNEX
UPDATE

N2578
WG 14 – online meeting

October 2020

C FP group

Background
• Goal: C support for interchange and extended formats

specified in IEC 60559:2011 (and 2020).
• ISO/IEC TS 18661-3 “Interchange and extended types”

published 2015.
• Recast as C2X annex in N2342.
• Presented to WG14. See slide deck N2374.
• Approved by WG14 for C2X.
• Rebased to then current C2X draft in N2405.
• Incorporation into C2X not completed.
• Updated in N2579 (based on C2X draft N2478) …

Changes in update
• X.2.1 #1 and X.2.3 #1 Revised tables of type parameters

to use C instead of IEC 60559 model parameters.
Editorial.

Parameter binary16 binary32 binary64 binary128 binaryN (N ≥ 128)
N, storage
width in bits

16 32 64 128 N a multiple of 32

p, precision
in bits

11 24 53 113 N − round(4×log2(N)) + 13

emax,
maximum
exponent e

16 128 1024 16384 2(N−p−1)

emin,
minimum
exponent e

−13 −125 −1021 −16381 3 − emax

Binary	interchange	format	parameters

Changes in update
• X.2.3 Added requirement that extended types of the same

radix be ordered.

For usual arithmetic conversions and tgmath rules, this reduces the
number of cases where undefined behavior is possible.
Not an IEC 60559 requirement (maybe an oversight).

[2] … The set of values of _Float32x is a subset of the set of values
of _Float64x; the set of values of _Float64x is a subset of the set of
values of _Float128x. The set of values of _Decimal64x is a subset
of the set of values of _Decimal128x. …

Changes in update
• X.8 Removed the lists of identifiers per header and

conditional macros. Now just

Utility didn’t justify the lengthy lists.
Conditionalities specified in relevant subclauses.

[1] The identifiers added to library headers by this annex are defined
or declared by their respective headers only if the macro
__STDC_WANT_IEC_60559_TYPES_EXT__ is defined (by the
user) at the point in the code where the appropriate header is first
included.

Changes in update
• Clarified relevant conditionalities, in various places.

Examples:

• Added to annex synopses:

• X.11.3 Regarding encoding functions for non-arithmetic formats,
added:

… Support for these formats is an optional feature of this annex.
Implementations that do not support non-arithmetic interchange
formats need not declare the functions in this subclause.

#define __STDC_WANT_IEC_60559_TYPES_EXT__

Changes in update
• X.2.2 #2 Made support for binary16 optional. Previously

required at least as non-arithmetic format.
How many and which short floating-point formats will be needed is
unclear.

• X.5 #6 Added determination for the quantum exponent of
floating constants of decimal floating type.

Missing in N2405 -- oversight.

[6] The quantum exponent of a floating constant of decimal floating
type is the same as for the result value of the corresponding
strtodN or strtodNx function (X.12.2) for the same numeric string.

applewebdata://B06DDDB8-95E7-404B-B3DB-C0E969884C44/

Changes in update
• X.10 Added missing <fenv.h> specification for new types.

Missing in N2405 - oversight.

[3] … Likewise, both the dynamic rounding direction mode accessed by
fe_dec_getround and fe_dec_setround and the FENV_DEC_ROUND
rounding control pragmas apply to operations for all the decimal floating
types, including those decimal floating types introduced in this annex, and
to conversions for radix-10 non-arithmetic interchange formats.

[2] The same floating-point status flags are used by floating-point
operations for all floating types, including those types introduced in this
annex, and by conversions for IEC 60559 non-arithmetic interchange
formats.

Changes in update
• X.11.2 Added prototypes for the mathematical function

families from TS 18661-4a.
Missing in N2405 - oversight.

…
_FloatN rsqrtfN(_FloatN x);
_FloatNx rsqrtfNx(_FloatNx x);
_DecimalN rsqrtdN(_DecimalN x);
_DecimalNx rsqrtdNx(_DecimalNx x);
…

Changes in update
• X.3 #2 and #3 Changed so that wide evaluation does not

specify a type for the evaluation format that is different
from the semantic type if the two types have the same
values.

Not substantive for evaluation formats, but changes _t
types which are defined as the type specified for the
evaluation format. E.g., with FLT_EVAL_METHOD 1,
_Float64_t was double, now is _Float64_t.

1 evaluate operations and constants, whose semantic type
comprises a set of values that is a strict subset of the values of double, to
the range and precision of double; evaluate all other operations and
constants to the range and precision of the semantic type;

Changes in update
• X.11 #7 Added an example showing _t types, as

determined by specification of evaluation formats.

_t type as determined by FLT_EVAL_METHOD m
_t type \ m 0 1 2 32 64 128 33 65

_Float16_t float double long
double _Float32 _Float64 _Float128 _Float32x _Float64x

float_t float double long
double float _Float64 _Float128 _Float32x _Float64x

_Float32_t _Float32 double long
double _Float32 _Float64 _Float128 _Float32x _Float64x

double_t double double long
double double double _Float128 double _Float64x

_Float64_t _Float64 _Float64 long
double _Float64 _Float64 _Float128 _Float64 _Float64x

long_double_
t

long
double

long
double

long
double

long
double

long
double _Float128 long

double long double

_Float128_t _Float128 _Float128 _Float128 _Float128 _Float128 _Float128 _Float128 _Float128

Type IEC 60559 format
_Float16 binary16
float, _Float32 binary32
double, _Float64, _Float32x binary64
long double, _Float64x 80-bit binary64-extended
_Float128 binary128

Changes in update
• X.11.3.1.1 (and elsewhere) Changed restrict pointer

parameters to arrays with static restrict size.
void strtoencfN(unsigned char encptr[restrict static N/8],

const char * restrict nptr, char ** restrict endptr);

Changes in update
• X.11.3.2.1 #4 Added an example using f32encf16 and

decodef32 for correctly rounded conversion from
binary16 non-arithmetic format to float.

#define __STDC_WANT_IEC_60559_TYPES_EXT__
#include <math.h>
unsigned char b16[2]; // for input binary16 datum
float f; // for result
unsigned char b32[4];
_Float32 f32;
// store input binary16 datum in array b16
...
f32encf16(b32, b16);
decodef32(&f32, b32);
f = f32;
...

Changes in update
• X.12.2 #3 Added requirement that, for implementations

supporting both binary and decimal types and at least one
(binary or decimal) non-arithmetic interchange format, the
strto functions for decimal types and formats accept input
strings of hexadecimal form and correctly round for
enough hexadecimal digits to represent all radix-2 types
and formats.
Supports IEC 60559 requirement for conversions. See new X.12.2
example.
[3] For implementations that support both binary and decimal floating types and a
(binary or decimal) non-arithmetic interchange format, the strtodN and strtodNx
functions (and hence the strtoencdecdN and strtoencbindN functions in
X.12.4.2) shall accept subject sequences that have the form of hexadecimal
floating numbers and otherwise meet the requirements of subject sequences
(7.22.1.6). …

applewebdata://9304BBB4-B125-412F-89F4-33C04EF62D3E/

Changes in update
• X.12.2 #3 Added requirement continued …

… Then the decimal results shall be correctly rounded if the subject sequence has
at most M significant hexadecimal digits, where M ≥ ⎡(P-1)/4⎤ + 1 is implementation
defined, and P is the maximum precision of the supported binary floating types
and binary non-arithmetic formats. If all subject sequences of hexadecimal
form are correctly rounded, M may be regarded as infinite. If the subject
sequence has more than M significant hexadecimal digits, the implementation may
first round to M significant hexadecimal digits according to the applicable
rounding direction mode, signaling exceptions as though converting from a wider
format, then correctly round the result of the shortened hexadecimal input to
the result type.

Changes in update
• X.12.2 #4 Added an example using strfromencf128 and

strtod128 for correctly rounded conversion from
binary128 non-arithmetic format to _Decimal128 type.

#define __STDC_WANT_IEC_60559_TYPES_EXT__
#include <stdlib.h>
#define MAXSIZE 41 // > intermediate hex string length
unsigned char b128[16]; // for input binary128 datum
_Decimal128 d128; // for result
char s[MAXSIZE];
// store input binary128 datum in array b128
...
strfromencf128(s, MAXSIZE, “%a”, b128);
d128 = strtod128(s, NULL);
...

Changes in update

• X.12.2 #4 Example continued ….

Use of “%a” for formatting assures an exact conversion of the value in binary format to

character sequence. The value of that character sequence will be correctly rounded to

_Decimal128, as specified above in this subclause. The array s for the output of

strfromencf128 need have no greater size than 41, which is the maximum length of strings

of the form

[-]0xh.h…hp±d, where there are up to 29 hexadecimal digits h and d has 5 digits

plus 1 for the null character.

Changes in update
• X.13 #3 Refined the way tgmath resolution rules regard integer-type arguments.

Avoids undefined behavior, e.g.,

#include <tgmath.h>
_Float32x f32x;
… pow(f32x, 2) …

had undefined behavior if _Float32x and double are not ordered (by inclusion of
values), now invokes powf32x.

The treatment of arguments of integer type in 7.25 is expanded to cases where another
argument has extended type. Arguments of integer type are regarded as having type:
_Decimal64x if any argument has a decimal extended type; otherwise
_Float32x if any argument has a binary extended type; otherwise
_Decimal64 if any argument has decimal type; otherwise
double

Changes in update
• X.13 #4 Enhanced the tgmath resolution rules for

functions that round to narrower type, so that arguments
of equivalent standard and binary type are used
interchangeably.

_Float32 x, y;
double d;
…
y = f32add(x, d);

was undefined, now calls f32addf64.

Changes in update
• X.13 #4 Enhanced tgmath resolution rules continued ….

… The following specification uses the notation type1 Í type2 to mean the
values of type1 are a subset of (or the same as) the values of type2. The
generic parameter type T for the function invoked by the macro is
determined as follows:

— First apply the rules (for determining the corresponding real type
of the generic parameters) in 7.25 for macros that do not round result to
narrower type, using the usual arithmetic conversion rules in X.4.2, to
obtain a preliminary type P for the generic parameters.
— If there exists a corresponding function whose generic
parameters have type P, then T is P.
— Otherwise, T is determined from P and the macro prefix as
follows:

…

applewebdata://06EA234D-35F6-4988-A005-D7A4D8B17FBC/

Changes in update
• X.13 #4 Enhanced tgmath resolution rules continued ….

…
— For prefix fM: If P is a standard or binary floating type, then T is
_FloatN for minimum N > M such that P Í T, if such a type T is supported;
otherwise T is _FloatNx for minimum N ≥ M such that P Í T, if such a type
T is supported. Otherwise (if no such _FloatN or _FloatNx is supported or
P is a decimal floating type), the behavior in undefined.
…

Changes in update
• X.13 #4 Updated and expanded the example.

pow(f32x, n) pow32x

Macros that round result to narrower type …

fsub(d, ld) fsubl
dsub(d, f32) dsubl
fmul(dc, d) undefined
ddiv(ld, f128) ddivl if _Float128 Í long double, else

undefined
f32add(f64x, f64) f32addf64x
f32xsqrt(n) f32xsqrtf64
f32mul(f128, f32x) f32mulf128 if _Float32x Í _Float128, else

f32mulf32x if _Float128 Ì _Float32x, else
undefined

…

Changes in update
• X.6 #3 Made _Float16, _Float32, _Float64 be subject to

default argument promotions like float is.

Allows these types to be printf arguments.
Synchronizes with C++ proposal for extension floating types.

[3] The default argument promotions (6.5.2.2) for functions whose type
does not include a prototype are expanded so that arguments that
have type _Float16, _Float32, or _Float64 are promoted to double.

