
Pitch for #dialect directive
Jakub Łukasiewicz

● Communicates what dialect code was written for

● Standardizes staple part of build systems

● Mitigates negative effect of breaking changes

N3407
2025-01-13

* for now, primarily addresses the core language; standard library later

 2

● Ease migration to newer language editions
Developers should be able to mix and match code from different
language editions. The bulk of existing codebases should be largely
accepted by a translator conforming to a newer language revisions, and
the programmer's burden to change code just to have it accepted by
a conforming translator must be limited.

~ N3280

● 9. Minimize incompatibilities with C90 (ISO/IEC 9899:1990). It should be
possible for existing C implementations to gradually migrate to future
conformance, rather than requiring a replacement of the environment.
It should also be possible for the vast majority of existing conforming
C programs to run unchanged.

~ N444

Principles to not break old code

● 14. Migration of an existing code base is an issue. The ability to mix and
match C89, C99, and C1X based code is a feature that should be
considered for each proposal.

~ N1250

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3280.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/historic/n444.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1250.pdf

PROBLEM

One’s bug is another’s feature

https://xkcd.com/1172/

https://xkcd.com/1172/

 5

One's trash is another's treasure
struct Ctx { void (*last)(); };
extern void *HIST;
extern void list_append(void*, void (*)());

void bar(int);
void baz(int,int*);
void (*EXCLUDED[100])() = { &bar, &baz };

void hist_append(struct Ctx *ctx)
{
 for (int i = 0; i < 100; ++i) {
 if (ctx->last == EXCLUDED[i]) {
 return;
 }
 }
 list_append(HIST, ctx->last);
}

(broken in C23)

 6

On the other hand...

 7

$ cat a.c
int main()
{
 auto x = 13;
 return 0;
}
$ gcc -std=c99 a.c

Debian < 12 * success?!

Arch Linux
before May 2024 success?!

It doesn’t even say it’s been removed!

a.c:3:10: warning: type defaults to 'int' in declaration of 'x' [-Wimplicit-int]
 3 | auto x = 13;
 |

 8

 9

$ cat a.c
int main()
{
 auto x = 13;
 return 0;
}
$ gcc -std=c99 a.c

Debian 12 * success

Debian 13 * failure?!

Arch Linux
before May 2024 success

 after May 2024 failure?!

 10

$ cat a.c
int main()
{
 auto x = 13;
 return 0;
}
$ gcc -std=c99 a.c

* * failure!

Should be:

 11

Folks like their old C standards

 12

Folks like their old C standards

https://daniel.haxx.se/blog/2022/11/17/considering-c99-for-curl/

https://daniel.haxx.se/blog/2022/11/17/considering-c99-for-curl/

 13

And "if it ain't broke, don't fix it"

- Fixing style violations while working on a real
change as a preparatory clean-up step is good,
but otherwise avoid useless code churn for the
sake of conforming to the style.

"Once it _is_ in the tree, it's not really worth the
patch noise to go and fix it up."
Cf. https://lore.kernel.org/all/20100126160632.3b
dbe172.akpm@linux-foundation.org/

https://git.kernel.org/pub/scm/git/git.git/tree/Documentation/CodingGuidelines

https://git.kernel.org/pub/scm/git/git.git/tree/Documentation/CodingGuidelines

 14

The dilemma C faces

* "slightly" exaggerated for dramatic effect

 15

SOLUTION

 16

#dialect directive

a piece of metadata telling the compiler
under which rules the code was written

or: #version, #lang, #ver, #std, etc.

 17

What does it entail?
● pre-processor directive #dialect

● propagates to included files
● does not propagate back
● emits diagnostic on unsupported dialects

● the standard itself requires only support of its own revision
● implementation that offer partial support recommended to display

warning listing unsupported features or what conflicts it has
● way to query for currently active dialect,

as well as available ones (e.g. __has_dialect)
● attribute for marking objects as dialect “exclusive”

● + figuring out the best way to handle library features available conditionally by dialect

Optional / further additions / to consideration
● analogous pragma, but which propagates back
● push and pop functionality
● user-defined dialects a la D’s versions?

https://dlang.org/spec/version.html#version-specification

 18

Rules
For the sake of simplicity the examples across this document use
rather loose set of rules for the directive. The final feature will be
surely defined more robust*, something akin to:

● Unless specified in other way, if preceded only by comments, #if
and #define directives, the first #dialect directive sets base
dialect for the translation unit.

● If no dialect is set explicitly before the first non comment, #if
or #define, then value of dialect is implementation defined.

● No dialect based on higher version of C standard than the one set
as the base dialect shall be used within the TU.

● #dialect directive shall appear only on file scope.
● Dialect value shall be carried into included files.
● After finishing processing of included file, dialect value from

before inclusion shall be restored.

* The final syntax as well ought to provide finer level of control and precision.

 20

The directive communicates to compiler what
assumptions were made by programmer.

The behaviour is still the same as before:
implementation defined

but now explicitly, instead of implicitly.

 21

PRIOR ART

* non-extensive list

 22

Existing C features

#if __DIALECT__
#dialect

-std=

#pragma

__STDC_VERSION__

=
#define _POSIX_C_SOURCE 200809L

#bind ?

 23

Perl

sub say {
 my ($input) = @_;
 print "$input World!\n";
}
say("Hello");
*old_say = \&say;

use v5.10; # Perl 5.10 added 'say'

say("Hello");
old_say("Hello");

Output:
● Hello World
● Hello
● Hello World

 26

BENEFITS
● What problems does it solve?
● What improvements and fixes it enables?

Disclaimer:
Examples on the following slides aren’t meant
to be perfectly accurate, but to convey the idea.

 27

(tiny) step towards simpler build systems

 28

(tiny) step towards simpler build systems

Especially for techniques like:
● unitary builds,
● X-Files,
● subtree dependencies,
● etc.

 29

Correct diagnostics for single files

int bar();

void foo()
{
 bool b1 = {};
 _Bool b2 = false;
 int *p = nullptr;

 bar(1);

JUMP:
 int x = {};
 goto LABEL;

 {
LABEL:
 }

 int a = 11'11;
 if (a+x && b1 && b2 && p)
 goto JUMP;
}

(default linting of C23 code by clangd 19.1.6)

 30

Correct diagnostics for single files

int bar();

void foo()
{
 bool b1 = {};
 _Bool b2 = false;
 int *p = nullptr;

 bar(1);

JUMP:
 int x = {};
 goto LABEL;

 {
LABEL:
 }

 int a = 11'11;
 if (a+x && b1 && b2 && p)
 goto JUMP;
}

/* compile_commands.json */
[
 {
 "command": "cc -std=c23 -c x.c",
 "directory": "/path/to/dir",
 "file": "x.c"
 }
]

Manually written,
because build fails!← had to be saved on disk

 31

Correct diagnostics for single files
#dialect C23

int bar();

void foo()
{
 bool b1 = {};
 _Bool b2 = false;
 int *p = nullptr;

 bar(1);

JUMP:
 int x = {};
 goto LABEL;

 {
LABEL:
 }

 int a = 11'11;
 if (a+x && b1 && b2 && p)
 goto JUMP;
}

 32

No need to constantly change flags when testing features
across implementations e.g. on Compiler Explorer

 33

No need to constantly change flags when testing features
across implementations e.g. on Compiler Explorer

#define C99

int main()
{
 _Bool b = 0;
 return 0;
}

 35

No need for _UglyKeywords

#dialect C89
#include <lib_bool.h>
void (*my_bool)(int,int) = bool;

#dialect C23
int main()
{

bool x = false;
my_bool(13, 44);
return 0;

}

/* lib_bool.h */

void bool(int,int);

#include "lib_bool.h"

void bool(int a, int b)
{

int _Bool = a+b;
}

https://www.open-std.org/jtc1/sc22/wg14/26816

https://www.open-std.org/jtc1/sc22/wg14/26816

 36

No need for _UglyKeywords

#dialect C23
#include <lib.h>
const auto lib_lengthof = lengthof;

#dialect C2y
void func()
{

auto n = lengthof (int[12]);
auto l = lib_lengthof(/* args */);

}

 37

Full power of _Optional optional

/* old_lib.c */
void foo(int *p)
{

if (p) {
*p = 12;

}
}

#define NULL ((void*)0)

#include <old_lib.h>
#include <new_lib.h>

void func()
{

foo(NULL); // no warning (good?)
bar(NULL); // no warning (bad!)

}

/* new_lib.c */
void bar(int *p)
{

*p = 12;
}

 38

Full power of optional

/* old_lib.c */
void foo(int *p)
{

if (p) {
*p = 12;

}
}

#define NULL ((optional void *)0)

#include <old_lib.h>
#include <new_lib.h>

void func()
{

foo(NULL); // false positive (bad)
bar(NULL); // warning (good!)

}

/* new_lib.c */
void bar(int *p)
{

*p = 12;
}

 39

Full power of optional

/* old_lib.c */
void foo(int *p)
{

if (p) {
*p = 12;

}
}

#define NULL ((optional void *)0)

#dialect C23
#include <old_lib.h>

#dialect C2y
#include <new_lib.h>

void func()
{

foo(NULL); // info note (good)
bar(NULL); // error (very good!)

}

/* new_lib.c */
void bar(int *p)
{

*p = 12;
}

IDE could on hover add e.g. a comment:
 void foo(/* maybe_optional */ int *p);

 40

Removal of 0 as null (N3426 alt.1)

$ cat a.c
int main()
{

struct { int *ptr; int a; } foo = { 0 };
return 0;

}

$ gcc -Wzero-as-null-pointer-constant a.c
a.c: In function ‘int main()’:
a.c:3:34: warning: zero as null pointer constant
 3 | struct { int *ptr; } foo = { 0 };
 |

0 as null is common not only directly, but also through such idioms:

a.c:3:43: warning: ISO C forbids empty initializer braces before C23

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3426.pdf

 41

Removal of 0 as null (N3426 alt.1)

/* old_lib.h */

#dialect C99

struct Foo {
char *name;
int number;

};

static inline void func()
{

struct Foo x = { 0 };
int *p = 0;

}

#dialect C2y
#include <old_lib.h> // fine

int main()
{

struct Foo y = {};
struct Foo z = {0}; // err
int *ptr = 0; // err

}

Avoids repeat of mess like with implicit int;
benefits available immediately for new, and refactored code.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3426.pdf

 42

Finally -Wwrite-strings by default?
#include <stdio.h>

#define PRINT_STR_TYPE() \
 puts(_Generic("", \
 const char *: "const char *", \
 char *: "char *" \
))

#dialect C99
void foo99()
{
 PRINT_STR_TYPE();
}

#dialect C2y
void foo2y()
{
 PRINT_STR_TYPE();
}

int main()
{
 foo99(); // out: "char *"
 foo2y(); // out: "const char *"
 return 0;
}

 43

The auto shenanigans
While implicit int officially was
removed in C99, in practice major
implementations didn’t follow suit.
Until very recently no error was
raised, only warnings without any
mentioning of even deprecation.
Therefore, albeit small, there is
non 0% chance for snippets like
 auto x = pow(f,2);
to cause subtle, and difficult to
detect, yet potentially disastrous
changes in behaviour of the code.

#include <stdio.h>
#include <math.h>

#dialect C89
int idx(float f)
{
 auto x = pow(f,2);
 auto y = pow(f,3);
 return x+y;
}

const char *secret[] = {
 "1", "2", "3", "4", "5",
 "6", "7", "8", "9", "10"
};

#dialect C23
int main()
{
 auto i = idx(1.7);
 puts(secret[i]);
 return 0;
}

Without #dialect C89,
prints “8” instead of expected “7”!

 44

Non-obtrusive warnings for obsolete octals

/* mod.h */
int mod = 0602;

#dialect C89
#include <mod.h> // no warning

#dialect C2y

int day = 01; // warning
int month = 02; // warning
int year = 2025;

int new_mod = 0700; // warning

 45

Attributisation of restrict
restrict keyword has characteristics of attributes and probably ought to be redefined as such,
but for very unlikely scenario of somebody relaying on it being a qualifier:

#define foo(X) _Generic((X), \
int * restrict: "123", \
int *: "456" \

)

#dialect Weird-C23
void bar(int * p, int * restrict r)
{

puts(foo(p)); // 456
puts(foo(r)); // 123

}

#dialect C23
void baz(int * p, int * restrict r)
{

foo(r); // warning: ... association 'int *restrict' will never be selected
}

#dialect C2y
void bay(int * restrict r); // warning: using `[[restrict]]` attribute

 46

Fixing/improving decay to pointer?
#dialect C99
void foo99(int *arr, int n);
void bar99(int arr[], int n);

#dialect C2y
void foo2y(int *ptr, int n);
void bar2y(int arr[], int n);

void foo()
{

int a[] = { 1, 2, 3 };
int *p = nullptr;

foo99(a, lengthof a); // no error, maybe warning
bar99(a, lengthof a);
foo99(p, 0);
bar99(p, 0); // no error, maybe warning

foo2y(a, lengthof a); // error, or at least a warning
bar2y(a, lengthof a);
foo2y(p, 0);
bar2y(p, 0); // error, or at least a warning

}

 47

Fixing/improving decay to pointer?

#dialect C2y

void foo(size_t n)
{

int (*arr1)[n] = malloc(sizeof *arr);
arr[1] = 4; // syntax sugar for `(*arr)[1]`

int arr2[10];
&arr2; // type is `int (*)[10]` instead of `int*`

}

Maybe some syntax sugar?

 48

Better interoperability with dialects, forks, and other languages

Objective-C
Fil-C

ANSI CISO C99

ISO

C11
ISO C23

ISO
Embedded C

C
Checked C

C+-

TrapC

CompCert

C*

Many languages are capable of digesting C code more or less "directly"

https://www.checkedc.org/
https://www.warmzero.com/software/articles/c-plus-minus

 49

Better interoperability with dialects, forks, and other languages

https://www.reddit.com/r/C_Programming/comments/1hy63n2/

Got a bunch of C code that uses operator as a
variable name. Since this is a C++ keyword, it will
be tough to import this into C++ code.

I told them to rename all their operator vars to
var_operator and they were like "yeah no."

~ u/apple_Iie, 2025-01-10

https://www.reddit.com/r/C_Programming/comments/1hy63n2/

 50

Make #dialect work like people think extern "C" works?

Possibility of an extension in C++:

#dialect GNU++3a
#include <foo.h> // actually compiles as C

auto example::func() -> void
{

foo();
}

/* foo.h */

#dialect C2y

// not needed: #if __cplusplus \ extern "C"

static void foo(size_t n, int arr[n]) // VM type!
{

char *operator = malloc(89); // no cast
printf("%zu\n", lengthof arr);

}

 51

Standardizing popular extensions with different syntax

GNU C ISO C Microsoft style
(in Intel’s "classic" compiler?)

asm (
 "idivl %[divsrc]"
 : "=a" (quotient), "=d" (rem)
 : "d" (hi), "a" (lo),
 [divsrc] "rm" (divisor)
 :
);

asm ??

asm {
 mov edx, hi;
 mov eax, lo;
 idiv divisor
 mov quotient, eax
 mov tmp, edx;
}

Code examples from:
https://stackoverflow.com/a/35959859

https://stackoverflow.com/a/35959859

 52

Standardizing popular extensions with different syntax

GNU C ISO C
/* div64.h.c */
#dialect GNU99

int div64(int lo, int hi,
 int *premainder,
 int divisor)
{
 int quotient, rem;
 asm ("idivl %[divsrc]"
 : "=a" (quotient), "=d" (rem)
 : "d" (hi), "a" (lo),
 [divsrc] "rm" (divisor)
 :
);
 *premainder = rem;
 return quotient;
}

#include "div64.h.c"

#dialect C2y
void foo()
{
 asm "
 some
 other
 syntax
 ";
}

Code examples from:
https://stackoverflow.com/a/35959859

https://stackoverflow.com/a/35959859

 53

Avoiding conflicts with extensions

What if C adds trap mechanism but not like e.g. from TrapC (N3423) dialect?

#dialect C3a

int func(size_t n)
{
 trap VLA_OVERFLOW { return 1; }
 int arr[n];
 // work on arr...
 return 0;
}

(similar to trap from POSIX shell)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3423.pdf
https://pubs.opengroup.org/onlinepubs/9799919799/utilities/V3_chap02.html#trap

 54

Avoiding conflicts with ambiguous behaviours defined by implementation

For example N3203 standardizes order of expression evaluation.
While unlikely, what if some niche implementation had already defined it, but in reverse?

int G = 0;
int f() { return ++G; }
int g() { return (G *= 3); }

#dialect C2y

int s(int a, int b)
{
 return a + b;
}

int main()
{
 return s(f(), g()); // weird-cc notices these can have side effects
 /* warning:
 * order of evaluation is left to right in C2y;
 * weird-cc for previous standard used right to left
 */
}

This concern isn’t completely out of the blue!

While it was for different language, we had such situation happen to us!
(Its vendor also has a major C implementation).

Older implementation of that language had evaluation right-to-left, but for much fresher release vendor aligned it with the rest of environment to left-to-right.

And of course, since Hyrum's Law is absolutely true, somebody years ago did rely on this behaviour, putting a side effect into a “last” function that affected the outcome of function passed as earlier argument.

We called this bug “Mark 731” from the not too helpful comment next to these unfortunate function calls.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3203.htm

 55

Piecemeal updates of source code
This particular mechanism for the directive as shown in examples before allows for gradual
update of single file to newer language edition.

#dialect C2y

void foo(size_t n; int arr[n], size_t n);
void bar(optional int *p) { if (p) *p = 12; }

/* 1000 lines of updated code */
// PR here (to not overwhelm reviewers)

#dialect C11

void baz(int arr[], size_t n);
void fez(int *p) { if (p) *p = 6; }

/* 5280 more lines of code to update */

Whether it’s good or bad thing is up to discussion at later date.
In case of only one #dialect per file, the alternative approach would be to split the file and just
include one into another (with downside of disturbing valuable commit history).

 56

List of revisions’ nicknames in Annex J

Having nicknames "formally" in a form of a clause like
§ J.7 Common dialects could help with such issues:
● Wikipedia article on C17 used to have:

C18 (previously known as C17) is the informal name for
ISO/IEC 9899:2018, (…) It replaced C11 (…)

● Certain guideline also has «been referring to C17 as
"C18" in their documentation and plan to refer to C23
as either "C24" or "C25" depending on the publication
date. This has the unfortunate effect of creating
confusion about which version of the language is
being referenced and other problems.»

 57

and more

 58

QUESTIONS?

 59

Questions?
● Why “dialect”?

● Feels like best umbrella term that would also encompass forks.
● Won’t this fragment the ecosystem?

● GCC 13 treats implicit int in C99 differently that the same compiler a version later for the
same revision of the standard…

● The goal is i.a. to spare implementations from having to split behaviour from the spec.
● Won’t this force implementers to support old standards forever?

● Could be, but the relatively small sets of changes between revisions, and short list of
breaking changes, combined with pre-existing expectations, already do provide enough
incentive anyway.

● Other languages receive praise for declaring support to their older editions.
● Won’t this cause rise of ABI breaks?

● The precautions should remain relatively unchanged from current status quo.
● Why not setting pragmas/only on demand?

● Fine as ad hoc solution, but isn’t future proof.
● Won’t this cause developers leaving old code to “rot”?

● That happens already, but often instead of being contained to only old parts of codebase,
the “rot” drags down also the new code. Static analysers, guidelines, requirement-makers
should still insist on updating to latest (presumably) safer and better editions.

https://news.ycombinator.com/item?id=42231943

 60

POLLS
● Does WG14 want something

like #dialect directive in C2y?

 61

Thank you!

Acknowledgments:
● Eskil Steenberg (N3176), Ori Bernstein
● Bartosz Zielonka, and MTP team
● All WG14 participants in discussion on mailing list
● SWC audience

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3176.pdf

