

Proposal for C2Y

WG14 N 3432
Title:

Author, affiliation: Robert C. Seacord,
 Woven by Toyota,
 rcseacord@gmail.com

Martin Uecker
 Graz University of Technology
 uecker@tugraz.at

Date: 2024-11-10

Proposal category: Defect

Target audience: Implementers, users

Abstract: Clarify composite types and remove UB

Prior art: C23

mailto:uecker@tugraz.at
mailto:rcseacord@gmail.com

Composite types
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N 3432

Reference Document: N 3301

Date: 2024-2-20

This proposal changes the rule for forming composite types

Change Log
2024-11-09:

● Initial version

Table of Contents
Proposal for C2Y 1
WG14 N 3432 1

Change Log 2
Table of Contents 2

1 Problem Description 2
1.1 Array Type Variants 3

Known Constant Length 3
Known Variable Length 3
Unspecified Length 3
Unknown Length 3

2 Proposal 4
3 Proposed Text 6

3.1 Version without Undefined Behavior (with N3397) 6
Subclause 6.2.7, paragraph 3 6
3.2 Version with Undefined Behavior (without N3397) 9

4 Interaction with other proposals 10
5 Acknowledgements 11

1 Problem Description

1.1 Array Type Variants
There are a variety of ways to express an array length which creates different array type variants.

Known Constant Length
int[1] // known constant length

Regular arrays with known constant length. The length expression is an integer constant expression.

Known Variable Length
int[n] // known variable length, n can be evaluated or unevaluated

A variable length array where the size is given by an expression evaluated at run-time. There are
situations where the length expressions are not evaluated but the type is needed, which can currently
lead to run-time undefined behavior in conditional expressions.

Unspecified Length
int[*] // array of known variable length, but the length is unspecified

Arrays of known variable length, but the length is unspecified. Those arrays are currently only used in
contexts where the actual type later used then has a length which is specified. As such the star is a
placeholder for a length expression in arrays that need to observe the same rules as regular arrays but
where the length is never actually needed, because they occur in unevaluated code.

Unknown Length
int[] // array of unknown length

Arrays of unknown length can only be used if their length is not needed. Such arrays have an
incomplete type, which can not be used in any situation where the length is needed in principle.

1.2 Relevant Standard Clauses
C2Y working draft n3301, Subclause 6.7.7.3, paragraph 4 states that:

If the size is an integer constant expression and the element type has a known constant size,
the array type is not a variable length array type; otherwise, the array type is a variable length
array type.

This means that an array whose length is an integer constant expression but whose elements do not
have a constant size are considered variable length arrays.

N3301 subclause 6.2.5, paragraph 28 states that:

A type has known constant size if it is complete and is not a variable length array type.

N3301 subclause 6.2.7, paragraph 3 has a set of rules that are applied when one type is “a variable
length array” or “an array of known constant size”.

According to existing practice, the logic for determining composite types should be based on whether
the array has a known constant number of elements and NOT if the array is a variable length array.

2 Proposal
This proposal changes the semantics of the language by changing the composite type rules to not
depend on if an array is a variable length array or not. Furthermore, this paper suggests removing
undefined behavior when forming composite types based on N3397 and includes revised wording for
this.

Each rule is based on the array length expression and if it has known constant length, is an
unevaluated expression, a VLA of specified length, a VLA of unspecified length, or has unknown
length.

N3397 Slaying A Triple-Headed Demon seeks to eliminate undefined behavior related to variably
modified types. This overlaps significantly with how composite types are handled, so this proposal
provides wording that incorporates that proposal.

The following table shows the proposed new behavior for the composite type of two array expressions
if N3397 Slaying A Triple-Headed Demon is not adopted and the undefined behavior is preserved.

 Known
constant
length

Unevaluated
expression

VLA of
specified
length

VLA of
unspecified
length

Unknown
length

Known
constant
length

Known
constant
length

Known
constant
length

Known
constant
length

Known
constant
length

Known
constant
length

Unevaluated
expression

 Undefined
behavior

Undefined
behavior

Undefined
behavior

Undefined
behavior

VLA of
specified
length

 VLA of
specified
length

VLA of
specified
length

VLA of
specified
length

VLA of
unspecified
length

 VLA of
unspecified
length

VLA of
unspecified
length

Unknown
length

 Unknown
length

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3397.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3397.pdf

The following table shows the proposed new behavior for the composite type of two array expressions
if the UB associated with an unevaluated size expression is treated as a constraint violation as
described in N3397:

 Known
constant
length

VLA of
specified
length

VLA of
unspecified
length

Unevaluated
expression
(now also
unspecified)

Unknown
length

Known
constant
length

Known
constant
length

Known
constant
length

Known
constant
length

Known
Constant
length

Known
constant
length

VLA of
specified
length

 VLA of
specified
length

VLA of
specified
length

VLA of
specified
length†

VLA of
specified
length

VLA of
unspecified
length

 VLA of
unspecified
length

VLA of
unspecified
length*

VLA of
unspecified
length

Unevaluated
expression
(now also
unspecified)

 VLA of
unspecified
length*

VLA of
unspecified
length*

Unknown
length

 Unknown
length

The cases marked with * and † are undefined behavior in C23 without the additional change to the
conditional operator. With the additional change from N3397, the unevaluated expressions are now
considered to be unspecified lengths too and treated in the exact same way as other unspecified
lengths. The cases marked with * then formally become arrays of unspecified length. Additional
constraints to the conditional operator prevent their appearance outside of function prototypes, so that
these cases cannot appear anywhere they might cause undefined behavior (EXAMPLE 12 to 6.5.16).
The cases marked with † become defined because the known constant or specified length takes
precedence over the unspecified (formerly unevaluated) length (EXAMPLE 13 to 6.5.16).

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3397.pdf

3 Proposed Text

3.1 Version without Undefined Behavior (with N3397)
Proposed wording changes are against C2Y working draft n3301.

Subclause 6.2.7, paragraph 3

Replace N3301 subclause 6.2.7, paragraph 3 with the following text. The text in green contains
changes while the text in black does not.

A composite type can be constructed from two types that are compatible. If both types are the same

type, the composite type is this type. Otherwise, it is a type that is compatible with both and satisfies

the following conditions:

— If both types are structure types or both types are union types, the composite type is determined

recursively by forming the composite types of their members.

— If both types are array types, the following rules are applied:

• If one type is an array of known constant length, the composite type is an array of that length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[3]);

 int f(double (*)[]);

The resulting composite type for the function is:

 int f(double (*)[3]);

• Otherwise, if one type is a variable length array whose length is specified, the composite type is a
variable length array of that length.

EXAMPLE Given the following two file scope declarations:

 int f(size_t size, double (*)[size]);

 int f(size_t size, double (*)[]);

The resulting composite type for the function is:

 int f(size_t size, double (*)[size]);

• Otherwise, if one type is a variable length array of unspecified length, the composite type is a
variable length array of unspecified length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[]);

 int f(double (*)[*]);

The resulting composite type for the function is:

 int f(double (*)[*]);

• Otherwise, both types are arrays of unknown length and the composite type is an array of unknown
length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[]);

 int f(double (*)[]);

The resulting composite type for the function is:

 int f(double (*)[]);

The element type of the composite array type is the composite type of the two element types.

— If both types are function types, the type of each parameter in the composite parameter type

list is the composite type of the corresponding parameters.

— If one of the types has a standard attribute, the composite type also has that attribute.

— If both types are enumerated types, the composite type is an enumerated type.

— If one type is an enumerated type and the other is an integer type other than an enumerated

type, it is implementation-defined whether or not the composite type is an enumerated type.

These rules apply recursively to the types from which the two types are derived.

6.5.16 Conditional operator

Constraints

5 If one operand is a pointer to a variably modified type and the other operand is a null pointer
constant or has type nullptr_t, the variably modified type shall not depend on array length
expressions that would remain unevaluated when the corresponding operand is not evaluated. When
recursively forming a composite type to determine the result type, arrays of unknown length that are
not part of a declaration for a function parameter shall not be paired with arrays whose length
expressions remain unevaluated when the corresponding operand is not evaluated.

Semantics

8 If one operand is a pointer to a variably modified type and the other operand is a null pointer
constant or has type nullptr_t, the behavior is undefined if the type depends on an array size
expression that is not evaluated

8 All array length expressions that are not an integer constant expression and which are part of the
type of the operand that is not evaluated are treated as unspecified lengths in the determination of
type compatibilityYYY and when forming the composite type according to 6.2.7.
YYY) There is no undefined behavior when lengths of variably modified types in the two operands disagree at
runtime.

12 EXAMPLES Both conditional expressions contain constraint violations.
void foo(bool cond, void* p1, void* p2)

{

 int n = 2;

 // An array p1 whose length might not be evaluated is

 // a constraint violation

 auto a = cond ? nullptr : (char(*)[n])p1;

 // An array p1 of unknown length paired with an array p2

 // whose length might not be evaluated is a constraint violation

 auto b = cond ? (char(*)[])p1 : (char(*)[n])p2;

}

13 EXAMPLES All conditional expressions have defined behavior.
void foo(bool cond, void *p1, void *p2)

{

 int n = 2;

 int m = 3;

 auto a = cond ? (char(*)[2])p1 : (char(*)[m])p2; // known constant
length

 auto b = cond ? (char(*)[n])p1 : (char(*)[m])p2; // active branch
length

 char (*p3)[] = p1;

 char (*p4)[m] = p2;

 auto c = cond ? nullptr : p4; // previously evaluated

 auto d = cond ? p3: p4; // previously evaluated

}

6.7.7.3 Array declarators

6 For two array types to be compatible, both shall have compatible element types, and if both array
length expressions are present, and are integer constant expressions, then both array length
expressions shall have the same constant value. If the two array types are used in a context which
requires them to be compatible, it is undefined behavior if the two size specifiers the lengths of both
are specified and the corresponding array length expressions evaluate to unequal values

3.2 Version with Undefined Behavior (without N3397)

A composite type can be constructed from two types that are compatible. If both types are the same

type, the composite type is this type. Otherwise, it is a type that is compatible with both and satisfies

the following conditions:

— If both types are structure types or both types are union types, the composite type is determined

recursively by forming the composite types of their members.

— If both types are array types, the following rules are applied:

• If one type is an array of known constant length, the composite type is an array of that length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[3]);

 int f(double (*)[]);

The resulting composite type for the function is:

 int f(double (*)[3]);

• Otherwise, if one type is an array whose length is specified by an unevaluated expression, the
behavior is undefined.

 int n = 1, m = 1;

 auto p = 1 ? (char(*)[n])0 : (char(*)[m])0;

• Otherwise, if one type is a variable length array whose length is specified, the composite type is a
variable length array of that length.

EXAMPLE Given the following two file scope declarations:

 int f(size_t size, double (*)[size]);

 int f(size_t size, double (*)[]);

The resulting composite type for the function is:

 int f(size_t size, double (*)[size]);

• Otherwise, if one type is a variable length array of unspecified length, the composite type is a
variable length array of unspecified length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[]);

 int f(double (*)[*]);

The resulting composite type for the function is:

 int f(double (*)[*]);

• Otherwise, both types are arrays of unknown length and the composite type is an array of unknown
length.

EXAMPLE Given the following two file scope declarations:

 int f(double (*)[]);

 int f(double (*)[]);

The resulting composite type for the function is:

 int f(double (*)[]);

The element type of the composite array type is the composite type of the two element types.

— If both types are function types, the type of each parameter in the composite parameter type

list is the composite type of the corresponding parameters.

— If one of the types has a standard attribute, the composite type also has that attribute.

— If both types are enumerated types, the composite type is an enumerated type.

— If one type is an enumerated type and the other is an integer type other than an enumerated

type, it is implementation-defined whether or not the composite type is an enumerated type.

These rules apply recursively to the types from which the two types are derived.

4 Interaction with other proposals
n3416 Objects of known constant size changes subclause 6.7.7.3 describing how array declarators
are interpreted.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3416.htm

This paper conflicts with N3414 Clarify syntactic terms for array declarators that provides alternative
wording for subclause 6.2.7, paragraph 3. If N3414 is accepted, some terminology used in this paper
would need to be revised accordingly.

The paper integrates changes from n3397.

5 Acknowledgements
We would like to recognize the following people for their help with this work: Aaron Ballman, Joseph S.
Myers, Jens Gustedt, Anthony Williams, Tyler Kowalis, and Caleb McGary.

https://open-std.org/JTC1/SC22/WG14/www/docs/n3414.htm

	Proposal for C2Y
	WG14 N 3432
	
	Composite types
	Change Log
	Table of Contents

	1 Problem Description
	1.1 Array Type Variants
	Known Constant Length
	Known Variable Length
	Unspecified Length
	Unknown Length

	2 Proposal
	3 Proposed Text
	3.1 Version without Undefined Behavior (with N3397)
	Subclause 6.2.7, paragraph 3
	3.2 Version with Undefined Behavior (without N3397)

	4 Interaction with other proposals
	5 Acknowledgements

