
Proposal for C2y

WG14 N3449

Title: Enhanced type variance

Author, affiliation: Christopher Bazley, Arm. (WG14 member in individual capacity – GPU expert.)

Date: 2025-01-06

Proposal category: New features

Target audience: General Developers, Compiler/Tooling Developers

Abstract: Casting function pointers risks undefined behaviour if a called function is incompatible
with the type of the expression used to call it. Wrapper functions avoid such casts but undermine
the accessibility and expressiveness of the language. This paper proposes a relaxation of the rules for
simple assignment to enhance the language’s existing support for type variance.

Prior art: N2607.

Enhanced type variance

Reply-to: Christopher Bazley (chris.bazley@arm.com)
Document No: N3449
Date: 2025-01-06

Summary of Changes
N3449

• Initial proposal

Philosophical underpinning
Although new language features are useful, many users of C would be better served simply by
permitting translation of programs that they might reasonably expect to be conforming, but which
are currently non-conforming for obscure reasons. An example of such remediation is N2607 [1].

One aspect is the language’s treatment of pointers to void, which is not addressed by this paper;
another, addressed here (as well as by N2607), is its treatment of type qualifiers.

In both cases, it has proven impractical to teach programmers the techniques necessary to write
code that is both strictly conforming (i.e. portable) and type safe (i.e. verifiable). The scale of this
task is monumental. Even when programmers become aware of the issues, it can be difficult to
persuade them to expend the required extra effort.

Most programmers instead make the simplest possible change to suppress diagnostic messages:
they add casts. Arguably, compiler options such as -Wsign-conversion encourage this mindset
by making casting commonplace and therefore acceptable. Casts undermine readability and type
safety, both of which are more significant to correctness and maintainability than the mostly
theoretical matter of strict conformance.

One of the guiding principles of the C standard charter [2] is “Keep the language small and simple”:

Simplicity enables both programmers and tools to reason about code, allows for
diverse implementations, keeps compilation times short, and helps to achieve
other principles.

When this principle serves both implementers and programmers, it is indisputable; when it mainly
serves implementers at the expense of programmers, it should be questioned. No one should have
to reason about code that is theoretically sound and would perform as expected if translated.

The existing constraints on assignment appear to conflict with another principle of the charter,
“Enable secure programming”:

Software interfaces should be analysable and verifiable. The language should
allow programmers to write concise, understandable, and readable code.

Programs that use casts to override type checking are not verifiable; programs that define additional
functions or objects to avoid the need for such casts are not concise, understandable or readable.

In practice, the rigidity of C’s type system undermines type safety due to human factors.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2607.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3280.htm

Theoretical basis
Variance is the study of how subtyping of complex types (such as function pointers) relates to
subtyping of their constituent parts (such as parameters and return values).

There is a common perception that C does not support subtyping. It is true that C does not allow
programmers to create their own subtypes in the same way as C++, such that each subclass inherits
members of its superclass and upcasting from subclass to superclass type is implicit.

Techniques exist for implementing polymorphism for user-defined types in C, but an explanation of
them lies outside the scope of this paper. Instead, this paper will argue that C does effectively
already have subtype polymorphism in a limited form through its mechanism of type qualifiers.

A type, Q, is a subtype of another type, R, if an object of type Q can safely be used wherever an
object of type R can be used. This is known as substitutability. Subtypes can be substituted for
supertypes.

A type, Q, is a subtype of another type, R, if an object of type R can represent all the values of an
object of type Q. This is known as subsumption. Supertypes subsume subtypes.

Now let’s consider two declarations of typedef names in a C program:

typedef int *Q; // pointer to a mutable object
typedef const int *R; // pointer to a mutable or immutable object

In a C program, any object can be accessed through a const-qualified lvalue, but only mutable
objects can be modified through a modifiable lvalue without invoking undefined behaviour1. An
example of an immutable object is an object defined with a const-qualified type. A pointer to an
unqualified referenced type which may hold the address of an immutable object is a maintenance
hazard.

Type Q can only safely represent pointers to mutable objects of type int2. Type R can safely
represent pointers to immutable objects of type int in addition to the set of pointers to mutable
objects of type int representable by type Q. (R subsumes Q.)

In assignments or function calls, an expression of the same type as Q can safely be assigned to an
lvalue or function parameter of the same type as R. This is safe because the const qualifier on the
referenced type of R is a restriction on access to the pointed-to object, and assignment to a more-
qualified type is safe. If all const qualifiers were removed from a program, its behaviour would be
unchanged. (Q is substitutable for R.)

Effectively, a conversion from type Q to type R is an upcast, which is why it does not cause the
translator to produce a diagnostic message. Unfortunately, many other conversions that could be
termed upcasts are constraint violations in C.

1 The ISO C standard also describes ‘volatile accesses’ to objects which were not necessarily defined with a
volatile-qualified type. These are permitted for the same reason as const accesses.

2 In the context of type theory, the implementation-specific encoding of a pointer isn’t relevant. Nor have I
considered cases where integer values are converted to pointer types. Type Q can also represent a pointer to
an immutable object but not safely.

Problem statement
Callback functions are a common pattern in C programs. They can be used to implement
polymorphism, for event processing, to signal completion of asynchronous actions, or to execute the
same action for each item of a collection.

Within the standard library, examples include the comparison function pointer passed to the
bsearch and qsort functions, and the cleanup function pointer registered by calling the atexit
function.

The following example [3] illustrates a problem with the compatibility of function pointer types:

void printnum(const int *c)
{
 printf("%d", *c);
}

void foreach(size_t n, int a[n], void (*f)(int *c))
{
 for (size_t i = 0; i < n; ++i)
 {
 f(&a[i]);
 }
}

int main(void)
{
 int array[] = {23, 13, 10};
 foreach(3, array, printnum); // constraint violation
 return 0;
}

During translation of the above program, implementations are required to produce a diagnostic
similar to the following error reported by GCC:

<source>: In function 'main':
<source>:19:23: error: passing argument 3 of 'foreach' from
incompatible pointer type [-Wincompatible-pointer-types]
 19 | foreach(3, array, printnum); // constraint violation
 | ^~~~~~~~
 | |
 | void (*)(const int *)
<source>:8:41: note: expected 'void (*)(int *)' but argument is of
type 'void (*)(const int *)'
 8 | void foreach(size_t n, int a[n], void (*f)(int *c))
 | ~~~~~~~^~~~~~~~~~

This is strange, because the type of the printnum function is more permissive (for callers) than the
type of the expression used to call it. Ultimately, it undermines the usefulness of type qualifiers,
since they cannot be used in parameter declarations without knowledge of how such a function may
be called in future.

https://godbolt.org/z/dfn8r67ec

A possible solution [4] is to change the parameter type of the printnum function from const
int * to int *, to avoid triggering the error:

void printnum(int *c)
{
 printf("%d", *c);
}

void foreach(size_t n, int a[n], void (*f)(int *c))
{
 for (size_t i = 0; i < n; ++i)
 {
 f(&a[i]);
 }
}

int main(void)
{
 int array[] = {23, 13, 10};
 foreach(3, array, printnum); // okay
 return 0;
}

This solution makes the type of the printnum function more restrictive (for callers); it relies on the
assumption that printnum has no other callers which might need to pass the address of a const-
qualified int. It also prevents the implementation from producing diagnostics to warn about
accidental modification of an int whose address is passed to printnum.

An alternative solution [5] would be to introduce a wrapper function that exactly matches the type
required by foreach:

void printnum(const int *c)
{
 printf("%d", *c);
}

void printnum_wrapper(int *c)
{
 printnum(c);
}

void foreach(size_t n, int a[n], void (*f)(int *c))
{
 for (size_t i = 0; i < n; ++i)
 {
 f(&a[i]);
 }
}

int main(void)
{
 int array[] = {23, 13, 10};
 foreach(3, array, printnum_wrapper); // okay
 return 0;
}

https://godbolt.org/z/GMK6rsqs8
https://godbolt.org/z/YYTnWcfKb

Introducing the printnum_wrapper function allows callers of printnum to continue to pass the
address of a const-qualified int, but it is more effort than many programmers would be willing to
spend to work around what they may perceive as capricious behaviour by the translator.

A more common solution [6] is to cast the type of the printnum function pointer to force it to
match the unqualified type accepted by the foreach function:

void printnum(const int *c)
{
 printf("%d", *c);
}

void foreach(size_t n, int a[n], void (*f)(int *c))
{
 for (size_t i = 0; i < n; ++i)
 {
 f(&a[i]);
 }
}

int main(void)
{
 int array[] = {23, 13, 10};
 foreach(3, array, (void (*)(int *))printnum); // not type-safe
 return 0;
}

This is risky because it suppresses any diagnostics that might otherwise be produced if the type of
printnum and the type of the expression used to call it within the foreach function mismatch
more severely. For example, printnum might expect to receive a pointer to double instead of a
pointer to int.

Now, let’s consider an alternative scenario in which the printnum function was originally declared
as accepting the address of an unqualified int:

void printnum(int *c)
{
 printf("%d", *c);
}

To allow callers of printnum to pass the address of a const-qualified int and to guard against
accidental modification of the referenced object, a programmer may want to add a const qualifier
to the parameter declaration. This is impossible without breaking any existing code which assigns
the address of the printnum function to a pointer, even though the addition of a const qualifier
makes use of printnum more permissive (for callers).

This issue hinders modification of existing functions to add the new qualifier proposed by N3422 [7]
and is also a barrier to wider adoption of the qualifiers introduced by ANSI C many decades ago.
Since qualifiers are a core part of type safety in C, the current situation is untenable.

https://godbolt.org/z/84h1Wochr
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf

Analysis
Shortcomings in the current rules for compatibility of function pointers, as they relate to qualifiers,
can be generalised into three cases:

Contravariance of parameter types
Example [8]:

// The parameter type of foo is more permissive than needed by *bar
int foo(const int *);
int (*bar)(int *) = &foo;

This is a constraint violation because C treats function pointer types as invariant.

In contrast, a direct call to the function foo is not a constraint violation [9]:

// The parameter type of foo is more permissive than needed by bar
int foo(const int *);
int bar(int *x)
{
 return foo(x);
}

C allows an expression of type int * to be assigned to an lvalue of type const int *. As
previously expounded, type int * is effectively a subtype of const int * because a pointer to
a mutable object can be substituted for a pointer to a mutable or immutable object of the same
type.

(A cat is an animal; therefore, a cat can be used wherever an animal is required. Any specialized
abilities of cats are irrelevant.)

The relationship between the simple types is reversed for function types with differently qualified
parameters: int (*)(const int *) should be a subtype of int (*)(int *) because a
function that accepts a pointer to a mutable or immutable object can be substituted for a function
that only accepts a pointer to a mutable object. This reversal is called contravariance.

(If a function accepts any animal, it can accept a cat.)

It should follow that a function pointer of type int (*)(const int *) can be assigned to an
lvalue of type int (*)(int *), but it cannot.

https://godbolt.org/z/PP5qzYbYP
https://godbolt.org/z/svP9MnzaK

Covariance of return types
Example [10]:

// The return type of baz is more permissive than needed by *qux
int *baz(int *);
const int *(*qux)(int *) = &baz;

This is a constraint violation because C treats function pointer types as invariant.

In contrast, a direct call to the function baz is not a constraint violation [11]:

// The return type of baz is more permissive than needed by qux
int *baz(int *);
const int *qux(int *x)
{
 return baz(x);
}

For function return values, the relationship between the simple types is not reversed: int
()(int *) should be a subtype of const int *(*)(int *) because a function that
returns a pointer to a mutable object can be substituted for a function that returns a pointer to a
mutable or immutable object. This is called covariance.

(If a function is required to produce an animal, it can legitimately produce a cat.)

It should follow that a function pointer of type int *(*)(int *) can be assigned to an lvalue of
type const int *(*)(int *), but it cannot.

Variance of both parameter types and return types
The relationship between two function types can be covariant for their return types but
contravariant for their parameter types.

Example [12]:

// The return and parameter types of snap are more permissive
// than needed by *pop
int *snap(const int *);
const int *(*pop)(int *) = &snap;

This is a constraint violation because C treats function pointer types as invariant.

In contrast, a direct call to the function snap is not a constraint violation [13]:

// The return type and parameter types of snap are more permissive
// than needed by pop
int *snap(const int *);
const int *pop(int *x)
{
 return snap(x);
}

int *(*)(const int *) should be a subtype of const int *(*)(int *) because the
two function types are contravariant on their parameter types and covariant on their return types.

It should follow that a function pointer of type int *(*)(const int *) can be assigned to an
lvalue of type const int *(*)(int *), but it cannot.

https://godbolt.org/z/PP5qzYbYP
https://godbolt.org/z/r6Gs5cefc
https://godbolt.org/z/1WhY6rG7n
https://godbolt.org/z/4fMEKGj96

Subtype relationships
Types on the left can be substituted for (i.e. assigned to) types on the right; types on the right can
represent all values of types on the left. These principles should not be taken to imply that
substitutions in the text of a program would be beneficial.

• int * is effectively a subtype of const int *. It can only represent a pointer to a
mutable object, which can be treated as immutable (by making only const accesses).

• void (*)(const int *) should be a subtype of void (*)(int *). It accepts a
pointer to a mutable or immutable object; therefore, it can accept a pointer to a mutable
object and treat it as immutable.

• int *(*)(void) should be a subtype of const int *(*)(void). It returns a
pointer to a mutable object, which can be treated as immutable.

• int *(*)(const int *) should be a subtype of const int *(*)(int *). It
accepts a pointer to a mutable or immutable object; therefore, it can accept a pointer to a
mutable object and treat it as immutable. It returns a pointer to a mutable object, which can
be treated as immutable.

Of these relationships, only the first is currently supported by ISO C.

Why does so little of this work?
When a function is called, section 6.5.2.2 of the ISO C standard mandates that:

The number of arguments shall agree with the number of parameters. Each
argument shall have a type such that its value may be assigned to an object with
the unqualified version of the type of its corresponding parameter

The phrase “such that its value may be assigned to an object” means that we need to consult the
rules for simple assignment in section 6.5.17.2.

The most relevant constraint is:

— the left operand has atomic, qualified, or unqualified pointer type, and
(considering the type the left operand would have after lvalue conversion) both
operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left operand has all the qualifiers of the type
pointed to by the right operand;

Derived types such as array, structure, function and pointer types can be constructed recursively
(e.g., an array of pointers to functions returning int) but the standard is not explicit about whether
“qualified or unqualified versions” and “all the qualifiers of the type” are meant to apply recursively.

A definition of compatible type is given in section 6.2.7:

Two types are compatible types if they are the same. Additional rules for
determining whether two types are compatible are described in 6.7.3 for type
specifiers, in 6.7.4 for type qualifiers, and in 6.7.7 for declarators

The semantics of type qualifiers given in section 6.7.4 include:

For two qualified types to be compatible, both shall have the identically qualified
version of a compatible type; the order of type qualifiers within a list of specifiers
or qualifiers does not affect the specified type.

Consequently, functions cannot be called via pointer types that are not identically qualified (6.3.3):

A pointer to a function of one type can be converted to a pointer to a function of
another type and back again; the result shall compare equal to the original
pointer. If a converted pointer is used to call a function whose type is not
compatible with the referenced type, the behavior is undefined.

Section 6.2.5 implies there is no technical barrier to use of a differently qualified version of the same
type in scenarios where a translator could not feasibly output machine instructions to perform a
conversion (e.g., because the type is part of a derived type such as a pointer to a pointer):

The qualified or unqualified versions of a type are distinct types that belong to the
same type category and have the same representation and alignment
requirements.

Also:

Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements.

In practice, translators allow [14]:

const int *l = NULL; // pointer to a mutable or immutable object
int *r = NULL; // pointer to a mutable object
l = r; // implicit upcast

And [15]:

const int *l = NULL; // pointer to a mutable or immutable object
const int *r = NULL; // pointer to a mutable or immutable object
l = r;

But not [16]:

int *l = NULL; // pointer to a mutable object
const int *r = NULL; // pointer to a mutable or immutable object
l = r; // constraint violation: implicit downcast

Or [17]:

const int **l = NULL; // pointer to a pointer to a mutable or
immutable object
int **r = NULL; // pointer to a pointer to a mutable object
l = r; // constraint violation

We can therefore infer that const int * and int * are not considered to be “qualified or
unqualified versions of compatible types” for the purpose of an assignment in which the operands
have pointer type, despite having the same representation and alignment requirements.

https://godbolt.org/z/e9xMx8qTE
https://godbolt.org/z/obWqsG18E
https://godbolt.org/z/f6eGEEPce
https://godbolt.org/z/47EGYhrP4

Double indirection
It may not be obvious why an expression of type int ** cannot be assigned to an lvalue of type
const int **, given that int * can be assigned to const int *.

In both cases, the const-qualified referenced type can safely represent a superset of object
addresses representable by the unqualified referenced type. The problem is that a double-indirected
pointer can be used to modify two objects: the pointer it points to, and the object pointed to by that
pointer.

An example is provided in the ISO C standard to justify the constraints on simple assignment [18]:

void foo(void)
{
 const char **cpp;
 char *p;
 const char c = 'A';
 cpp = &p; // constraint violation
 *cpp = &c; // valid
 *p = 0; // undefined behaviour (c = 0)
}

The type of cpp says it is a pointer to a pointer to a mutable or immutable char. After *cpp has
been made into an alias for p (thereby violating a constraint), *cpp can be modified to make *p
alias c, an immutable char. This circumvents checking of the type of p, which can only safely point
to a mutable char.

The same example can be adapted to use a function call, with similar effect [19]:

const char c = 'A';

void bar(const char **cpp)
{
 *cpp = &c; // valid
}

void foo(void)
{
 char *p;
 bar(&p); // constraint violation
 *p = 0; // undefined behaviour (c = 0)
}

It follows that void (*)(const char **) is not substitutable for void (*)(char **)
because a function of the first type can easily assign the address of an immutable object to the
pointer whose address was passed by the caller; such assignments are unsafe if the referenced
pointer has a non-const-qualified referenced type.

The whole problem can be avoided by qualifying the pointed-to pointer, i.e. using type const
char *const * instead of const char **.

https://godbolt.org/z/zahYqEdGE
https://godbolt.org/z/7EcqGPY9j

That modification increases the number of constraint violations in comparison to the original
example [20]:

void foo(void)
{
 const char *const *cpcp; // 2nd const makes first CV redundant
 char *p;
 const char c = 'A';
 cpcp = &p; // constraint violation
 *cpcp = &c; // constraint violation (p = &c)
 *p = 0; // undefined behaviour (c = 0)
}

This shows there is no need to forbid assignment of an expression of type char ** to an lvalue of
type const char *const * (which is the first constraint violation). With those types, the
assignment cpp = &p can be permitted without creating an opportunity to circumvent checking of
the type of p. *cpp still aliases p but *cpp can no longer be used to modify p.

For every extra level of indirection, an extra const qualifier is required to make it safe to permit the
first assignment [21]:

void foo(void)
{
 const char *cp, *const *const *cpcpcp;
 char **pp;
 const char c = 'A';
 cpcpcp = &pp; // constraint violation
 cp = &c;
 *cpcpcp = &cp; // constraint violation (pp = &cp)
 **pp = 0; // undefined behaviour (*cp = 0, c = 0)
}

If the chain of indirection includes any array types, their element types must likewise be const-
qualified to prevent them being used to circumvent type-checking of pointers further along the
chain.

It is important not to draw the wrong conclusion about recursively qualifying derived types. Each
pointed-to pointer isn’t qualified as const because its referenced type is const-qualified; it is
const-qualified to prevent it being modified to point to an object that has all the qualifiers of its
referenced type.

Examples using volatile instead of const should help to clarify this:

• int ** should be subtype of volatile int *const *.
• void (*)(volatile int *const *) should be a subtype of void (*)(int

**).
• int **(*)(void) should be a subtype of volatile int *const *(*)(void).
• int **(*)(volatile int *const *) should be a subtype of volatile int

*const *(*)(int **).

https://godbolt.org/z/jbv63Ezjv
https://godbolt.org/z/4x5s3bPGd

Function types are special because a function’s return value is not an lvalue; there is no point
qualifying a return type as const, since it cannot be assigned to [22]:

void foo(void)
{
 const char *const (*cpcfp)(void); // 2nd const is redundant
 char *pf(void);
 const char c = 'A';
 cpcfp = &pf; // constraint violation
 (*cpcfp)() = &c; // lvalue required as left operand
 *pf() = 0; // valid
}

Because the return value of (*cpcfp)() is merely a copy of the result of evaluating some
expression, assigning to it cannot modify any object to point to c; nor does calling the same function
again as pf() yield a pointer to c.

Qualifiers on return types are treated inconsistently by GCC 14.2.0 and Clang 18.1.0: both warn
about such qualifiers in declarations and claim to ignore them, but Clang halts if a return type is
qualified in the right operand of a simple assignment but not the left operand [23].

It may be necessary to const-qualify function pointers to prevent them being used to circumvent
type-checking of pointers further along the chain [24]:

const char c = 'A';

const char *cpf(void)
{
 return &c;
}

void foo(void)
{
 const char *(*const *cpfpcp)(void);
 char *(*pfp)(void);
 cpfpcp = &pfp; // constraint violation
 *cpfpcp = &cpf; // constraint violation (pfp = &cpf)
 *(*pfp)() = 0; // undefined behaviour
}

The return type of **cpfpcp does not need to be qualified (as const char *const) to make
it safe to permit the first assignment. However, *cpfpcp must be const-qualified to prevent it
being modified to make *pfp alias cpf, a function that returns a pointer to an immutable char.

https://godbolt.org/z/KnjW8bYcn
https://godbolt.org/z/qrYKzdbEj
https://godbolt.org/z/aff9qeor9

Output parameters
Indirection is often used to allow a function to have more than one return value, by requiring callers
to provide a pointer to an object to be modified [25]:

#include <stdio.h>

int divide(int dividend, int divisor, int *remainder)
{
 *remainder = dividend % divisor;
 return dividend / divisor;
}

void test(int (*divider)(int, int, int *))
{
 int remainder;
 int quotient = (*divider)(6, 4, &remainder);
 printf("quotient=%d, remainder=%d.\n", quotient, remainder);
}

int main(void)
{
 test(÷);
 return 0;
}

This paper proposed that void (*)(const int *) should be a subtype of void (*)(int
*) because it is of no consequence to callers of a function with the latter signature that their callee
could also accept the address of an immutable object.

However, if a function of type int (int, int, const int *) were substituted for the
divide function in the example above, the substitute function could not (without casting) assign a
value to the object whose address is passed to it by test. Consequently, the value of remainder
would still be indeterminate at the point where it is printed.

It would be mistaken to attribute this bug entirely to variance: the type of the divide function
does not guarantee that it will assign a value to remainder on every path of execution; nor does
the alternative signature int (int, int, const int *) guarantee that a function of that
type will never assign a value to remainder (although it makes it unlikely).

The real issue is that the language lacks syntax to distinguish input parameters from output
parameters: a translator cannot tell that the third parameter is intended for output, so it cannot tell
that a substitution might be inappropriate. That doesn’t invalidate the concept of variance for
function types, but it does illustrate a potential drawback.

A more robust caller of the divide function would pre-initialise remainder:

int remainder = 0;
int quotient = divide(6, 4, &remainder);
printf("quotient=%d, remainder=%d.\n", quotient, remainder);

This makes it more likely that the program will behave predictably even though its division interface
is not analysable and may not have been implemented correctly.

https://godbolt.org/z/hW7WrMaa8

An alternative solution would be to return the quotient and remainder as members of a struct
type [26]:

#include <stdio.h>

typedef struct
{
 int quotient, remainder;
} divide_result;

divide_result divide(int dividend, int divisor)
{
 return (divide_result){
 .quotient = dividend / divisor,
 .remainder = dividend % divisor
 };
}

void test(divide_result (*divider)(int, int))
{
 divide_result res = (*divider)(6, 4);
 printf("quotient=%d, remainder=%d.\n",
 res.quotient, res.remainder);
}

This avoids the possibility of accidentally using an indeterminate value. In some circumstances, it
may also be more efficient than using an output parameter. For example, ARM64 GCC 14.2.0 packs
the 32-bit members of the struct type into a single 64-bit register, which avoids memory accesses
at the expense of slightly lower code density.

Output parameters can also have pointer types, which entails double indirection [27]:

void alloc_cint(const int **out)
{
 static const int p;
 *out = &p;
}

void whelk(void)
{
 const int *r;
 alloc_cint(&r);
}

If a parameter is a pointer to a pointer to a qualified type (as in the above example), then the pointer
to the qualified type must be const-qualified (unlike in the above example) to allow variance for
function pointer types as previously described.

The signature of the function used in the previous example could be modified as follows:

void alloc_cint(const int *const *out);

Contravariance of parameter types says that the address of the function could now be assigned to a
pointer of type void (*)(int **), but the function has also become useless because it can no
longer assign a value to *out.

https://godbolt.org/z/P6exP7oEP
https://godbolt.org/z/ddKM7sW9s

The only kind of variance that makes sense for output parameters is covariance (as for return types).
According to covariance, void (*)(int **out) should be a subtype of void (*)(const
int **out) just as int *(*)(void) is a subtype of const int *(*)(void). This is the
opposite of the subtyping relationship for ordinary parameters.

It would be unsafe to assume that all function parameters of pointer type that do not have a
const-qualified referenced type are output parameters. The caller of a function of type void
(const int **) can pass the address of a pointer to an object defined as const; if it were
permissible to substitute a function of type void (int **) then the substitute function could
modify the object through an lvalue which has non-const-qualified type.

Consequently, covariance cannot be supported for output parameters.

Luckily, it is rare to want to substitute a function that returns pointer to a less-qualified result.
However, lack of covariance for output parameters does also mean that a function pointer type
cannot restrict access to an object whose address is returned via an output parameter, beyond
whatever restrictions the pointed-to function imposes.

Function pointers as parameters
Parameters can be pointers to other functions, including recursively.

In the following declaration, foo may be the address of a function that allows its caller to pass the
address, bar, of a second function that allows its caller to pass the address, qux, of a third function:

void (*foo)(int *(*bar)(char *(*qux)(void)));

One or more return types (e.g., char *) may be part of a parameter type (e.g., char
*(*qux)(void)), without any obvious separation between them. This is potentially confusing
because a parameter type describes a source, whereas a return type describes a sink (regardless of
whether that sink is also part of the description of a source).

This paper argued that int *(*)(const int *) should be a subtype of const int
()(int *). According to contravariance of parameter types, the relationship between a
subtype and its supertype should be reversed when the type is used as a parameter.

Contravariance applies most straightforwardly to the chain of type derivations leading from a
function type to the outermost derivation of the parameter type that incorporates it. For example,
void (*)(void (**p)(void)) should be a subtype of void (*)(void (*const
*p)(void)) because the latter function can treat the object designated by *p as immutable
regardless of whether it is or not.

Applying contravariance to a function type in a parameter type is trickier. It would be nonsense to
think that a function’s parameters become sinks, and its return value becomes a source, just
because it is called through a pointer passed as a parameter. Nevertheless, the relationship between
subtype and supertype is reversed. How?

Covariance and contravariance are situational: the relationship between parameter types is only
contravariant relative to the relationship between the same types in simple assignment. In both
cases, a value of one type is (potentially) being assigned to an object of another.

Parameter types only appear contravariant in an assignment of a function pointer because a
parameter declaration in the type of the left operand describes the converted type of an argument
provided by a caller, whereas the type of the right operand describes the type of the same value in
the callee.

Argument passing can be modelled as assignment; therefore, the parameter type received by a
callee can be characterised as the type of an assignee object and the parameter type passed by its
caller as the type of an assigned value:

void (*a)(int *assigned);
void b(const int *assignee);
a = &b; // assigned type on the left, assignee type on the right
int assigned;
(*a)(&assigned); // assigned type is reinterpreted as assignee type

This is a reversal of the usual position of assigned and assignee types:

const int *assignee;
int assigned;
assignee = &assigned;

If the actual parameter of a and expected parameter of b have function pointer types instead
of object pointer types, their positions are still reversed relative to simple assignment:

void (*a)(void (*assigned)(const int *));
void b(void (*assignee)(int *));
a = &b; // assigned type on the left, assignee type on the right
void a2(const int *); // can accept mutable objects too
(*a)(&a2); // assigned type is reinterpreted as assignee type

When *a is called with the address of a2, the function executed is b, which has parameter type
void (*)(int *). If b calls a2 then it does so according to the parameter type of b, not the
parameter type of *a (which would be void (*)(const int *)). Hence, the type of the
pointer that b passes to a2 is int * (part of the assignee type in the call to *a but acting as
assigned type in the call to a2) rather than const int * (part of the assigned type in the call to
*a but acting as assignee type in the call to a2).

The above declarations could be rewritten to emphasise the call to the function whose address is
passed as a parameter, instead of the call to the top-level function:

void (*a)(void (*)(const int *assignee));
void b(void (*)(int *assigned));
a = &b; // assignee type on the left, assigned type on the right

Given that int * can also be assigned directly to const int *, this could be read as a refutation
of contravariance for parameter types; instead, it shows that the designation of parameter types as
assignee or assigned type is swapped at every nesting level:

void (*assignee)(void (*assigned)(const int *assignee));
void assigned(void (*assignee)(int *assigned));
assignee = &assigned;

The following example illustrates contravariance of the type of a parameter, bazpp, that is a
pointer to a pointer to a function [28]:

#include <stdio.h>

// *h is immutable although foo and bar don't require that
int *baz(const int *h)
{
 // i is mutable although foo and bar don't require that
 static int i;
 i = *h;
 return &i;
}

const int *bar(const int *(*const *bazpp)(int *h), int *h)
// ^^^^^^^^^^^^ variance ^^^^^^^^^^^^
{
 /* It would not be safe to allow *bazpp to be modified,
 e.g. it could be used to modify bazp to point to
 a function returns a pointer to an immutable int.
 */
 return (**bazpp)(h);
}

void foo(void)
{
 const int *(*barp)(int *(**bazpp)(const int *h), int *h) = &bar;
 // ^^^^^^^^ variance ^^^^^^^^^^
 int h = 5;
 int *(*bazp)(const int *) = &baz;
 const int *i = (*barp)(&bazp, &h);
 printf("%d", *i);
}

In the above example, let fn_t be a polymorphic type resembling int *(int *). If the
assignment of &bar to barp is permitted then fn_t *const * (the type of the bazpp
parameter of bar) is substituted for fn_t ** (the type of the same parameter of *barp). This is
contravariance.

In this case, const-qualification of *bazpp is not only permitted but required because the
pointed-to type fn_t is variant in its parameter type (const int * is substituted for int *)
and its return type (int * is substituted for const int *).

It would be unsafe to allow bar to modify *bazpp because it aliases bazp. If *bazpp could be
modified to point to a function that accepts only mutable objects (passed by reference) and returns
a pointer to an immutable object, then calling such a function through *bazp would be unsafe.

(This was previously discussed in the section on double indirection.)

https://godbolt.org/z/49e1335P7

Function pointers as return values
Return values can be pointers to other functions, including recursively.

In the following declaration, foo may be the address of a function that returns the address of a
second function that accepts the address of an int and returns the address of a third function that
accepts the address of a char and returns the address of a double:

double *(*(*(*foo)(void))(int *))(char *);

Since C23, the same declaration may alternatively be written as:

typeof(typeof(typeof(double *(char *)) *(int *)) *(void)) *foo;

This paper argued that int *(*)(const int *) should be a subtype of const int
()(int *). According to covariance of return types, it should be possible to extend this kind of
variance to all the function pointer types derived from double.

For example:

const double *(*(*(*a)(void))(int *))(char *);
double *(*(*b(void))(const int *))(const char *);
a = &b; // requires variance
int q;
char r;
double s = *(*(*(*a)())(&q))(&r);

A potential complication arises in the case of double-indirection:

const double *(*const *
 (*const *
 (*a)(void)
)(int *)
)(char *);
double *(**(**b(void))(const int *))(const char *);
a = &b; // requires variance
int q;
char r;
double s = *(**(**(*a)())(&q))(&r);

It is necessary to const-qualify the pointer to the function of type const double *(char *)
in the type of a to prevent it being used to circumvent type-checking:

const double *unsafe(char *);
*(**(*a)())(&q) = &unsafe; // replaces a double *(const char *)

The above assignment must not be allowed because unsafe requires a mutable char to be passed
(by reference) and returns the address of an immutable double, neither of which can be assumed
according to the type of b. Because of double indirection, the pointer to the third function must
exist outside the temporary lifetime of the return value of the second function; therefore, we must
assume that pointer (of a different type) could be used to call unsafe with the wrong constraints.

Because the type of the third function varies between a and b, it is necessary to const-qualify the
pointer to the second function in the type of a (whether the second function itself varies or not):

const double *(*const *unsafe(int *))(char *);
*(*a)() = &unsafe;

Proposed wording
The proposed wording is a diff from the N3299 working draft [29]. Green text is new text, while red
text is deleted text.

Since the existing EXAMPLE 3 in section 6.5.17.2 illustrates a constraint, it might be misplaced. I have
not moved it, nor the new examples, for fear of making the diff unreadable.

6.2.10 Substitutable type
1 A substitutable type is the referenced type of an expression of pointer type which can be assigned
to an lvalue of a different pointer type. One type can be substitutable for multiple types.

Additional rules for determining whether one type is substitutable for another apply to function
types in a recursively constructed derived type. Let N equal the nesting level of a function type when
function type derivations are counted (starting at 1) from innermost to outermost derivation.

 A type, Q, is substitutable for another type, R, if the following conditions are satisfied:

• Q and R would be compatible types if all qualifiers except _Atomic were removed from
both types (including from parameters of function types and from every derivation of a
derived type).

• For every referenced type3 from which a pointer is derived (including recursively) or the type
itself if the type consists of no derived types:

o the type in R has all the qualifiers of the type in Q; and,
o the type in Q has an atomic type if the type in R has an atomic type; and,
o the type in R is const-qualified if it is a pointer type derived (including transitively

through other derivations4) from a referenced type for which Q does not have all the
qualifiers of the type in R; or,

o the type in R is const-qualified if it is a pointer type derived (including transitively
through other derivations) from a function type that has at least one parameter of
pointer type derived (including transitively) from a referenced type for which Q does
not have all the qualifiers of the type in R.

• For every function type derivation that has an odd value of N:
o the referenced type of every parameter of pointer type satisfies the preceding

requirements for substitutability with Q and R swapped; and,
o the return type does not have a pointer type, or the referenced type of the return

type satisfies the preceding requirements for substitutability.
• For every function type derivation that has an even value of N:

o the referenced type of every parameter of pointer type satisfies the preceding
requirements for substitutability; and,

o the return type does not have a pointer type, or the referenced type of the return
type satisfies the preceding requirements for substitutability with Q and R swapped.

This method of determining whether one type is substitutable for another is applied recursively:
whether a type that includes function type derivations is substitutable depends on whether
referenced types of parameters of those function types are substitutable. Those parameter types
may themselves include function type derivations.

3 A return type is not a referenced type but the function type derived from it may be a referenced type.
4 This transitive dependency includes function type derivations. A return type can be a pointer type whose
referenced type in Q lacks qualifiers that are present in R, or which points to such a type.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3299.pdf

6.3.3.3 Pointers

8 A pointer to a function of one type can be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with substitutable for the referenced type, the behavior
is undefined.

6.5.17.2 Simple assignment
Constraints
1 One of the following shall hold:111)

• the left operand has atomic, qualified, or unqualified arithmetic type, and the right operand
has arithmetic type;

• the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right operand;

• the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left operand has
all the qualifiers of the type pointed to by the right operand, or the referenced type of the
right operand is substitutable for the referenced type of the left operand;

Semantics
6 EXAMPLE 3 The following fragment can be used as an example illustrates why assigning an
expression of pointer type to an lvalue that has a more-qualified referenced type at some level other
than its outermost derivation can be unsafe:

const char **cpp;
char *p;
const char c = ’A’;
cpp = &p; // constraint violation because *cpp is not const
*cpp = &c; // valid because *cpp is not const
*p = 0; // validundefined behavior

The first assignment is unsafe because it would allow the following valid code to attempt to change
the value of the const object c. Because the referenced type of cpp is not const-qualified, *cpp can
be modified to make p point to c without requiring the expression &c to be cast (as would be
required if &c were assigned directly to p).

7 EXAMPLE 4 The following fragment illustrates how assigning an expression of pointer type to an
lvalue that has a more-qualified referenced type at some level other than its outermost derivation
can be safe:

const char *const *cpp;
char *p;
const char c = 'A';
cpp = &p; // valid because *cpp is const
*cpp = &c; // constraint violation because *cpp is const
*p = 0; // undefined behavior

The second assignment is unsafe because it would allow the following code to attempt to change the
value of the const object c. Because the referenced type of cpp is const-qualified, *cpp cannot be
modified to make p point to c without requiring the expression &c to be cast.

8 EXAMPLE 5 The following fragment illustrates assignments involving different pointer types:

volatile int vi, *pvi = &vi, **ppvi = &pvi,
 *const *pcpvi,
 ***pppvi,
 *const **ppcpvi,
 **const *pcppvi,
 *const *const *pcpcpvi;

int i, *pi = &i, **ppi = &pi, ***pppi = &ppi;

pvi = pi; // 1. valid
pi = pvi; // 2. constraint violation because *pi is not volatile

ppvi = ppi; // 3. constraint violation because *ppvi is not const
pcpvi = ppi; // 4. valid
ppi = pcpvi; // 5. constraint violation because **ppi is not
 volatile */

pppvi = pppi; /* 6. constraint violation because *pppvi and **pppvi
 are not const */
pcppvi = pppi; /* 7. constraint violation because **pcppvi is not
 const */
ppcpvi = pppi; /* 8. constraint violation because *ppcpvi is not
 const */
pcpcpvi = pppi; // 9. valid
pppi = pcpcpvi; /* 10. constraint violation because ***pppi is not
 volatile */

The second, fifth and tenth assignments are unsafe because they would allow access to an object
(vi) defined with a volatile-qualified type through an lvalue (*pi, **ppi or ***pppi) which has
non-volatile-qualified type.

The third assignment is unsafe because it would allow following code to modify pi to point to a
volatile int by assigning to *ppvi.

The sixth and seventh assignments are unsafe because they would allow following code to modify
pi to point to a volatile int by assigning to **pppvi or **pcppvi.

The sixth and eighth assignments are unsafe because they would allow following code to modify
ppi to point to the address of a volatile int by assigning to *pppvi or *ppcpvi.

7 EXAMPLE 6 The following fragment illustrates assignments involving function pointer types:

void fpi(int *), (*pfpi)(int *) = &fpi,
 (*pfpvi)(volatile int *),
 fppi(int **), (*pfppi)(int **) = &fppi,
 fppvi(volatile int **), (*pfppvi)(volatile int **) = &fppvi,
 (*pfpcpvi)(volatile int *const *);

int *fpvirpi(volatile int *),
 *(*pfpvirpi)(volatile int *) = &fpvirpi,
 *(*pfrpi)(void),
 **frppi(void), **(*pfrppi)(void) = &frppi,
 **(*pfpcpvirppi)(volatile int *const *);

volatile int *fpirpvi(int *), *(*pfpirpvi)(int *) = &fpirpvi,
 *(*pfrpvi)(void),
 **(*pfrppvi)(void),
 *const *frpcpvi(void),
 *const *(*pfrpcpvi)(void) = &frpcpvi,
 *const *fppirpcpvi(int **),
 *const *(*pfppirpcpvi)(int **) = &fppirpcpvi;

pfpvi = pfpi; /* 1. constraint violation because referenced type of
 parameter of *pfpvi is volatile */
pfpi = pfpvi; // 2. valid

pfrpi = pfrpvi; /* 3. constraint violation because referenced type
 of return type of *pfrpi is not volatile */
pfrpvi = pfrpi; // 4. valid

pfpvirpi = pfpirpvi; /* 5. constraint violation for the same reasons
 as 1 and 3 */
pfpirpvi = pfpvirpi; // 6. valid

pfpcpvi = pfppi; /* 7. constraint violation because referenced type
 of referenced type of parameter of *pfpcpvi
 is volatile */
pfppi = pfppvi; /* 8. constraint violation because referenced type
 of parameter of *pfppvi is not const */
pfppi = pfpcpvi; // 9. valid

pfrppvi = pfrppi; /* 10. constraint violation because referenced
 type of return type of *pfrppvi is not
 const */
pfrppi = pfrpcpvi; /* 11. constraint violation because referenced
 type of referenced type of return type
 of *pfrppi is not volatile. */
pfrpcpvi = pfrppi; // 12. valid

pfpcpvirppi = pfppirpcpvi; /* 13. constraint violation for the same
 reasons as 7 and 10 */
pfppirpcpvi = pfpcpvirppi; // 14. valid

The first, fifth, seventh and 13th assignments are unsafe because they would allow the fpi,
fpirpvi, fppi and fppirpcpvi functions to access an object defined with a volatile-qualified
type through an lvalue which has non-volatile-qualified type.

The third, fifth, 11th and 13th assignments are unsafe because they would allow the frpvi,
fpirpvi, frpcpvi and fppirpcpvi functions to return the address of an object defined with a
volatile-qualified type that its caller could access through an lvalue which has non-volatile-qualified
type.

The eighth assignment is unsafe because it would allow the fppvi function to assign the address of
an object defined with a volatile-qualified type to a pointer of type int * whose address was
passed by the caller.

The 10th assignment is unsafe because it would allow a caller of the frppi function to assign the
address of an object defined with a volatile-qualified type to a pointer of type int * whose address
was returned by that function.

Conclusion
Many of the ideas and code examples discussed in this paper might seem abstruse.

It is not the author’s intent that C programmers should be required to learn new rules or master a
new knowledge domain. It should not be necessary to study subtyping or any other aspect of
programming language theory to write a C program. Where possible, the language’s semantics
should follow intuitively from its syntax.

No new syntax rules are proposed by this paper, nor any change to the semantics of type qualifiers
in strictly conforming programs. The only change proposed is a quiet improvement to the language’s
existing support for type polymorphism.

Without any effort on their part, this allows programmers to write code that is more verifiable,
concise, understandable, and readable. It also makes it possible to add type qualifiers to library
interfaces without entailing an unknown number of constraint violations.

The only new idea that some programmers might benefit from learning is that it can be beneficial to
const-qualify pointers, since that allows greater type polymorphism. Arguably, that is already good
advice because it avoids mistakes such as [30]:

void foo(int *i)
{
 *i++; // no effect; maybe (*i)++ was intended
}

Acknowledgements
I would like to recognize Martin Uecker for his encouragement.

References
[1] N2607 Compatibility of Pointers to Arrays with Qualifiers (Uecker, 2020)
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2607.pdf

[2] N3280 The C Standard charter
https://www.open-std.org/JTC1/sc22/wg14/www/docs/n3280.htm

[3] Compiler Explorer
https://godbolt.org/z/dfn8r67ec

[4] Compiler Explorer
https://godbolt.org/z/GMK6rsqs8

[5] Compiler Explorer
https://godbolt.org/z/YYTnWcfKb

[6] Compiler Explorer
https://godbolt.org/z/84h1Wochr

[7] N3422 _Optional: a type qualifier to indicate pointer nullability (v2)
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf

[8] Compiler Explorer
https://godbolt.org/z/PP5qzYbYP

https://godbolt.org/z/EanojanzW
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2607.pdf
https://www.open-std.org/JTC1/sc22/wg14/www/docs/n3280.htm
https://godbolt.org/z/dfn8r67ec
https://godbolt.org/z/GMK6rsqs8
https://godbolt.org/z/YYTnWcfKb
https://godbolt.org/z/84h1Wochr
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf
https://godbolt.org/z/PP5qzYbYP

[9] Compiler Explorer
https://godbolt.org/z/svP9MnzaK

[10] Compiler Explorer
https://godbolt.org/z/PP5qzYbYP

[11] Compiler Explorer
https://godbolt.org/z/r6Gs5cefc

[12] Compiler Explorer
https://godbolt.org/z/1WhY6rG7n

[13] Compiler Explorer
https://godbolt.org/z/4fMEKGj96

[14] Compiler Explorer
https://godbolt.org/z/e9xMx8qTE

[15] Compiler Explorer
https://godbolt.org/z/obWqsG18E

[16] Compiler Explorer
https://godbolt.org/z/f6eGEEPce

[17] Compiler Explorer
https://godbolt.org/z/47EGYhrP4

[18] Compiler Explorer
https://godbolt.org/z/zahYqEdGE

[19] Compiler Explorer
https://godbolt.org/z/7EcqGPY9j

[20] Compiler Explorer
https://godbolt.org/z/jbv63Ezjv

[21] Compiler Explorer
https://godbolt.org/z/4x5s3bPGd

[22] Compiler Explorer
https://godbolt.org/z/KnjW8bYcn

[23] Compiler Explorer
https://godbolt.org/z/qrYKzdbEj

[24] Compiler Explorer
https://godbolt.org/z/aff9qeor9

[25] Compiler Explorer
https://godbolt.org/z/hW7WrMaa8

[26] Compiler Explorer
https://godbolt.org/z/P6exP7oEP

[27] Compiler Explorer
https://godbolt.org/z/ddKM7sW9s

https://godbolt.org/z/svP9MnzaK
https://godbolt.org/z/PP5qzYbYP
https://godbolt.org/z/r6Gs5cefc
https://godbolt.org/z/1WhY6rG7n
https://godbolt.org/z/4fMEKGj96
https://godbolt.org/z/e9xMx8qTE
https://godbolt.org/z/obWqsG18E
https://godbolt.org/z/f6eGEEPce
https://godbolt.org/z/47EGYhrP4
https://godbolt.org/z/zahYqEdGE
https://godbolt.org/z/7EcqGPY9j
https://godbolt.org/z/jbv63Ezjv
https://godbolt.org/z/4x5s3bPGd
https://godbolt.org/z/KnjW8bYcn
https://godbolt.org/z/qrYKzdbEj
https://godbolt.org/z/aff9qeor9
https://godbolt.org/z/hW7WrMaa8
https://godbolt.org/z/P6exP7oEP
https://godbolt.org/z/ddKM7sW9s

[28] Compiler Explorer
https://godbolt.org/z/49e1335P7

[29] N3299 Working Draft C2y Post C23-Publication
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3299.pdf

[30] Compiler Explorer
https://godbolt.org/z/EanojanzW

https://godbolt.org/z/49e1335P7
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3299.pdf
https://godbolt.org/z/EanojanzW

