
 1 

WG14 N3451 
Author: Stephen Heumann (stephenheumann@gmail.com) 
Date: 2025-01-10 

Ini$aliza$on of anonymous structures and unions (v2) 

Revision history: 

N3314 
• IniEal version 

N3451 
• Add examples 
• Rebase on N3435 working draM 

Summary: 

The C standard contains wording that appears to prohibit an anonymous structure or union 
from parEcipaEng in iniEalizaEon as a structure or union when the containing structure or union 
is iniEalized with a brace-enclosed iniEalizer list. However, many implementaEons (including 
widely-used ones) actually allow this, suggesEng that their implementors may have understood 
this standard wording differently, or that they chose not to follow it. Since at least one 
implementaEon does behave largely as the standard appears to specify, there is disagreement 
between the behavior of actual implementaEons regarding the iniEalizaEon of anonymous 
structures and unions. 

This document proposes changes to clarify and standardize the behavior in this area. It 
proposes to specify that anonymous structures and unions do parEcipate in iniEalizaEon, 
consistent with the behavior of those implementaEons that already allow this. 

Behavior specified by exis9ng standard wording: 

N3435 6.7.11 p6 says “The iniEalizer for an object that has structure or union type shall be 
either a single expression that has compaEble type or a brace-enclosed list of iniEalizers for the 
elements or named members.” The iniEalizaEon of structures or unions with a brace-enclosed 
iniEalizer list is therefore explicitly limited to named members. This is reinforced by 6.7.11 p13, 
which says “Except where explicitly stated otherwise, for the purposes of this subclause 
unnamed members of objects of structure and union type do not parEcipate in iniEalizaEon.”  

In 6.7.3.2 p15, anonymous structures and unions are defined as being (certain kinds of) 
unnamed members of the containing structure or union. The wording menEoned above 
therefore prohibits them from directly being iniEalized when the containing structure or union 
is iniEalized with a brace-enclosed iniEalized list. For example, it means the following is invalid: 



 2 

union {struct {int a,b;}; long c;} u = {{1,2}}; // Example 1 

Members of an anonymous structure or union can be iniEalized, since they “are members of the 
containing structure or union” (6.7.3.2 p15). However, this leads to potenEally surprising 
behavior when there is an anonymous structure in a union, because the rules for union 
iniEalizaEon will apply (only the first named member can be explicitly iniEalized when not using 
designators). Similarly, when there is an anonymous union in a structure, the rules for structure 
iniEalizaEon will apply (iniEalizers can be provided for all named members without using 
designators). 

Accordingly, the following should be allowed, and should iniEalize s.b to 2 and s.c to 3: 

struct {union {int a; float b;}; int c;} s = {1,2,3}; // Example 2 

Similarly, this should iniEalize s.b to 2 and (implicitly) s.c to 0: 

struct {union {int a; float b;}; int c;} s = {1,2}; // Example 3 

This should produce a diagnosEc, because a union iniEalizer without designators can only 
iniEalize the first named member of the union (in this case u.a): 

union {struct {int a,b;}; long c;} u = {1,2}; // Example 4 

In this document, the behavior described above will be referred to as “Behavior A.” 

(References above are to the latest available draM, but C11 through C23 contain similar wording 
and also specify Behavior A.) 

Exis9ng implementa9ons that allow anonymous structure/union ini9aliza9on: 

Many implementaEons (including GCC, Clang, MSVC, and others listed below) do not actually 
behave as described above. For purposes of iniEalizaEon, these implementaEons treat 
anonymous structures or unions the same as named structure or union members, except that 
they cannot be described by a designator. They treat the members of an anonymous structure 
as members of a structure, even if it is contained in a union, and treat the members of an 
anonymous union as members of a union, even if it is contained in a structure. 

These implementaEons handle the above examples as follows: 

1. They will accept Examples 1 and 4, treaEng them as iniEalizing u.a to 1 and u.b to 2. 
2. They give a diagnosEc for Example 2 (reporEng “too many iniEalizers” or similar). 
3. In Example 3, they iniEalize s.a to 1 and s.c to 2. 

In this document, the behavior described above will be referred to as “Behavior B.” 



 3 

Behavior of exis9ng implementa9ons: 

Here is a list of the implementaEons I have tested and their behavior with regard to iniEalizaEon 
of anonymous structures and unions: 

Follows Behavior A, except that it accepts Example 1 with no diagnosEc: 
SDCC 4.4.0 
 
Follows Behavior B: 
zig cc 0.13.0 
CompCert 3.12 
icx 2024.0.0 
icc 2021.10.0 
gcc 14.1 
clang 18.1.0 
msvc v19.40 
cproc 
TCC 0.9.27 
Apple clang 15.0.0 

Calypsi C 5.4 
ORCA/C 2.2.0 
Open Watcom 2.0 
Oracle Developer Studio 12.6 
TI cl430 v21.6.1.LTS 
TI cl2000 v22.6.1.LTS 
TI cl6x v8.3.13 
TI armcl v20.2.7.LTS 
TI clpru v2.3.3

 
Follows Behavior B, except that it accepts Example 2 with no diagnosEc: 
Chibicc 2020-12-07 
 
SDCC is the only implementaEon I am aware of that largely follows Behavior A. SDCC differs 
from Behavior A in that it accepts Example 1 with no diagnosEc, but that seems to be because it 
generally ignores extra braces and extra elements in iniEalizers; it generates the same code as if 
the iniEalizer was just {1}. 

In light of the above results, Behavior A is not standardized among C implementaEons in 
pracEce, in spite of the wording in the standard that appears to specify it. In fact, it appears that 
Behavior B is substanEally more prevalent among C implementaEons, although I acknowledge 
that there may be other implementaEons I have not tested that follow Behavior A. 

Since numerous implementaEons do not behave in accordance with the interpretaEon of the 
standard wording described previously, it seems that their implementors may have interpreted 
that wording differently, or that it may have been unclear to them. AlternaEvely, those 
implementors may have chosen to deviate from the standard with regard to the iniEalizaEon of 
anonymous structures and unions, perhaps to maintain compaEbility with exisEng 
implementaEons of anonymous structures and unions that predate their standardizaEon in C11. 

Historical background: 

Anonymous structures and unions were added to Standard C in C11, based on the proposal in 
WG14 N1406 (with some wording changes). That proposal does not menEon anything 



 4 

specifically about iniEalizaEon of anonymous structures and unions, but it does cite both 
anonymous unions in C++ and the support for anonymous structures and unions provided as an 
extension in pre-C11 versions of GCC and MicrosoM C compilers. All of these prior 
implementaEons followed Behavior B. 

In light of the references to those prior implementaEons and the lack of any statement that the 
iniEalizaEon behavior in Standard C was intended to be different from them, it is possible that 
the difference caused by the current C standard wording may have been an oversight, rather 
than the deliberate intenEon of WG14. The wording menEoned above concerning iniEalizaEon 
of unnamed members dates back to the C99 or earlier standards, in which unnamed bit-fields 
were the only possible unnamed members. When anonymous structures and unions were 
added in C11, the impact of that wording on them may not have been fully considered. 

Ra9onale for standardizing Behavior B: 

As described above, there is currently divergent behavior between different implementaEons 
with regard to the iniEalizaEon of anonymous structures and unions, and numerous widely-used 
implementaEons behave in a way that does not seem to follow the wording in the standard. I 
believe it would be in the interest of C users to clarify and standardize the behavior in this area 
so that it is consistent across C implementaEons, enabling portable and standard-conforming 
code to rely on it. 

Clearly standardizing either Behavior A or Behavior B would be preferable to the status quo, but 
I believe it is preferable to standardize Behavior B, i.e. to allow anonymous structures and 
unions to parEcipate in iniEalizaEon. This will bring the standard in line with the exisEng 
behavior of many implementaEons, including widely used ones. There may well be exisEng code 
wrihen for those implementaEons that relies on Behavior B, and changing them to follow 
Behavior A could break such code. In some cases (e.g. Example 3), the code would remain valid, 
but its semanEcs would change, potenEally leading to silent breakage. 

I believe Behavior B is also likely to be less confusing and less error-prone for C programmers in 
general. It is more consistent with the iniEalizaEon behavior for structures or unions with 
named members, it permits the use of fully-braced iniEalizers for anonymous structures and 
unions, and it avoids the potenEally surprising situaEons discussed above with regard to the 
iniEalizaEon of anonymous unions within structures or anonymous structures within unions. It 
is also more consistent with the iniEalizaEon behavior of anonymous unions in C++. 

Standardizing Behavior B will require changes to SDCC and any other implementaEons that may 
follow Behavior A. The maintainer of SDCC has expressed willingness to make such changes if 
Behavior B is standardized. There may be exisEng code for SDCC or other implementaEons that 
relies on Behavior A, which would also have to be changed. However, given that many widely-
used implementaEons already follow Behavior B, the portability of any code relying on Behavior 
A is already limited in pracEce, and I suspect there is likely to be significantly less exisEng code 
relying on Behavior A than on Behavior B. 



 5 

Ques9on for WG14: 

Does WG14 want to standardize Behavior B, allowing anonymous structures and unions to 
par=cipate in ini=aliza=on? 

If the answer is yes, proposed wording to do so is provided below. 

If the answer is no, I believe the standard should be revised to more clearly indicate that 
Behavior A is intended, e.g. by adding examples. I have not proposed wording for this, but I 
would be willing to work with the commihee to do so if this is its preferred direcEon.  

Explana9on of proposed wording: 

The wording proposed below is intended to standardize Behavior B. It is meant to be consistent 
with the exisEng behavior of those implementaEons listed above as following Behavior B, and as 
such should not require any changes to those implementaEons. 

Wording is adjusted in several places to only restrict unnamed bit-fields from parEcipaEng in 
iniEalizaEon, rather than all unnamed members of structures and unions. The wording in 
quesEon dates back to C99 or earlier, when unnamed bit-fields were the only possible unnamed 
members. Thus, the changes restore the meaning that this wording had in C99, while making 
clear that it does not apply to anonymous structures and unions. 

A paragraph is also added to explicitly describe how anonymous structures and unions 
parEcipate in iniEalizaEon. In parEcular, this makes clear that members of anonymous 
structures and unions parEcipate in iniEalizaEon as members of the anonymous structure or 
union, not as members of the structure or union that contains it. This is necessary to ensure 
that anonymous structures within a union are iniEalized according to the rules for iniEalizaEon 
of structures (not unions), and vice versa. 

Examples are also provided, both for the newly-specified behavior and for the exisEng 
iniEalizaEon behavior of unnamed bit-fields (which previously was not covered by an example). 

Proposed wording: 

This shows proposed additions and removals relaEve to WG14 N3435. 

Change 6.7.11 paragraph 6 as follows: 

The	initializer	for	an	object	that	has	structure	or	union	type	shall	be	either	a	single	expression	that	has	
compatible	type	or	a	brace-enclosed	list	of	initializers	for	the	elements	or	named	members	other	than	
unnamed	bit-fields.	



 6 

Change 6.7.11 paragraph 13 as follows: 

Except	where	explicitly	stated	otherwise,	for	the	purposes	of	this	subclause	unnamed	members	of	objects	of	
structure	and	union	type	bit-2ields	do	not	participate	in	initialization.	Unnamed	bit-2ield	members	of	
structure	objects	have	indeterminate	representation	even	after	initialization.	 

Change the last item in 6.7.11 paragraph 14 as follows: 

—	if	it	is	a	union,	the	first	named	member	that	is	not	an	unnamed	bit-field	is	initialized	(recursively)	
according	to	these	rules,	and	any	padding	is	initialized	to	zero	bits.	 

Change 6.7.11 paragraph 17 as follows: 

If	the	initializer	for	a	struct	or	a	union	is	a	single	expression,	the	initial	value	of	the	object,	including	unnamed	
membersbit-fields,	is	that	of	the	expression.169)		

Add a new paragraph aMer 6.7.11 paragraph 19: 

When	a	structure	or	union	object	is	initialized	using	a	brace-enclosed	initializer	list,	any	anonymous	
structure	or	union	members	of	the	object	participate	in	initialization	in	the	same	way	as	named	
members,	except	that	they	cannot	be	described	by	designators.	For	the	purposes	of	initialization,	the	
members	of	an	anonymous	structure	or	union	are	treated	as	being	members	of	the	anonymous	
structure	or	union	object	rather	than	of	the	structure	or	union	that	contains	it,	but	they	may	be	
described	by	designators	as	if	they	are	members	of	the	containing	structure	or	union.	

Change 6.7.11 paragraph 20 (now paragraph 21) as follows: 

Each	brace-enclosed	initializer	list	has	an	associated	current	object.	When	no	designations	are	present,	
subobjects	of	the	current	object	are	initialized	in	order	according	to	the	type	of	the	current	object:	array	
elements	in	increasing	subscript	order,	structure	members	(other	than	unnamed	bit-fields)	in	declaration	
order,	and	the	first	named	member	of	a	union	that	is	not	an	unnamed	bit-field.170)	In	contrast,	a	designation	
causes	the	following	initializer	to	begin	initialization	of	the	subobject	described	by	the	designator.	
Initialization	then	continues	forward	in	order,	beginning	with	the	next	subobject	after	that	described	by	the	
designator.171)		

Add the following addiEonal examples in 6.7.11: 

EXAMPLE	N		The	declarations	

struct { 
      int a:10; 
      int :12; 
      long b; 
} s = {1, 2}; 
 
union { 
      int :16; 
      char c; 
} u = {3}; 



 7 

initialize	s.a	to	1,	s.b	to	2,	and	u.c	to	3.	The	unnamed	bit-field	in	s	has	indeterminate	representation	
even	after	initialization.	

EXAMPLE	N+1		The	declaration	

struct { 
      union { 
            float a; 
            int b; 
            void *p; 
      }; 
      char c; 
} s = {{.b = 1}, 2}; 

initializes	s.b	to	1	and	s.c	to	2.	Members	of	the	anonymous	union	can	also	be	described	by	
designators	as	if	they	are	members	of	the	containing	structure,	so	the	same	initialization	result	can	be	
achieved	by:	

struct { 
      union { 
            float a; 
            int b; 
            void *p; 
      }; 
      char c; 
} s = {.b = 1, 2}; 

Acknowledgments 

Thank you to JeanHeyd Meneide, Jens Gustedt, Philipp Klaus Krause, and Joseph Myers for 
feedback on earlier versions of this proposal. 

References 

GCC Manual. Unnamed Structure and Union Fields. 
hhps://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html 
 
ISO/IEC 14882, Programming Languages—C++ (all ediEons). 
 
Keaton, David. Anonymous Member-Structures and -Unions. WG14 N1406. 
hhps://www.open-std.org/JTC1/SC22/WG14/www/docs/n1406.pdf 
 
MicrosoM. C language reference. Union DeclaraEons. 
hhps://learn.microsoM.com/en-us/cpp/c-language/union-declaraEons 

https://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1406.pdf
https://learn.microsoft.com/en-us/cpp/c-language/union-declarations

