
Proposal for C2y
WG14 N3483

Title: Mandatory diagnostic message on missing return statements
Author, affiliation: Igor S. Gerasimov, BME, Hungary
Date: 2025-02-09
Proposal category: Language changes
Target audience: General Developers, Compiler Developers

Abstract: Missing return statements in functions lead to undefined behaviour, that may lead to
unpredictable and potentially dangerous behavior. To improve code and language safety, this Paper
specifies behaviour of missing return statements.

1

Mandatory diagnostic message on missing
return statements

Reply-to: Igor S. Gerasimov (foxtranigor@gmail.com)
Document No: 3483
Date: 2025-02-09

1 Introduction

In C23, if the } that terminates the function body is reached, and the value of the function call
is used by the caller, the behavior is undefined (6.9.1.12). This paper aims to improve code and,
in general, language safety by requiring that all control flows have either a return statement or,
alternatively, a [[noreturn]] function call. In the case if this limitation is not met, the program is
ill-formed and the implementation shall produce a diagnostic message.

2 Current status

Most modern C compilers (GCC with -Wreturn-type[1], Clang by default[1], MSVC by default)
already provide warnings for missing return statements, and this change ensures that such cases
are always errors. This should be straightforward to implement by elevating existing warnings to
diagnostic messages. However, extra analysis for [[noreturn]] can be required.

3 Proposed wording

The wording proposed is a diff from the committee draft of ISO/IEC 9899:2023 dated April 1,
2023. Green text is new text, while red text is deleted text.

Modify 6.9.1p12:

Unless otherwise specified, if the } that terminates the function body is reached, and the value
of the function call is used by the caller, the behavior is undefined.the return type of the function
is non-void type, and the function does not contain return statements or [[noreturn]] function
calls in all control flows, the program is ill-formed and the implementation shall produce a diagnostic
message.

Updating of 7.21.1p4 EXAMPLE 1 is not required since all control flows have return statements.

4 Known issues

An additional complication arises with unreachable() macro, which is not defined with the
[[noreturn]] attribute. As a result, the impementation may still expect a return statement af-
ter unreachable();.

5 Examples

EXAMPLE 1 return is not required for void functions:

1 void foo (i n t n) {
2 /∗ . . . ∗/ // va l i d : r e turn type i s void
3 }

EXAMPLE 2 Missed return statement for n ≤ 0:

2

1 i n t foo (i n t n) {
2 i f (n > 0) re turn n ;
3 // i l l −formed : n <= 0 does not re turn anything
4 }

EXAMPLE 3 [[noreturn]] call or return statement in all control flows:

1 [[noreturn]] void e x i t (i n t) ;
2 i n t foo (i n t n) {
3 i f (n > 0) {
4 e x i t (0) ;
5 } e l s e {
6 return n ;
7 } // va l i d : r e turn value or [[noreturn]]
8 }

EXAMPLE 4 Interaction with unreachable() macro:

1 i n t foo (i n t n) {
2 i f (n > 0) {
3 unreachable () ; // i l l −formed un l e s s unreachable () i s not marked with [[noreturn]]
4 } e l s e {
5 return n ;
6 }
7 }

6 References

1. https://godbolt.org/z/W75Y9K618

3

https://godbolt.org/z/W75Y9K618

	Introduction
	Current status
	Proposed wording
	Known issues
	Examples
	References

