
Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

N3504 - Resolved & discarded, II
Author: Javier A. Múgica

This document

This is an update of N3464. One change has been the addition of "and expressions within the
time name that are not evaluated during translation (for the partial resolution of the type) are
value-discarded relative to the sizeof expression.", and similarly for the _Lengthof operator. The
other change is in the text for decoupling of value-discarded from runtime-discarded, which was not
right. Now this is deferred to a future proposal.

This document builds upon the "Discarded" paper. The motivations for introducing the term
value-discarded are exposed in that paper, N3382 and will not be repeated here. Already in that
proposal it is noted that the standard abuses the term to evaluate to refer to type names, and that
a different concept would be needed for type names. Some definitions which seem strange with
the current use of "evaluated" turn out natural if a parallel term is defined for type names and used.
In particular, the seemingly contradictory fact that part of an expressions which is not evaluated is
evaluated (sizes in type names).

We present here a wording based on the concepts to evaluate, for expressions, and to resolve,
for type names. Also, we changed the introduction of value-discarded subexpression, that are
now defined to be discarded relative to instead of value-discarded. However, since value-discarded
expressions are those which are discarded relative to something, there is little difference between
the two approaches.

An error in the definition of integer and arithmetic constant expressions identified by J. Myers has
been corrected. A few redundant "if <some operand> is not value-discarded" have been removed.
The possibility for implementations to consider other value-discarded expressions has been split to a
subproposal.

1

https://www.open-std.org/JTC1/SC22/WG14/www/docs/n3464.pdf
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n3382.pdf

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

Proposal I. Terminology

5.2.2.4 Program semantics

3 Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object. During translation, some expressions are retained only for their type, their value and side
effects being discarded. These expressions are called value-discarded. Vaue-discarded expressions are
not evaluated.

4 Type names, both explicit and implicit in declarations, are resolved. This entails determining the type
that the type name names. The type of an expression is also resolved, and the term may also be
applied to the type named by a type name.1) Many types are resolved during translation. Other
types are only partly resolved at translation. What remains to be resolved are the values of certain
expressions on which the type depends. Every time the type name or expressions are reached during
program execution, and if it is necessary to resolve the type, these expressions are evaluated, or
the relevant value retrieved from some previously evaluated expression, whereby the type is fully
resolved at runtime. Since the value of those expressions may change every time the type name or
expression is reached, the resolved type may be different on each occasion. If it is not necessary
to fully resolve the type, those evaluations are not performed and the type or type name is said to
be runtime-discarded. When this term is applied to a type or type name which is resolved during
translation, it is devoid of meaning.

6.5 Expressions
6.5.2 Value-discarded

1 The following subclauses identify certain expressions as discarded relative to some syntactic construct
(expression, type name or parameter declaration). In addition, if an expression B is discarded relative
to some syntactic construct A, it is also is discarded relative to every construct containing A, and any
subexpression contained in B whose evaluation is not required for the resolution of some type is
also discarded relative to A.

2 An expression which is discarded relative to some contruct is value-discarded.

3 Unless otherwise stated, the type of a value-discarded expression is runtime-discarded.

6.5.3 Primary expressions
6.5.3.1 Generic selection

Semantics

3 The generic controlling operand is not evaluateddiscarded relative to the generic selection. If a
generic selection has a generic association with a type name that is compatible with the controlling
type, then the result expression of the generic selection is the expression in that generic association.
Otherwise, the result expression of the generic selection is the expression in the default generic
association. None of the expressions from any other generic association of the generic selection is
evaluated.The expressions from the other generic associations of the generic selection are discarded
relative to the generic selection.

6.5.4.6 Compound literals

Semantics

5 For a compound literal associated with function prototype scope:

[...]

— if it is not a compound literal constant, neither the compound literal as a whole nor any of the
initializers are evaluated.; the compound literal is discarded relative to the parameter declaration of
which it is part.

1)Thus, for a type name, it may be said that "the type name is resolved" or that "its type is resolved", indiffererently.

2

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

6.5.5 Unary operators
6.5.5.5 The sizeof, _Lengthof and alignof operators
Semantics

2 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result is an
integer. If the type of the operand is a variable length array type, the operand is evaluated; otherwise,
the operand is not evaluated and the result is an integer constant expression.If the operand is an
expression, then: if it is not a variable length array the expression is discarded relative to the sizeof
expression; otherwise, it is evaluated. If the type of the expression or the type denoted by the type
name is not a variable length array type, the type is runtime-discarded and expressions within
the time name that are not evaluated during translation (for the partial resolution of the type) are
value-discarded relative to the sizeof expression.

3 The alignof operator yields the alignment requirement of its operand type. The operand is
not evaluateddiscarded relative to the alignof expression and the result is an integer constant
expression. When applied to an array type, the result is the alignment requirement of the element
type.

5 The _Lengthof operator yields the number of elements of its operand. The number of elements is
determined from the type of the operand. The result is an integer. If the operand is an expression
and the number of elements of the array type is variable, the operand is evaluated; otherwise,
the operand is not evaluateddiscarded relative to the _Lengthof expression. If the operand is the
parenthesized name of a type, then: if the number of elements of the array type it denotes is fixed,
the type name is runtime-discarded; otherwise, the number of elements of the array is resolved,
and if the element type is an array type, this latter is runtime-discarded. In both cases, expressions
within the runtime-discarded type name that are not evaluated during translation (for the partial
resolution of the type) are value-discarded relative to the _Lengthof expression.

6 EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // Variable length array
return sizeof b; // The type of b is fully resolved at runtime by

// retrieveing the value of the expression n+3
} // computed previously

int main(void)
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

6.5.6 Cast operators
Remove the first paragraph in "Semantics":

Size expressions and typeof operators contained in a type name used with a cast operator are
evaluated whenever the cast expression is evaluated.

6.5.15 Logical AND operator
4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the

second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.;
if, in addition, the first operand is an integer constant expression, the second operand is discarded
relative to the logical AND expression.

3

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

6.5.16 Logical OR operator
4 Unlike the bitwise binary | operator, the || operator guarantees left-to-right evaluation; if the

second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares unequal to 0, the second operand is not evaluated.;
if, in addition, the first operand is an integer constant expression, the second operand is discarded
relative to the logical OR expression.

6.5.17 Conditional operator
5 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;.
If the first operand is an integer constant expression, the unevaluated operand is discarded relative
to the conditional expression. Tthe result is the value of the second or third operand (whichever is
evaluated), converted to the type described subsequently in this subclause.2)

6.6 Constant expressions

6.6.1 General

Constraints

3 Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluateddiscarded
relative to the expression.3)

6.7 Declarations

6.7.3.6 Typeof specifiers

4 The typeof specifier applies the typeof operators to an expression (6.5.1) or a type name. If the typeof
operators are applied to an expression, they yield the type of their operand.4) Otherwise, they
designate the same type as the type name with any nested typeof specifier evaluatedresolved.5) If
the type of the operand is a variably modified type, the operand is evaluated; otherwise, the operand
is not evaluateddiscarded relative to the typeof specification.

6.7.7.3 Array declarators

5 If the size is given by an integer constant expression, this size is always resolved during translation;
hence, the expression is always evaluated, during translation.

6 If the size is an expression that is not an integer constant expression: if itIf the size is not given by an
integer constant expression: if the declarator occurs in a declaration at function prototype scope,
itthe size expression discarded relative to the innermost parameter declaration of which it is part
and is treated as if it were replaced by *; otherwise, each time it is evaluatedthe declarator is reached
during execution, if the array type of which it is the size needs to be resolved it is evaluated and it
shall have a value greater than zero. The size of each instance of a variable length array type does
not change during its lifetime. Where a size expression is part of the operand of a typeof or sizeof
operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated. Where a size expression is part of the
operand of a _Lengthof operator and changing the value of the size expression would not affect the
result of the operator, the size expression is not evaluated. Where a size expression is part of the
operand of an alignof operator, that expression is not evaluated.

2)A conditional expression does not yield an lvalue.
3)The operand of a typeof (6.7.3.6), sizeof, or alignof operator is usually not evaluatedvalue-discarded (6.5.4.5)
4)When applied to a parameter declared to have array or function type, the typeof operators yield the adjusted (pointer)

type (see 6.9.2).
5)If the typeof specifier argument is itself a typeof specifier, the operand will be evaluatedresolved before evaluat-

ingresolving the current typeof operator. This happens recursively until a typeof specifier is no longer the operand.

4

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

Addendum to proposal I
Insert the text in blue after the text in black:

2 An expression which is discarded relative to some contruct is value-discarded. An implementation
may consider value-discarded other expressions for which it can determine during translation that
they will never be evaluated (in the abstract machine) beyond those identified by this document.

The introudction of the precision "in the abstract machine" limits considerably this lee for imple-
mentations. This is intended. For example, in

3 + 0*n // n of integer type

the implementation is not allowed to consider n a value-discarded expression. Hence, the whole
expression displayed cannot be considered an integer constant expression.

Here follow examples of what is allowed:

static float func(float); // File scope identifier without definition
/* ... */
short n;
float A[1];

n>SHRT_MAX && f(n)
(n>=0 || n<0) || 1/0
n*n >=0 ? 1 : func(0)
(short)(double)n==n ? 1 : A[-1]

The translator is allowed to consider value-discarded the expressions f(n), 1/0, func and (likely)
A[-1]. this has the effect of turning constraint violations into well defined behaviors that do not
require the issue of a diagnostic. It cannot make integer constant expression an expression that is not
otherwise (i.e., without considering value-discarded the subexpression in question). The condition
that the expression to be considered value-discarded must never be evaluated in the abstract
machine implies that it is an operand of some logical operators (AND, OR, conditional) where the
first operand is a tautology or its opposite. If this tautology is expressed by an integer constant
expression, the value-discarded expression is so for any implementation; if it is not expressed by an
integer constant expression, the value-discarded expression is so because the implementation is
"smart", but the whole cannot be considered an integer constant expression because of the non-ICE
first operand.

The above clause cannot turn a non-ICE into an ICE

An implementation may extend the consideration of value-discarded to secondary blocks of
conditional statements or any other expression that it can determine that will never be reached. We
don’t expect implementations to do so in the short term, but in any case that would just remove
some constraint violations for pieces of code that will never be executed. Implementations already
remove those pieces of code from the generated program.

5

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

Proposal II. Allowing certain constructs in discarded expressions

Integer and arithmetic constant expressions

6.6 Constant expressions
6.6.1 General

8 An integer constant expression6) shall have integer type and shall only have operands that are discarded
relative to it, integer literals, named and compound literal constants of integer type, character literals,
sizeof expressions whose results are integer constants expressions, alignof expressions, and
floating, named or compound literal constants of arithmetic type that are the immediate operands of
casts. Cast operators in an integer constant expression which are not discarded relative to it shall
only convert arithmetic types to integer types, except as part of an operand to the typeof operators,
sizeof operator, or alignof operator.

10 An arithmetic constant expression shall have arithmetic type and shall only have operands that are
discarded relative to it, integer literals, floating literals, named or compound literal constants of
arithmetic type, character literals, sizeof expressions whose results are integer constant expres-
sions, and alignof expressions. Cast operators in an arithmetic constant expression which are not
discarded relative to it shall only convert arithmetic types to arithmetic types, except as part of an
operand to the typeof operators, sizeof operator, or alignof operator.

(Remove the last footnote and add the following example)

18 EXAMPLE In the following code sample

int a, *p;
int f(void);
static int i = 2 || 1 / 0;
static int j = 2 || a + f();
static int k = sizeof p[sizeof(int[a])];

the three initializers are valid integer constant expressions with values 1, 1 and sizeof(int) respectively.

6.7.11 Initialization
5 All the expressionsexpression initializers in an initializer for an object that has static or thread storage

duration or is declared with the constexpr storage-class specifier shall be constant expressions or
string literals.

Identifiers missing an external definition

6.9 External definitions
6.9.1 General
Constraints
[...]

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
there shall be exactly one external definition for the identifier in the translation unit, unless it is
value-discarded:

— part of the operand of a sizeof operator whose result is an integer constant expression;

6)An integer constant expression is required in contexts such as the size of a bit-field member of a structure, the value of
an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer constant
expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.2.

6

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

— part of the operand of an alignof operator whose result is an integer constant expression;

— part of the controlling expression of a generic selection;

— part of the expression in a generic association that is not the result expression of its generic
selection;

— or, part of the operand of any typeof operator whose result is not a variably modified type.

Semantics

[...]

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a typeof operator whose result is not a variably modified type,
part of the controlling expression of a generic selection, part of the expression in a generic association
that is not the result expression of its generic selection, or part of a sizeof or alignof operator
whose result is an integer constant expression)which is not value-discarded, somewhere in the entire
program there shall be exactly one external definition for the identifier; otherwise, there shall be no
more than one.

Preprocessor

The adoption of Proposal 2 enlarges the kinds of expressions considered integer constant expression.
For example, 1 || &"abcd"[2] is now a constant expression. The preprocessor need not handle
this kinds of expressions. This is taken care of in the paper "Preprocessor integer expressions".

Decoupling of value-discarded from runtime-discarded

If the operand of sizeof is an expression its value is not needed for anything. Therefore, it makes
sense to say that it is value-discarded, irrespective of its type. Since expressions giving the size of
variable length arrays need be evaluated, and the only terms used were "evaluated" / "not evaluated",
there was no other choice than to say that the expression is evaluated, or to devise a wording specific
for that operand, which is possible but was not done. Now we may simply say that the expression is
value-discarded and, if the operand is a variable length array, the type is resolved, otherwise it is
runtime-discarded.

Examples:

float A[3][n*n];
sizeof(A[m++]);
sizeof(n++, A);
p=NULL;
sizeof(*(int(*)[n])(p+5));

In the first two examples there is nothing that needs evaluation inside the operand, for the type of
the first is that of A[0], which is float [N], where N is the result of the evaluation of n*n, which
has already taken place, and the type of the second operand is that of A, which again needs only
values that have already been computed (N). The third example does need the evaluation of n, but
skips that of p+5, which is not related to the resolution of the type of the expression.

In the previous version of this paper we included the sentence

If the operand is an expression, unless its type is given by a cast (or derived form it, as in the
third example), there is nothing that will need evaluation in it.

7

Proposal for C2y N3504 Resolved & discarded, II 2025/02/19

While this is true, the resolution of the type name of the cast many need the evaluation of a
previous (with respect to some sequence point) expression with side effects, as in the following two
examples:

sizeof(*(n++, (int (*)[n])p))
sizeof(*(n++ ? (int (*)[n])p : (int (*)[n])p))

The wording we proposed in the previous version of this paper is

The sizeof operator yields the size (in bytes) of its operand, which is determined from the type of
the operand. If the operand is an expression it is discarded relative to the sizeof expression. The
type of the expression is runtime-discarded unless it is a variable length array.

The _Lengthof operator yields the number of elements of tis operand, which is determined from
the type of the operand. If the operand is an expression it is discarded relative to the _Lengthof
expression. The element type of the operand is runtime-discarded; the number of elements of the
operand type is resolved.

This is not sufficient as shown by the previous examples. We defer this for a possible future
proposal.

"The parenthesized name of a type"

We think that saying that the operand may be "the parenthesized name of a type" can be problematic
for any sentence of the standard that may speak about operands supposing they are expressions or
type names and, since the () are part of the syntax, we believe it is more correct to say that the
operand is a type name, not the parenthesized name of a type (had the syntax rule been written as
sizeof paren-type-name, with a rule following specifying that paren-type-name is (type-name), then it
would be right to say that the operand is a parethesized type name).

We suggest to change the parenthesized name of a type to a type name. Note that there is also
the parenthesized name of such a type, to be changed to the name of such a type. (Once the former
sentence, twice the latter. Three instances in all).

8

	This document
	Proposal I. Terminology
	Program semantics
	5.2.2.4 Program semantics
	Expressions
	Value-discarded
	Primary expressions
	Generic selection
	Compound literals

	Unary operators
	The sizeof, _Lengthof and alignof operators

	Cast operators
	Logical AND operator
	Logical OR operator
	Conditional operator

	Constant expressions
	General
	Declarations
	Typeof specifiers
	Array declarators

	Addendum to proposal I

	Proposal II. Allowing certain constructs in discarded expressions
	Integer and arithmetic constant expressions
	Constant expressions
	General
	Initialization
	6.7.11 Initialization

	Identifiers missing an external definition
	External definitions
	General

	Preprocessor

	Decoupling of value-discarded from runtime-discarded

	``The parenthesized name of a type''

