

Proposal for C2Y

WG14 n3637
Title: Static assertions in expressions, v2 (updates n3538)

Author: Vincent Mailhol <mailhol.vincent@wanadoo.fr>

Date: 2025-07-07

Proposal category: Change

Target audience: Implementers, users

Abstract: Allow static_assert in expressions

Prior art: C23

mailto:mailhol.vincent@wanadoo.fr

Static assertions in expressions,
v2 (updates n3538)

Reply-to: Vincent Mailhol <mailhol.vincent@wanadoo.fr>

Document: n3637

Date: 2025-07-07

This proposal extends the semantic of static_assert and allows it to be used as an operator which
has type void. This way, static_assert can be used in expressions, typically when defining a
function-like macro. If used as a declaration, the behaviour is unchanged.

This proposal updates n3538 by changing the type of static_assert’s result from int to void.

Change Log

: n3538 initial version 2025-05-02

: change the type of static_assert’s result from int to void. 2025-07-07

Table of Contents
Proposal for C2Y 1
WG14 n3637 1

Change Log 2
Table of Contents 2

1 Problem Description 3
1.1 Create a constraint violation if the assertion fails 3
1.2 Encapsulate the static_assert in a structure 4
1.3 Use GNU’s compound statement expressions 4

2 Prior work 5
Linux kernel BUILD_BUG_ON_ZERO* function like macros 5
shadow-utils project 5
cmp_int project 5

3 Type and value 6
4 Proposal 7
5 Proposed text 8

Subclause 6.5.4.1, paragraph 1 8
Move subclause 6.7.12 to 6.5.4.6 9
Subclause 6.7.1, paragraph 1 10

mailto:mailhol.vincent@wanadoo.fr
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3538.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3538.pdf

Subclause 6.7.1, paragraph 14 11
6 Future directions 11
7 Acknowledgements 11

1 Problem Description
When defining a function-like macro, it is sometimes useful to add compile time checks. For example,
when writing:

/* Number with the nth bit set, starting count at zero */

#define BIT(type, n) ((type)1 << (n))

you may want to statically check that the argument n is within the range1

[0; sizeof(type) * CHAR_BIT - 1]

Performing such a static check within a function is impossible because the argument n would no
longer be an integer constant expression. Even the as-yet-to-be-introduced constexpr functions
wouldn’t solve the issue entirely because these would not account for type polymorphism as a
function-like macro would.

Currently, C does not offer a straightforward way to add such checks to macro definitions. Indeed,
static_assert cannot be used in an expression because it can only be used as a declaration. Using
it in an expression is invalid.

A few workarounds exist which we briefly describe in the following sections.

1.1 Create a constraint violation if the assertion fails
It is possible to perform static assertions in expressions by creating a constraint violation if the
assertion fails and returning zero otherwise. The constraint violation can be, for example, an array or a
bit field with a negative size. For example:

#define static_assert_int(cond) (!sizeof(char[(cond) ? 1 : -1]))

#define BIT(type, n) (\

 static_assert_int(n >= 0 && n < sizeof(type) * CHAR_BIT) + \

 ((type)1 << (n)) \

)

If the condition is false, static_assert_int declares an array of negative size; breaking the
compilation. Otherwise, static_assert_int yields the integer constant expression zero of type int.

The diagnostic message will be unrelated to the actual check which is being performed.

1 Similar to clang or gcc’s -Wshift-count-negative and -Wshift-count-overflow diagnostics.
For this example, let’s assume that the compiler may not have those diagnostics and the user wants to
manually implement these.

A possible variation of above example is:

#define static_assert_void(cond) (void)sizeof(char[(cond) ? 1 : -1])

#define BIT(type, n) \

 _Generic(static_assert_void(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 void: (type)1 << (n))

static_assert_void is similar to static_assert_int except from the result type which has been
changed from int to void.

1.2 Encapsulate the static_assert in a structure
While static_assert cannot be used in expressions, it can be used in structure declarations. By
wrapping static_assert in a structure, it becomes possible to build a function-like macro similar to
static_assert that can be used in expressions. For example:

#define static_assert_int(cond) \

 (!sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

 static_assert_int(n >= 0 && n < sizeof(type) * CHAR_BIT) + \

 ((type)1 << (n)) \

)

To avoid declaring a structure of size zero (which is a GNU extension), a dummy char attribute is
used. sizeof’s value is negated so that static_assert_int yields the integer constant expression
zero of type int.

The diagnostic message, while relevant, would be polluted by the wraparound logic.

As shown before, the example can be rewritten to return a void type instead of int:

#define static_assert_void(cond) \

 (void)sizeof(struct {static_assert(cond); char a;})

#define BIT(type, n) \

 _Generic(static_assert_void(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 void: (type)1 << (n))

1.3 Use GNU’s compound statement expressions
The compound statement expressions (GNU extension) are the only method which allows the direct
use of static_assert declarations. For example:

#define BIT(type, n) ({ \

 static_assert(n >= 0 && n < sizeof(type) * CHAR_BIT); \

 (type)1 << (n); \

})

The drawback is that the returned value is not an integer constant expression anymore and that this is
not portable.

Consequently, existing workarounds are either non-trivial or nonstandard. Also, the compiler diagnostic
message is polluted by all the wraparound logic and becomes less readable on some of these
workarounds.

2 Prior work

Linux kernel BUILD_BUG_ON_ZERO* function like macros
Workarounds are commonly used, for example, in the Linux kernel to declare function-like macros
which can be used to perform static assertions in expressions. For example:

● The BUILD_BUG_ON_ZERO function-like macro declares a bit field of negative size:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/build_bug.h?h=
v6.15#n16

● The __BUILD_BUG_ON_ZERO_MSG function-like macro wraps static_assert in a structure
declaration:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/compiler.h?h=v
6.15#n197

Here, the current state of the art consists of having the macro yield the constant expression 0 of type
int so that the result can then be added to another expression.

shadow-utils project
In the shadow-utils project, Alejandro Colomar declares the must_be function-like macro by wrapping
static_assert in a structure declaration:
https://github.com/shadow-maint/shadow/commit/10f31a97e2b2.

Here also, the must_be function-like macro yields the integer constant expression 0 of type int.

cmp_int project
The cmp_int project by Robert C.Seacord and Aaron Ballman also relies on encapsulating the
static_assert in a structure to perform static assertion in a function-like macro, but, unlike the last
two prior works, the value is casted to void and is then used as the left hand operand of the comma
operator:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/build_bug.h?h=v6.15#n16
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/build_bug.h?h=v6.15#n16
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/compiler.h?h=v6.15#n197
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/compiler.h?h=v6.15#n197
https://github.com/shadow-maint/shadow
https://github.com/shadow-maint/shadow/commit/10f31a97e2b2
https://github.com/rcseacord/cmp_int

https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cm
p_int.h#L98-L103

3 Type and value
As described in the previous section, the type of static assertions is inconsistent: some
implementations yield the integer zero while some yield void.

Yielding void has one drawback; the natural way to use the void type in an expression is to combine
it with the comma operator. For example:

#define static_assert_void(cond) \

 ((void)sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

 static_assert_void(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 (type)1 << (n) \

)

int arr[BIT(unsigned int, 2)];

However, above construct is not an integer constant expressions for two reasons:

● The comma operation is not allowed in integer constant expressions (cf. §6.6.1 ¶3)
● The void type is not allowed in integer constant expressions (cf. §6.6.1 ¶10)

Indeed, because static_assert_void yields void, BIT no longer returns an integer expression as
arr is now a variable length array.

For this reason, the previous version of this proposal, n3538, discarded the idea of the void type and
instead preferred to follow what the majority of the prior work did: yield the integer constant expression
zero.

Following the discussions on n3538 on the reflector mailing list, many participants pointed out that the
type void was more idiomatic. In this discussion, Martin Uecker pointed out that if the static assertion
is passed to the controlling expression of a generic selection, the result is still an integer constant
expression. This construct was already illustrated in sections 1.1 and 1.2 of this paper.

A final option is to have static_assert yield the integer constant expression 1. For example:

#define static_assert_int(cond) \

 (!!sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

 static_assert_int(n >= 0 && n < sizeof(type) * CHAR_BIT) ? \

 (type)1 << (n) : 0 \

)

https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cmp_int.h#L98-L103
https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cmp_int.h#L98-L103
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3538.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3538.pdf

This last option is mentioned for completeness but has not been encountered in prior art.

Following the discussions on the reflector list, this updated proposal gives static_assert the type
void so that it can be used in conjunction with the comma operator.

4 Proposal
This proposal extends the semantics of static_assert by allowing it to be used as an operator
which has type void. This way, static_assert can be used in expressions without the need for any
of the previously described workarounds. For example:

#define BIT(type, n) (\

 static_assert(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 (type)1 << (n) \

)

The future directions listed in section 6 would allow this construct to be an integer constant expression.
As of now, a generic selection can be used as a workaround:

#define BIT(type, n) \

 _Generic(static_assert(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 void: (type)1 << (n))

This proposal simplifies the use of static assertions in function-like macros. This is one step closer to
making C a safe language.

This solution may overlap with the as-yet-to-be-introduced constexpr functions. constexpr functions
would indeed at least solve the issue for when the argument type is known. To work with multiple types
(typically scalar types), function-like macro remains useful. So, unless function-like macros are
replaced by a new feature, the static_assert operator remains complementary with other future
directions of C.

A block item containing only a static_assert directly followed by a semicolon is explicitly defined as
a declaration. Consequently, the following construct, which otherwise would be ambiguous:

void func() {

 static_assert(1);

}

must be interpreted as a static_assert declaration. Otherwise, static_assert is an operator. For
example:

void func() {

 static_assert(1), 0;

}

Prior to this change, static_assert could only be used as a declaration. This disambiguation
ensures that the existing behaviour is unchanged. The semantic is only changed for constructs which
were previously invalid. Preserving the existing behaviour guarantees that this is not a breaking
change.

5 Proposed text
Proposed wording changes are against proposal n3525. If n3525 is superseded, modifications shall be
reflected accordingly.

Subclause 6.5.4.1, paragraph 1

Replace n3525 subclause 6.5.4.1, paragraph 1 with the following text. The text in green contains
changes while the text in black does not.

6.5.4 Unary operators
6.5.4.1 General
Syntax
1 unary-expression:

postfix-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

_Lengthof unary-expression

_Lengthof (type-name)

sizeof unary-expression

sizeof (type-name)

alignof (type-name)

static-assertion

unary-expression: one of

& * + - ~ !

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

Move subclause 6.7.12 to 6.5.4.6

In n3525, move subclause 6.7.12 to 6.5.4.6. The Syntax and the Semantics paragraphs are modified,
the Constraints and Recommended practice paragraphs are left untouched. A new EXAMPLE
paragraph is added to illustrate the use of static assertions in expressions. The text in green contains
additions while the strikeout text in red contains definitive deletions. Text which is simply moved across
sections is coloured in strikeout purple for the original location and in blue for the final location.

6.5.4.6 Static assertions
Syntax
1 static-assertion:

static_assert (constant-expression , string-literal)

static_assert (constant-expression)
Constraints
2 The constant expression shall be an integer constant expression with a nonzero value.

Semantics
3 A static assertion has no effect. If used as a unary expression, the result has type void.

Forward references: static_assert declaration (6.7.1).

Recommended practice

4 If the constraint is violated with an integer constant expression of value zero, the diagnostic message
should include the text of the string literal, if present.

5 EXAMPLE When combined with the comma operator, static assertions can be used in expressions,
typically in function-like macros.

#include <limits.h>

#define BIT(n) (\

 static_assert(n >= 0), \

 static_assert(n < sizeof(unsigned int) * CHAR_BIT), \

 1U << (n) \

)

(...)

6.7.12 Static assertions
Syntax
1 static_assert-declaration:

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

static_assert (constant-expression , string-literal) ;

static_assert (constant-expression) ;
Constraints
2 The constant expression shall be an integer constant expression with a nonzero value.

Semantics
3 A static assertion has no effect.

Recommended practice

4 If the constraint is violated with an integer constant expression of value zero, the diagnostic message
should include the text of the string literal, if present.

Subclause 6.7.1, paragraph 1

Replace n3525 subclause 6.7.1, paragraph 1 with the following text.

Syntax
1 declaration:

declaration-specifiers init-declarator-listopt ;

attribute-specifier-sequence declaration-specifiers init-declarator-list ;

static_assert-declaration

attribute-declaration

declaration-specifiers:

declaration-specifier attribute-specifier-sequenceopt

declaration-specifier declaration-specifiers

declaration-specifier:

storage-class-specifier

type-specifier-qualifier

function-specifier

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

static_assert-declaration:

static-assertion ;

attribute-declaration:

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

attribute-specifier-sequence ;

simple-declaration:

attribute-specifier-sequenceopt declaration-specifiers declarator = initializer

Subclause 6.7.1, paragraph 14

In n3525 subclause 6.7.1, insert a new paragraph 14 with the following text.

14 Aside from not having a type, static_assert declarations have the same semantic as the
static_assert expressions. A block item of the form

 static-assertion ;

shall be interpreted as a static_assert-declaration.

6 Future directions
A future proposal will allow the use of both the comma operator and the void type in integer constant
expressions so that the result of the BIT function-like macro given as an example in §6.5.4.6 ¶5 in the
proposed text would become an integer constant expression.

The generic selection construct, as illustrated in section 1.1 and 1.2, was not mentioned in the
proposed text because it is seen as a workaround.

7 Acknowledgements
We would like to recognize the following people for their help reviewing this work: Robert C. Seacord,
Aaron Ballman, Joseph Myers, Jens Gustedt, Alejandro Colomar and Martin Uecker.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://docs.google.com/document/d/1EJNcEgiq-56O5S_cnUMG0p2JJ54TOG1Gi4dK-7Ec2lg/edit?pli=1&tab=t.0#heading=h.1ahqrpol76ht
https://docs.google.com/document/d/1EJNcEgiq-56O5S_cnUMG0p2JJ54TOG1Gi4dK-7Ec2lg/edit?pli=1&tab=t.0#heading=h.ylybgt1euk1n

	Proposal for C2Y
	WG14 n3637
	Static assertions in expressions,​v2 (updates n3538)
	Change Log
	Table of Contents

	1 Problem Description
	1.1 Create a constraint violation if the assertion fails
	1.2 Encapsulate the static_assert in a structure
	1.3 Use GNU’s compound statement expressions

	2 Prior work
	Linux kernel BUILD_BUG_ON_ZERO* function like macros
	shadow-utils project
	cmp_int project

	3 Type and value
	4 Proposal
	5 Proposed text
	Subclause 6.5.4.1, paragraph 1
	Move subclause 6.7.12 to 6.5.4.6
	Subclause 6.7.1, paragraph 1
	Subclause 6.7.1, paragraph 14

	6 Future directions
	7 Acknowledgements

