
Proposal for C2y

WG14 N3659

Title: Considering expressions based on restrict pointers as pure rvalue expressions
Author, affiliation: Vladislav Belov, Syntacore
Date: 2025-07-25
Proposal category: Defect reports / Clarifications
Target audience: Developers working on C code bases and compiler developers

Abstract: The formal definition of restrict in the C standard introduces the concept
of ”an expression E based on the restrict pointer P”. However, this definition remains
somewhat ambiguous and can be interpreted in ways that allow other lvalue pointers, when
assigned E, to be considered expressions based on P as well. This ambiguity is not only
confusing for developers but also complicates compiler optimizations related to restrict

pointers, which contradicts the primary purpose of introducing the restrict qualifier —
enabling more effective optimizations.

Prior art: C

1



Considering expressions based on restrict pointers as

pure rvalue expressions

Reply-to: Vladislav Belov (vladislav.belov@syntacore.com)
Document No: n3659
Date: 2025-07-25

Introduction and Rationale

Since the introduction of the restrict qualifier in C99, programmers are able to declare
certain pointers in their programs with the restrict qualifier. In general, this qualifier
serves as a hint to the compiler that some pointers do not alias each other within a certain
region of code, which enables better optimization opportunities.

According to the standard, expressions involving arithmetic on a restrict pointer are
considered to be ”based on” that pointer. This behavior extends further, as highlighted by
the informative note in the C standard (J.5.6, EXAMPLE 7), which states:

The least effective alternative is:

void f(int n, int * restrict p, int *q) { /* ... */ }

Here the translator can make the no-aliasing inference only by analyzing the body
of the function and proving that q cannot become based on p. Some translator
designs may choose to exclude this analysis, given the availability of the more
effective alternatives described previously. Such a translator is required to assume
that aliases are present because assuming that aliases are not present may result
in an incorrect translation. Also, a translator that attempts the analysis may not
succeed in all cases and consequently needs to conservatively assume that aliases
are present.

This example suggests that even simple copies of a restrict-qualified pointer into an-
other pointer implicitly make the new pointer ”based on” the original.

Example 4: Copying a restrict pointer — the new pointer is based on the
original

int * restrict x;

int * y = x; // y is now based on x

This assumption can be a serious problem blocking the optimization produced with a
translator, since it will need to prove that any other pointer introduced in the same scope in
which the restrict pointer was introduced is not ”based on” it, which, in general, is more
of a complication for the alias analysis of the compiler than a simplification for optimiza-
tions (which is what restrict was designed for).Examples 5 and 6 from Section 6.7.4.2 of
the standard show an alternative way to avoid such problems with restrict pointers used

2



as function arguments, but this approach is still inconvenient for local restrict pointers,
restrict pointers as structure fields, and similar cases. Also, we have observed a behavior
that may indicate a possible language defect. The contradiction is as follows: the restrict
keyword is a type qualifier for pointer types, meaning it gives a corresponding pointer cer-
tain additional properties, as described in Section 6.7.4.2 of the standard. However, when
we create a copy of a restrict-qualified pointer into a non-restrict pointer—as shown
in Example 4—this copy becomes based on the original and effectively inherits the same
properties, even though it is not itself qualified with restrict.

This set of considerations led me to make the following proposal.

Proposal

This proposal suggests clarifying the definition of expressions based on a restrict pointer
to include only rvalue expressions.

In other words, an expression should be considered ”based on a restrict pointer” only
when it appears as an rvalue — that is, when it is used directly for reading or writing memory
without creating new lvalues that might alias.

Valid — direct rvalue access Invalid — introducing a new pointer
from a restrict expression

void foo(int * restrict p) {

*(p + 10) = 10; // OK

}

void foo(int * restrict p) {

int *x = p + 10;

*x = 10; // Undefined behavior

}

This approach preserves the ability of compilers to perform alias analysis based on
restrict without requiring complex tracking of all pointer copies and derived expressions
in the same scope. It aligns with the original intent of restrict — enabling simpler and
more predictable optimizations.

Proposed Wording

The wording proposed is a diff from the committee draft of ISO/IEC 9899:2024. Green
text is new text, while red text is deleted text.

Modify 6.7.4.2 paragraph 3 as follows:

If a declaration of a pointer to an object includes the restrict qualifier, and if
the block in which the declaration appears allows access to the object only by
means of that pointer (and expressions derived from it), then optimization based
on the restrict qualifier is permitted.

Note that ”based on” is defined only for rvalue expressions with pointer
types.

3



Modify 6.7.4, examples 5-7:

EXAMPLE 5 Suppose that a programmer knows that references of the form p[i]
and q[j] are never aliases in the body of a function:

void f(int n, int *p, int *q) { /* ... */ }

There are several ways that this information could be conveyed to a translator
using the restrict qualifier. Example 2 shows the most effective way, qualifying
all pointer parameters, and can be used provided that neither p nor q becomes
based on the other in the function body. A potentially effective alternative is:

void f(int n, int * restrict p, int * const q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on
the parameter declarations alone, though now subtler reasoning is used: that
the const-qualification of q precludes it becoming based on p. There is also a
requirement that q is not modified, so this alternative cannot be used for the
function in Example 2, as written.

EXAMPLE 6 Another potentially effective alternative is:

void f(int n, int *p, int const * restrict q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on
the parameter declarations alone, though now even subtler reasoning is used:
that this combination of restrict and const means that objects referenced using
q cannot be modified, and so no modified object can be referenced using both p
and q.

EXAMPLE 7 The least effective alternative is:

void f(int n, int * restrict p, int *q) { /* ... */ }

Here the translator can make the no-aliasing inference only by analyzing the body
of the function and proving that q cannot become based on p. Some translator
designs may choose to exclude this analysis, given availability of the more effective
alternatives described previously. Such a translator is required to assume that
aliases are present because assuming that aliases are not present may result in
an incorrect translation. Also, a translator that attempts the analysis may not
succeed in all cases and consequently need to conservatively assume that aliases
are present.

Replace with the following clarified example:

4



EXAMPLE 5

void f(int n, int * restrict p, int *q) { /* ... */ }

Here, the translator can make the no-aliasing inference because, if q becomes
based on p and there are both a write and a read accesses through q and p,
respectively, the behavior is undefined.

Proposed Wording

The wording proposed is a diff from the committee draft of ISO/IEC 9899:2024. Green
text is new text, while red text is deleted text.

Modify 6.7.4.2 paragraph 3 as follows:

If a declaration of a pointer to an object includes the restrict qualifier, and if
the block in which the declaration appears allows access to the object only by
means of that pointer (and expressions derived from it), then optimization based
on the restrict qualifier is permitted.

Note that ”based on” is defined only for rvalue expressions with pointer
types.

Modify 6.7.4, examples 5-7:

EXAMPLE 5 Suppose that a programmer knows that references of the form p[i]
and q[j] are never aliases in the body of a function:

void f(int n, int *p, int *q) { /* ... */ }

There are several ways that this information could be conveyed to a translator
using the restrict qualifier. Example 2 shows the most effective way, qualifying
all pointer parameters, and can be used provided that neither p nor q becomes
based on the other in the function body. A potentially effective alternative is:

void f(int n, int * restrict p, int * const q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on
the parameter declarations alone, though now subtler reasoning is used: that
the const-qualification of q precludes it becoming based on p. There is also a
requirement that q is not modified, so this alternative cannot be used for the
function in Example 2, as written.

EXAMPLE 6 Another potentially effective alternative is:

5



void f(int n, int *p, int const * restrict q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on
the parameter declarations alone, though now even subtler reasoning is used:
that this combination of restrict and const means that objects referenced using
q cannot be modified, and so no modified object can be referenced using both p
and q.

EXAMPLE 7 The least effective alternative is:

void f(int n, int * restrict p, int *q) { /* ... */ }

Here the translator can make the no-aliasing inference only by analyzing the body
of the function and proving that q cannot become based on p. Some translator
designs may choose to exclude this analysis, given availability of the more effective
alternatives described previously. Such a translator is required to assume that
aliases are present because assuming that aliases are not present may result in
an incorrect translation. Also, a translator that attempts the analysis may not
succeed in all cases and consequently need to conservatively assume that aliases
are present.

Replace with the following clarified example:

EXAMPLE 5

void f(int n, int * restrict p, int *q) { /* ... */ }

Here, the translator can make the no-aliasing inference because, if q becomes
based on p and there are both a write and a read accesses through q and p,
respectively, the behavior is undefined.

Acknowledgements

The authors would like to thank the following individuals for their valuable discussions and
insights related to this work:

� Konstantin Vladimirov

� Anton Sidorenko

� Sergey Kachkov

6



References

References

[1] WG14. Working Draft for the C Standard (N3220). Available at: https://www.

open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf

[2] Texas Instruments. Performance Tuning with the restrict Key-
word. Available at: https://e2e.ti.com/cfs-file/__key/

communityserver-discussions-components-files/791/Performance_5F00_

Tuning_5F00_with_5F00_the_5F00_RESTRICT_5F00_Keyword.pdf

[3] WG14. C99 Defect Report #294: Based-on relationship for restrict-qualified pointers.
Available at: https://www.open-std.org/jtc1/sc22/wg14/issues/c99/issue0294.

html

7

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/791/Performance_5F00_Tuning_5F00_with_5F00_the_5F00_RESTRICT_5F00_Keyword.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/791/Performance_5F00_Tuning_5F00_with_5F00_the_5F00_RESTRICT_5F00_Keyword.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/791/Performance_5F00_Tuning_5F00_with_5F00_the_5F00_RESTRICT_5F00_Keyword.pdf
https://www.open-std.org/jtc1/sc22/wg14/issues/c99/issue0294.html
https://www.open-std.org/jtc1/sc22/wg14/issues/c99/issue0294.html

