Xl%lb/‘\\ -ol7
V&2) Noplg

r rameters in

Roland Hartinger
Andreas Schmidt
Erwin Unruh

Siemens Nixdorf Informationssysteme AG
Department of Software Development Systems
C/C++ Front-End Laboratory STM SD 224
Otto-Hahn-Ring 6
W-8000 Munich 83

Germany
Phone : +4989 636-44081
Fax : +4989 636-40140

E-Mail : unido!sinix!athen!d015s000!hartinger

1. Introduction

In C and C++, the established way of associating the arguments of a function call with
their formal place-holders in its prototype definition is by using positional parameters.

The following proposal introduces a second way of binding actual parameters to the
formal ones, by using the names of the formal parameters in a function call, and
’assigning’ them the actual values.

The parameter names are those given in the declaration of a function (the function

prototype). Currently only the types of the parameters are required - the names can be
specified optionally.

Using keyword parameters for communication to a function provides the following
major improvements over the traditional approach with positional parameters :

- function calls are much safer, because a name says more than a position in a
parameter string separated by commas,

- extending an existing functional interface is much easier, because existing calls
are not affected by any changes to the order of the formal parameters,

- the readability of functional interfaces is inherently increased and the
documentation of the parameters is more informative and found in the
applications code itself,

- the possibilities of default values are greatly increased. They are no longer
restricted to the last parameters.

Keyword parameters are used in several programming languages - one of them is ADA.
Another is the preprocessor of SPL4, which is a system implementation language for

Siemens Nixdorf’s proprietary system BS2000. Furthermore, there are system control
languages which use keyword parameters.

Here is a small example which shows the declaration and the corresponding call of the
ANSI-C Library function ’freopen’, with and without keyword parameters.

Declaration:

FILE* freopen(const char *filename, const char *mode, FILE *stream);
Call without parameter names:

freopen("myfile.dat", "r", myfile);
Call using keyword parameters:

freopen(filename:= "myfile.dat", mode:= "r", stream:= mystream);

2. Portability and Compatibility Aspects

The proposed introduction of keyword parameters in C++ does not have any negative
effect on existing C++ programs. It uses parameter names only as they have been
written in the declaration.

In the function call the names are referred and separated by a new token which is
necessary to distinguish between the keyword parameter and any other expression given
as an actual parameter.

The following sections will give a precise description of the proposed way of
introducing keyword parameters in the C++ language core.

The description is divided into the following sections :
- Lexical changes
- Declaration syntax
- Syntax for a named function call
- Semantic restrictions of applying keyword parameters
- Handling overload resolution
- Implementation aspects

3. Abbreviations used

named association an actual parameter bound with a name.

named call a function call via keyword parameter

named prototype prototype, where each parameter has a name.
positional call a call with only positional parameter associations.

= the new token used in named calls
4, Lexical Change
4.1. Proposed Change

Add the new token ":=" for use in a named call.

Siemens Nixdorf Informationssysteme AG Nov 8, 1991 Page 2

K. I rs in C++

4.2. Rationale

A modification to the syntax is needed to describe the named call. Since we want to
avoid introducing new ambiguities, we propose to use a new token. Thus a named call
can clearly be separated from a positional call.

Using an already existing token may result in syntactic problems. It may be possible to
use the colon (":") as the separator, but this is not as clear as we want it to be.

The new token must be carefully choosen. There should be no correct program of
current C++ which contains the character sequence of the new token outside a
comment, S0 "<-" is not possible, because this may occur in "a < -1", One recalls the
ongoing discussion of the template delimiter, which is a similar problem.

One possible alternative to ":=" may be "=>", but it looks too similar to the relational
operator ">=",

S. Syntax for a Declaration
5.1. Proposed Change

The syntax of a declaration is not changed! To the semantics we want to add:
"Any parameter may have a default value”

Additionally we want to add two points to the rationale:

- Library functions should be declared with named prototypes.

- When a function is declared more than once, the names of the parameters should be
the same. A violation of this rule should produce a warning,

5.2. Rationale

The basis for keyword parameters is the naming of the formal parameters. So each
declaration should name its parameters. A difference in the naming will produce severe
problems to the compiler and the reader. So we need to discourage this. We would
prefer different names to be an error, but this is not possible due to compatibility to the
current C++. So we just forbid any named call to this function name (see below).

We have decided to leave the declaration unchanged to allow software vendors to
prepare for keyword parameters. They should now begin to supply names in their
library prototypes. This is possible without violation of the syntax or semantics of
current C++. When keyword parameters become part of the standard, they can be used
immediately.

It is possible to use an unnamed prototype in a header and redeclare the function with
parameter names. The absence of a name is no hindrance to redeclaring the function
with names.

We allow each parameter to have a default value. The reason of the restriction to the
last parameters in the present draft was the lack of a reasonable call. With keyword

parameters we are able to write such a reasonable call (see example below). So the
restriction is no longer needed.

void foo (int a, int b=0, int c);
foo(a:=1,c:=5);

6. Syntax for a Named Call
6.1. Proposed Change
Change the following three rules (Sections 5.2, 5.3.3, 12.6.2)

postfix-expression.
postfix-expression (expression-list,,)
simple-type-specifier (expression-list,,,)

new-placement:
(expression-list)

mem-initializer:
qualif_ied-class—name. (qxpression-list,,p,)
identifier (expression-list,,,)

to the following rules, exchanging "parameter-list" for "expression-list":

postfix-expression.
postfix-expression (parameter-list,,)
simple-type-specifier (parameter-list,,)

new-placement:
(parameter-list)

mem-initializer:
qualified-class-name (parameter-list,,)
identifier (parameter-list,,)

Then add the following rules to resolve "parameter-list":

parameter-list:
expression-list
expression-list , named-parameter-list
named-parameter-list

named-parameter-list:
named-parameter
named-parameter-list , named-parameter

named-parameter:
identifier := assignment-expression

6.2. Rationale

We introduce the new nonterminal parameter-list to represent the lists used for function
calls. They appear in several places: the direct function call, the function like cast as
a call to the constructor, the new placement as parameters to operator new, member
initializer as calls to constructors and other initializers. The other initializers have not

the simple form of an expression-list and are left out here. They should be included in a
later version.

The parameter-list may be resolved to an expression-list and all previous correct
programs stay correct. Every other resolution leads to the token ":=", which is
not allowed in present programs. This special token also makes sure that no
LALR(1)-violations are introduced. After reading the identifier the parser looks ahead.
If it sees the ":=" it shifts, otherwise it reduces the identifer to an id-expression.

Siemens Nixdorf Informationssysteme AG Nov 8, 1991 Page 4

K T rs in C++

As is seen from the grammar, all positional associations must preceed the named

associations. This correlates with the overloading resolution scheme and is explained
there.

6.3. Options

Much consideration has been given as to whether to allow mixing positional and named
parameter associations. One opinion was to allow only one of these forms in a single
call. Others wanted to mix them completely. We decided to use this form.

We allow both forms in one call, but they must be separated (first positional, then
named). This allows a limited amount of mixing. You may set the first few (commonly
used) parameters at their position and name the rest (less frequently used).

Another reason to do it this way is that ADA does it this way.

7. Semantic Restrictions

Keyword parameters are a way to resolve overloading. So they may not be used at any
place.

7.1. Proposed Semantic Restrictions

The use of named-parameter is not allowed in the following cases:

1. The postfix-expression does not consist of a function name, an operator function
name or a member function expression.

2. The simple-type-specifier does not name a class with a suitably declared
constructor.

3. The identifier in a member-initializer does not represent a member with a type,
which is a class with a suitably declared constructor.

7.2. Rationale

The first point is taken to rule out keyword parameters at calls through a pointer to
function. As names of parameters are not part of the type, there are too many problems
arising with casts. There may be different typedefs, which declare the same type but
have different parameter names. Casting between these types is freely possible. So a
call to a function may be changed when you use a different typedefname for the
function. This may be the source of many subtle errors.

The same problems occur for default parameters which should be discussed in the core
group.

The second and third parts are clear. You can only use a named call, when you have
access to the names of the parameters. This is not the case when you cast to a type
which is not a class. Also initialization of non-class members is done directly without
any function call.

8. Overload Resolution
8.1. Proposed Change
Overload resolution is done in the following steps:

1. The set of applicable functions is determined. In the several cases the following
functions are applicable:
a) function name: all functions of this name, which are in scope
b) operator function name: all operators of this name, which are in scope
¢) member function expression: all member functions of this name, which are in
scope

d) simple-type-specifier: when there is more than one parameter or keyword
parameters are used: all constructors of this class; otherwise it is resolved using the
cast-algorithm

e) new-placement: all operator new, which are in scope

f) mem-initializer: all constructors of this class

2. If one of these functions has two declarations with nonconforming parameter names
and the call uses keyword parameters, the call is an error.

3. For each function the positional parameter associations are mapped to the
corresponding formal parameters.

4. For each function the named parameter associations are mapped to the formal
parameters with the same name. When a function does not have a parameter of this
name, it is removed from the set of applicable functions.

5. If there is a formal parameter, which has more than one actual correspondence, the
function is removed from the set of applicable functions.

6. If there is a formal parameter without an actual correspondence and without a
default value, the function is removed from the set of applicable functions.

7. The types of the corresponding (formal and actual) parameters are compared. If
there is a pair without a type-conversion, the function is removed from the set of
applicable functions.

8. The best-matching function is determined as described in the draft (Section 13.2;
best at each argument, better than all others at one argument).

9. The actual parameters are sorted to the order of the declaration of the
best-matching function. Default values are inserted, where needed.

When at any place the set of applicable functions becomes empty or there is no
best-matching function, the call is an error.

8.2. An Example

To illustrate the new overloading resolution scheme I include an example. Here is a list
of declarations of different functions and a call :

/l the declarations:

void f{ int a, int size =0, char *value); I/ (1)
void f{ short a, char *value), 1l (2)
void f{ int a, double value)1 (3)
void f{ int a, char *value, short size); /I (4)
void f{ int value, int a)1 (5)
void f{ int a, char *string, int size =0); /Il (6)
void g(int a, char *value) (7)
/l The call:

f (1, value := "hallo");

Siemens Nixdorf Informationssysteme AG Nov 8, 1991 Page 6

T 1s in C++

Which function will be called? The resolution algorithm has several steps. So I will

procede through the steps of the algorithm:

1. The set of applicable functions consists of the functions 1 through 6. No 7 has a
different name.

Not applicable, each function is declared exactly once.

The I will map to the first parameter.

The string "hallo” will map to the parameter with the name value. This rules out

No 6; it has no parameter with this name.

This rules out No 5. Here the first formal parameter is matched against the first

positional parameter and the parameter with the name value.

No 4 is ruled out. The third formal parameter has no corresponding actual

parameter.

Because there is no conversion from char* to double, No 3 is ruled out.

A short is worse than an int as a match to the constant I. So No 2 is ruled out.

The parameters are reordered and the default for the second parameter is inserted.
So the call resolves to:

fi (1,0, "hallo");

PPN O Y AW

8.3. Rationale

(1) is used to determine whether overload resolution should take place. There are a few
places where the function to be called is fixed without overloading. In most of these
cases the function is called via a pointer.

At (d), function overloading only occurs when a constructor call is needed. The same
syntax may be used for more general type conversions.

At (e), an implicit first parameter of type "size_t" is added. Since all operator new have
a first parameter of this type, it does not play any role in the overload resolution.

For (2) we wanted to make "declaration with non-conforming names" an error (see
above). This is not possible due to compatibility to the current C++. To overcome this,
we decided to issue a warning at the second declaration and produce an error at the call.
The generalisation of forbidding all calls to functions of this name was to simplify the
work of the compiler. We also considered the task of flagging only those calls where
this function may be called. But then the compiler must remember all declarations. With
the choosen way of working it just sets a flag to the symbol table entry when a function
is declared with non-conforming parameter names.

(3) and (4) describe the mapping of actual parameters to formal parameters. As a border
case it has the pure positional association.

(5) makes sure that no formal parameter is bound to more than one actual parameter.
This may occur when using the same name twice in the actual parameter list. This is
clearly an error and will be recognized, as all functions have the double bounding. The
other case will occur when the actual name corresponds to an early parameter which is
bound by a positional association. In this case the function will not be taken.

Another way of resolving this problem may be to keep such multiple associations until
type-checking is complete. When it still occurs, the call is flagged as an error.

At (6) a mandatory parameter is missing. So the function does not take part in the
overloading scheme.

(7) names the fact that a type conversion which may be needed by a function to be
called should at least be possible.

The final overloading resolution (8) is done as before. The previous steps do not alter
the meaning of a pure positional call.

parameter. The order of the formal parameters is fixed, so the actual parameters must be
reordered. Also the default arguments are inserted here.

A consequence of this scheme is that a function with ellipsis cannot be called with
keyword parameters. The ellipsis has no name, so the parameters supplied for the
ellipsis must be in the positional section. But at this place each named formal parameter
already has a corresponding actual parameter. So any named association following will
introduce a multiple association, which renders the function non-applicable.

9. Aspects of Implementation

We will implement a prototype for keyword parameters. It will be derived from the
cfront. When doing this, the following aspects must be considered:

9.1. Scanner

The scanner must be adapted to accept the new token.

9.2. Parser

The parser must recognize the named call. Since it is marked with the new token, it is
quite easy. Also the syntax was choosen to contain no parsing conflict. After a comma
and an identifier the parser must look ahead one token. If this is the new token, it shifts
it and it will eventually be reduced to named-parameter. If it is not the special token,
the identifier is part of an assignment-expression and will eventually be reduced to it.
The identifier should not be entered into the symbol table. It is held in a separate list. It
can also be a type-name.

9.3. Symbol Table

The list of parameter names must be held for each function, operator and constructor
which may be called with keyword parameters. It is initialized at the first declaration
and modified at each other declaration (of the same function). The list may contain
empty places, where the parameter names are not given.

If there is a declaration with a different parameter name, a warning is issued and the
function is flagged as "with nonconforming parameter names".

9.4. Semantically at a Function Call

Here the overloading algorithms must be implemented. It must not necessarily follow
the described scheme, but must have the same result.

After the overloading resolution is done, the intermediate code (attributed syntax tree?)
contains a traditional call. The keyword parameters are no longer visible.

9.5. Code Generation

As the intermediate code is formed without named associations, all work is done. There
are no changes here.

Siemens Nixdorf Informationssysteme AG Nov 8, 1991 Page 8

K T in C++

10. References

1/

12/

3/

14/

5/

W. T. Hardgrave

Positional versus Keyword Parameter Communication in Programming Languages
Sigplan Notices 11,5 (1976) pp52-58

R. Parkin

On the Use of Keywords for Passing Procedure Parameters

Sigplan Notices 13,7 (1978) pp41-42

Reference Manual for the Ada Programming Language
ANSI / Mil-Std 1815 A (1983)

SPL4 (BS2000) System Programming Language
Siemens Nixdorf internal documentation

BS2000 Control System Command Language (Reference Manual)
Siemens Nixdorf documentation -

