Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 1

Doc No: X3J16/92-0008
WG21/N0086

Date: January 31, 1992
Reply to: Roland Hartinger

A Proposal solving the Name Space
Pollution Problem in C++

Volker Bauche
Roland Hartinger
Erwin Unruh

Siemens Nixdorf Informationssysteme AG
Department of C/IC++ Compiler Development STM SD224
Otto - Hahn - Ring 6
W-8000 Munich 83
Germany
email: unido!sinix!athen!d015s000! hartinger

1 Introduction

An important unsolved problem in C++ is that it doesn’t support a mechanism to avoid
name conflicts while using libraries from different independent vendors.

Such libraries provide type names, function and variable names which can interfere with
each another when used together in an application program.

Therefore the language should extended by an appropriate mechanism. A solution to the
problem is described precisely below.

2 Proposal
Currently C++ handles four different kinds of scope, namely: Local, Function, File and
%:s ss{xggest therefore the introduction of another kind of scope , the

’Named Scope’.

A named scope can be introduced by using the already existing ’::* scope resolution
operator. For example,

¢ :NewScope:: {

class X {
/] ...
}:

ALY /P
\J Y
(L) &/\,QQQ G\KC,&Q‘\'Q)V\V\,\

\ a
%) Manudah A% e allowtol Yo Al weewa) Leoptt
¢

i

valmo\wg ow’v} NN TV S AP NN

Jan 31 10:34 1992 Proposal solving the Name Space Poliution Page 2

hides the class X in the scope ::NewScope:: from possible other class X declared in a
file scope.

Since no name ambiguity arises during reference to a name, it is not necessary to speci-
fy the scope name explicitly. For example,

// windows.h supplied with the window library by SNI
::SNIwindow:: {

class window { // window declaration

}s
}

tiMy:: | // function in another named scope
void f(window&); // ::SNIwindow:: is taken
}

// using windows from SNI in the following program
#include <windows.h>

f (windowé&) {

window wdl; // the compiler associates window with
// ::SNIwindow: :window

f(wdl); // ok: global f hides named f,
// consequently
// this is a recursive call of £ ()

t:My:s:f(wdl); // ok

3 Goal of the Named Scope

The goal of the introduction of Named Scope is to prevent name collision when using

libraries and their headers which can contain possible conflicting type, function, and
variable names.

The following example shows a class window which is encapsulated in the named
scope SNIwindow. One can see that scope name is delimited by the :: operator followed
by a scope block which is syntactically the same as a declaration-list.

::SNIwindow:: { // new scope starts here
class window {
// ...
public:
window& open() ;
void draw(int, int);
friend int £1();

-
Ve

} o // and ends here

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 3

An object of that class can be created like any other object of a type which is in the sa-
me file or local scope as far as no other class of that name is in effect. For example:

window wdl; // equivalent to ::SNIwindow::window wdl;
If another window class is in effect, for example

class window { // another window class
// in the actual (say file) scope
}s

the SNIwindow object must be defined explicitly with its scope name, like :

: :SNIwindow: :window wdl;

4 Changes in the Language
4.1 Complete the Grammar

The following changes in the language are necessary to support the named scope. The
changes are based on the grammar of chapter 17, Appendix A in the "Working Paper
for Draft Proposed American National Standard for Information Systems - Program-
ming Language C++", DOC NO: X3J16/ 91-0009, Date: February 11, 1991,

17.2 Expressions

allocation-expression:
: i, New placement,, new-type-name new-initializer,
::iom New placement,, (type-name) new-initializer,
scope-name new placement,p, new-type-name new-initializer /fto add
scope-name new placementop, (type-name) new-initializer /fto add

deallocation-expression:
i, delete cast-expression
2oy delete [] cast-expression
scope-name delete cast-expression /to add
scope-name delete [] cast-expression /to add

primary-expression:
literal

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 4

this

: ¢ identifier

scope-name identifier /fto add
: ¢ operator-function-name

scope-name operator-function-name /to add
: : qualified-name

scope-name qualified-name /to add
(expression)

name

17.3 Declarations

declaration:
scope-name { declaration-list } /to add
decl-specifiers,, declarator-list,, ;
asm-declaration
function-declaration
template-declaration
linkage-specification

simple-type-name:
complete-class-name
complete-type-name /fto change
char
short
int
long
signed
unsigned
float
double
void

complete-type-name: /o
qualified-type-name /o
scope-name qualified-type-name /o

BEE

complete-class-name:
qualified-class-name
: : qualified-class-name

scope-name qualified-class-name /fto add
scope-name: /to add
: ¢ identifier : : /fto add

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 5

5 Scopes
5.1 The Lookup Rules

A full qualified name is searched only in the named scope, which is given in the quali-
fication. A name without qualification is searched in the following scopes:

1. in the local block-scopes, if it appears in a function

2. in the class scope, if it appears in a class definition or a member function definition

3a. in this named scope, if it appears inside the definition of a named scope or

3b. in the global scope, if it appears outside any definition of a named scope

4. in every named scope and the global scope; if it appears in two scopes, the use is
ambiguous.

5.2 Restrictions
It is forbidden to declare a global class with the same name than a named scope!
Consider the following piece of code:

tilhss {

int x; // No. 1
}
struct A {

static int x; // No. 2

}s
void £ () §

struct A { static int x; } // No. 3

int i;
i=2AAs:x; // using No. 3
i = s:As:x%; // using No. 1 through
// "named scope with name"”
4 // or using No. 2 through

// "global class with member"
// cannot decided here !

5.3 Special Cases
5.3.1 Nested named scopes

The names of a declaration are local to its named scope. The names inside a named-
scope-declaration can be referenced as names without scope-name as long as there is no

ambiguity recognized. An name clash can be solved by using the scope-name explicitly
to specify the desired name.

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 6

Names scopes can be nested, for example

HED SR IN|
class A;
se¥e: |
class A;
}

}

But to keep name-scope rules simple, the classes A in the above declaration getting the
names,

tsX: A
t:Y::A

however not the one, one would commonly expect as ::X::Y::A.
This can be easily seen also from the scope-name syntax, because it starts at :: which
means 'beginning in the global scope’ and not starting new scope relative to the actual

one.
5.3.2 Operator Functions

Normally the named scope resolution for function names is completely provided wit-
hout any help of the overload resolution mechanism.

For example,
A |

extern int f1 (int);
}

t:B:r: {
extern int £l (double);
}

foo () {
int i;
£1(1); //error: though it is possible
// todecide for ::A::f1 ()
}

This is restricted also to simplify the scope resolution problem in cases, where it is
much harder to match the names.

On the other hand, consider the following example,
tAse |

operator << (stream&, int);

1:Bss |
operator << (stacké&, int);

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 7

}

stack st;
streamcin;

cin ::A::<< 1; // error: strange and not possible

t:A::operator <<(cin, 1):; // possible but not convenient
// because the advantage of
// operator overloading is lost.

st << 1; // uses operator << from Scope
// ::B:: because of a match of
// that param’s

The reason for applying overload resolution only on operator functions is that they are
'restricted’ on parameter types. They need always one class parameter. This makes the
name resolution easy and clear.

5.3.3 External Declaration and Named Scope
It is legal to have an external declaration inside a named scope, for example,

::SNImath:: {
extern "C" {
int errno;
double sin(double) ;

}

The ermo and sin() are part of the enclosed scope. But there is no impact on their
external names. The linkage specification gives the direction of the real external name
representation.

5.3.4 Named scopes can be added

Suppose you want to write a program, then it might be helpfull to use the headers of
that library in the following fashion,

hl.h

::X1libss {
class A { // ...
}:
// ...

}

h2.h

t:X1lib:: {
class B { //
}2
/1l ...

Jan 31 10:34 1992 Proposal solving the Name Space Pollution Page 8

}

user.c
#include "hl.h"
#include "h2.h"

main () { // ... using both headers of Xlib - Library
A a; // both classes A and B share scope ::Xlib::
B b;
/ / * o o

}

6 Acknowledgment

Special thanks to Dag Brueck, Steven J. Dovich and Bjarne Stroustrup for their help
discussing and reviewing this document.

