Ty s’

Doc No: X3J16/92-0014

WG21/N0092

Date: March 08, 1992

Project: Programming Language C++

Ref Doc: X3J16/91-006

Reply to: Philippe Gautron (gautron@rxf.ibp.fr)

Kim Knuttila (knuttila@torolab6.iinus1.ibm.com)
Alan D. Sloane (alans@Eng.Sun.com)

A Survey Paper:
Various Proposals to Revise Templates Specifications

Philippe Gautron
Kim Knuttila

Alan D. Sloane
March 1992

1 Introduction

This paper presents a survey of a non-exhaustive list of proposals to revise the specifications of
templates. The intent is to describe the proposals, with the support of examples.

1.
2.

The proposals come from various sources in the C++ community.
Some of these proposals may conflict each other.

Further considerations for precise and complete specifications are necessary. We must first
discuss the proposals in order to agree on some fundamental choices.

Discussions in the paper may correspond to different interpretations from the authors or
from the reviewers.



2 Function Overloading Resolution Mechanism

Most of the proposals involved changes to the overload resolution mechanism in one way or
another. The Working Draft [ANSI/ISO-C++ 91] defines §14.4 the general rules for the over-
loading resolution of functions. Particularly, it states (exact match rule) that no conversions
will be applied on template function arguments: “A match on a template implies that a spe-
cific template function with arguments that eractly matches the types of the arguments will be
generated.”

For any function, overloading resolution is currently achieved in three successive steps (Work-
ing Draft, §14.4):

1. look for an exact match on functions,
2. look for an exact match on instances of function templates,
3. look for other conversions on functions.

Introduction of function templates has led to split the overloading rules for non-template func-
tions (143) in order to incorporate a rule for function templates (2).

Among the set of overloaded functions with a same name, the selected function is the unique
function that satisfies the following best match rule (Working Draft, §13.2):

¢ each of its argument must he itself a best match compared to the corresponding arguments
of the other functions,

* at least one of its argument must be a strict best match.

For each set of corresponding arguments, an argument is a best-matching argument if its con-
version is better or similar to the others. The following conversion rules are successively applied
on each argument by decreasing order of preference (Working Draft, §13.2):

1. first, look for an exact match,

2. then, look for a match with promotions,

3. then, look for a match with standard conversions,

4. then, look for a match with user-defined conversions,
5. then, look for a match with ellipsis.

Being complete should require to introduce subtleties for each of these conversion rules. For
example:

o under the exact match rule (1), a perfect match is better than a match requiring a trivial
conversion T to const T.! This rule allows notably to distinguish between functions like:

void f (const charx);
void f (chars);

'Derived types from T acts in a similar way. We will refer to T as the basic type (fundamental or user-defined).



¢ under a standard conversion (3), a class hierarchy acts as a selection mechanism. For

example:

struct A {/+ ... o/ };
struct B : A { /% ... %/ };
struct C ;: B { /» ... %/ };
void f (A*);

void £ (Bx);

void g (C *c) {

f (c); // call of £ (B*)

}

In this example, £ (B*) is considered a better match than £ (A*) for the function call £(c).

3 Overloading Resolution of Template Functions

In his book [Lippman 91a], Lippman recommends a set of adjustments. The first two aims at
relaxing the exact match rule for the resolution of template function overloading.

1. make usual trivial conversions legal for template function arguments,

2. make usual polymorphic conversions legal for template function arguments.

These extensions have been implemented in the version 3.0 of cfront released by USL. From his
experience [Lippman 91b], Lippman characterizes them as “the minimum extensions necessary
to the current specifications to make an implementation of function templates useful to the
programmer”.

Furthermore, Lippman proposed two others extensions for consideration by the X3J16 com-
mittee:

3. to provide full argument matching on template functions

4. to permit expression parameters in function template definitions.

The next sections analyse successively each of these proposals.

Discussion

1. This appears to be a change in philosophy regarding templates. The primary justification
for the change appears to be better control of the template instantiation process. According
to the Working Draft, a function template describes a family of functions, where the size
of the family is infinite. An instance of a function is constructed from an instance of a call
to precisely match the types of the actual arguments. A programmer can know exactly
what is invoked by the call.

2. Overall comments. The mechanism should not constrain implementations of templates,
e.g. to be link-time or compile-time dependent, and should not require understanding of
implementation, e.g. what instantiations have happened to date. Instantiation should
depend only on text seen up to that point in the compilation unit.



3.1 Trivial Conversions

In order to illustrate the first proposal, we will use a very simple example, the. polvmorphic
identity function. The definition of the function is itself trivial: to return its argument.
Examples of its definition, call and instantiation look like:

template <class T> // definition
T identity (T t) { return t: }

int i = identity (1789); // (1), instantiates: int identity (int)

In accordance with the exact match rule, a second template instantiation is created for an
argument of type const int:

const int j = 1789; // initialization
const int k = identity (j); // (2), instantiates: const int identity (const int)

In this example, two instantiations have been gencrated that are not ambiguous with respect
to overloading resolution for template functions but that should be with respect to overloading
resolution for non-template functions.

Another example has been provided by Lippman:

template <class T>
T min (const T array([], int size);

const int size = 1789;
int array [sizel;

int i = min (array, size); // two errors

The call of the template function min entails two errors since each argument requires a trivial
conversion:
array: int* — const intx
size: const int — int

Proposal 1
The proposal is to relax the exact match rule to permit trivial conversions between arguments
and parameters of a template (member) function.
The signature of the generated template function should be strictly equivalent to the template
signature (including qualifiers) with type substitution of the basic types, and legal trivial conver-
sions taken into consideration in step 2 (function templates) of the function selection mechanism.

In our examples, the sole generated functions should be (whatever the order of instantiations
are):

int identity (int);
int min (const intx*, int);



Discussion

1. Proposal 3 (“unifying rules for overloading resolution™) will include this proposal and state
it in a different way.

2. Including qualifiers in argnments of the generated template function instead of only con-
sidering the basic types without qualifier (the most general function with respect to trivial
conversions) allows to differentiate between declarations like:

template <class T> void f (T*);
template <class T> void f (const T*);

while preventing from declarations of volatile arguments:

template <class T> void f (volatile T*); // what conversions exactly?

3. This clearly works in many cases of trivial conversions. But it works for an interesting
reason: for those type qualifiers that only have meaning for lvalues, the act of value
extraction renders the qualifier meaningless. For example, an formal parameter of type
const int can accept an actual parameter of type int because the const property only
applies to lvalues. The act of value extraction at the point of the call renders the const-ness
irrelevant and therefore safe to ignore. It still, however, has relevance in the body of the
function. For instance, a const parameter cannot be assigned to inside the body of the
function.

4. A reference/non-reference conversion is a trivial conversion. Does the proposed rule affect
the semantic behaviour of a template function when such conversions must be applied to
arguments of this function ?

The current rules for standard functions do not allow to distinguish between functions
that only differ with a reference/non reference argument. For example, the declarations:

void f (int); // (1)
void £ (int&); // (2)

are illegal.

Under current rules for templates:

template <class T> void f (T); /7 (3)
template <class T> void f (T&); // (4)

could be legal (are they?):

int 1 = 1789;

int& j = i;

f(i); // instantiates (3), (4) should be an error
£(3); // instantiates (4), (3) should be an error



The proposed rule makes the simultaneous declarations (3) and (4) illegal (and in confor-
mity with the rules for standard functions).

If the user’s declaration is (3), then

int i; £(i): // i is passed (by value)
int& j; £(j) // *j is passed (by value)

If the user’s declaration is (4), then

int i; £(i); // &i is passed (by reference)
int& j; £(j) // j is passed (by reference)

The user’s intention can be clearly shown:

¢ template with argument by value: (3)

¢ template with argument by reference: (4)

3.2 Polymorphic Conversions

A polymorphic conversion is a standard conversion referring to the conversion of a derived class
pointer into a public base class pointer. Similar implicit conversions may occur for class objects
and class references. )

The exact match rule may be an unnecessary constraint for the standard conversions of

arguments of template types. To illustrate this constraint, we will consider a simplified version
of a container class Vector:

template <class T>
class Vector {

protected:
int size;
T#* vec;

public:
Vector (int sz) { vec = new T [size=sz]; }
T& operator [] (int i) { return vec[i]; }
friend ostream& operator << (ostream¥, Vector<T>&);

+;

template <class T>
ostream& operator << (ostream& os, Vector<T>& vec) {
for (int i = 0; i < vec.size; i++) os << vec[i] <<’ 7,
o8 << ’\n’;
return os;

}

void f (int size) {
Vector<int> vec (size);
for (int i = 0; i < size; i++) veclil = i;
cout << vec;



We can slightly refine the class definition by assigning to the subscripting operator respon-
sibility for testing the correctness of access to the vector. The compromise between speed and

safety can be achieved by defining a range-checking derived class that redefined the subscripting
operator as follows:

template <class T>
class Vector_RC : public Vector<T> {
public:
Vector_RC (int sz) : Vector<T> (sz) {}
T& operator [] (int);
};

template <class T>
T& Vector_RC<T>::operator [} (int i) {
assert (i >= 0 & i < size);
return vec[i];

}

An unexpected error is detected when we invoke the output operator of class Vector:

void g (int size) {

Vector _RC<int> vec (size); // instantiation of Vector_RC
for (int i = 0; i < size; i++) vec[i] = i;
cout << vec; // <%%x illegal conversion

}

The instantiation of class Vector_RC above instantiates both a Vector class and a Vector_RC
class for type int. An inheritance relationship is implicitly created between these two classes:

Vector <int>

!

Vector RC <int>

Since an exact match is required for the arguments of a call to the output operator, passing a
Vector RC reference to this function is detected as an illegal conversion.

Proposal 2

The proposal is to relax the exact match rule to permit usual polymorphic conversions of a de-
rived template class pointer to a base template class pointer. Similar implicit conversions should
apply for template class objects and template class references. Legal polymorphic conversions

should be taken into consideration in step 3 (standard conversion) of the argument selection
mechanism.

Discussion

1. This proposal addresses only conversions in presence of template classes. Consider:

template <class T>
ostream& operator<< (ostream&, Vector<T>%); /7 (1)

template <class T>
ostream& operator<< (ostream&, T&); /7 (2)



The distinction between (1) and (2) may appear subtle but is very important. The current
proposal addresses conversions like (1), while proposal 3 (“unifying rules for overloading
resolution”) will address conversions like (2). The difference between the two declarations
above is that, in case (1), using an instance of a derived template class cannot cause any
function instantiation (the template parameter is for example int), while, in case (2), it
might (Vector RC<int> could he a legal template parameter). Under current rules and
with declaration (1), a call:

Vector_RC<int> vec (1789);
cout << vec;:

is an error although it cannot cause any function template instantiation. There is no
other alternative redefining the same operator for the derived class, and this can require
to declare this operator as friend of the base class.

2. This proposal addresses assignment conversions. Consider the following assignment:

Vector<int>* vec = new Vector_RC<int> (1789);

The Working Draft requires an exact match for function selection but is silent about
assignment of derived instances to base instances. This proposal aims at clarifving this
point by stating such assignments legal.

3. Another issue relates to the status of the specialized (or specific) template functions.

Again, proposal 3 will address this issue. In keeping harmony with the current proposal,
consider the following declarations:

typedef Vector<int> Vint;
ostream& operator << (ostream& os, Vint& vec);
The rule applied to arguments of this function might be the rule for standard functions.
the rule for template functions, or a hybrid rule (imposing an exact match for vec and per-
mitting any legal polymorphic conversion for os). The current proposal aims at applying
any legal polymorphic conversion on both arguments.
3.3 Unifying Rules for Overloading Resolution

Beyond the relaxations to the exact match rule presented in the previous sections, closer exami-
nation of the overloading mechanism raises the following issue: “Why don’t provide a same and
unique resolution mechanism for both template and standard functions?”. In other terms, why
don’t apply on template functions the usual rules applied for overloading resolution of functions.
And, if not possible, how shall we generalize the usual conversion rules to template functions.

We will consider our study under the following environment assumptions:
* no global analysis of template declarations over translation units occurs

¢ the one-definition rule is enforced in one way or another for each translation unit



o check for oneness of template function instantiation is a linking issue and so not considered
here (except when relevant for the discussion).

Below are listed examples illustrating different scenarii.

Example 1
template <class T> T# f(T*) { ... }
class B { ... };
class D : public B { ... };

void £ (B# bp, D* dp) {
#ifdef FIRST_ORDER
dp = £f(dp); // (1) calls Dx f(D%)

bp = £(bp); // (2) calls Bx £(B%)
// Now change the order!
Belse
bp = £(bp); // (3) calls B*x f(B*)
dp = £(dp); // (4) also calls B+ f(B+)?, but should die
// on the illegal assignment conversion
#endif
}

This example shows that changing the order of function calls could introduce a semantic error
in (4) since the user’s intention is clearly to instantiate D* £(D). So, the resolution mechanism
must not introduce order dependencies in the resolution. This example also shows again (see
§3.2) that we must distinguish between argument conversions relating to template parameters
(f above) and argument conversions relating to template classes (operator<< in §3.2).

Example 2
// file a.c
// # include <lib1l.h>
template <class T> void f (char#®, Tx); /7 (1)
// # include <1ib2.h>
class A;

void f (chars, A*); /7 (2)

// # include <1ib3.h>
void f (chars); /! (3)

This example shows that we must distinguish between:
la standard functions (as (3))
1b specialized template functions (as (2))
2 (internally) instantiated template functions

3 function templates (as (1))



The distinction between 1a and 1b is purely conceptual. Non-template functions with corre-
sponding signatures to signatures of templates are expected to be specialized template instan-
tiations. Conversely, when signatures differ, name sharing is expected accidental or, at least,
related to different intentions. But distinguishing these two cases may be too subtil to both the
user and the compiler. Cases 1a and 1b must be thus treated stmilarly, and this leads to the
first following conclusion: usual conversions must apply on specialized template functions.

In the rest of the section, we will distingnish (if necessary) between:

1. user-supplied functions (including 1a and 1b abhove)
2. (internally instantiated) template functions

3. function templates (candidate to instantiation)

Example 3

// file a.c
extern void f (int);

£(1789); // (1)

// file b.c
extern void f (int);
template <class T> void f (T);

£(1789); //(2)

// file c.c
template <class T> void f (T);

£(1789); /7 (3)

For each function call £(1789), the user-supplied version must dominate the function tem-
plate (in case (3), this is detected at link-time). This shows that a user-supplied version with an
eract match will be always the selected functjon (whatever template declarations are). This is
yet correct if we reverse the two declarations of £ in file b. ¢ before the function call £. Similarly,
if the function call is introduced between the two declarations, as in:

Example 4

// file d.c
template <class T> void f (T);

£(1789);
void f (int);

the user-supplied version dominates the template version.? Being coherent with the usual
standard rules requires to generate an error if an inline template function and an user-supplied
version coexist in a same translation unit.

Note that does not require a global analysis of the translation unit.

10



Example 5

// file a.c
template <clasg T> void f (T, int);
void f (int, int);

£ (10, ’¢’); // (1)

// file b.c
template <class T> void f (T, int);
void f (int, long);

f (10, ’¢?); /7@

In case (1), a call to f(int, int) is expected, and in case (2) a call to £(T,int) seems
preferable. Indeed, in case (2), the template version requires one exact match and one trivial
conversion while the user-supplied version requires one exact match and one standard conversion.
This example shows that both template and non-template functions must be considered to find
the best matching function.

Proposal 3

The proposal is to relax the exact match rule for overloading resolution of function templates
and to achieve the general overloading resolution of functions by the following steps:

1. look for the set of user-supplied functions which. through conversions, match

2. look for the set of function templates which, through substitution of the basic types of the
function call arguments as template parameters, and then conversions, match

3. extract the unique function that satisfies the best match tule for arguments (see §2). If
found, call it.

4. If not unique. In case of tie between a user-supplied function and a template function,
preference is given to the user-supplied version over the template version. In other cases,
no match is found and the call is an error.

Discussion

1. From the three kinds of functions we have distinguished above, only the user-supplied
functions and the function templates take place in the resolution mechanism. Template

functions are only checked not to generate template instantiations twice in the same trans-
lation unit.

2. This rule embraces proposals 1 and 2.
// -- trivial conversions

template <class T>
T identity (T t) { return t; }

const int j = 1789;

11



const int k = identity (j);
// basic type: int
// instantiates: int identity (int)

template <class T>
T min (const T array(], int size);

const int size = 1789;
int array [size];

int i = min (array, size);
// basic types: int, int
// instantiates: int min (const int[], int)

// -- polymorphic conversions
template <class T> class Vector {
/...
friend ostream& operator << (ostreamk, Vector<T>&);
h
template <class T> class Vector_RC : public Vector<T> { /% ... */ };

Vector_RC<int> vec (1789);
// basic type (of the template argument): int
// instantiates: Vector<int>,
// operator<< (ostream&, Vector<int>&),
// Vector_RC<int>
cout << vec;
// no template instantiation
// polymorphic conversion applied on operator<<

3. Does this rule satisfy the requirements of the examples listed at the beginning of this
section?

Example 1

template <class T> T* £f(T*) { ... }

void £ (B* bp, D+ dp) {
#ifdef FIRST_ORDER
dp = £ (dp);
// basic type: D
// instantiates: D+ f (D#)
bp = £(bp);
// basic type: B
// instantiates: B+ f (Bx)
#else
bp = f£(bp);
// basic type: B
// instantiates: Bx f (B#)
dp = £(dp);
// basic type: D
// instantiates: D* f (Dx)

12



#endif

Example 2
// file a.c
template <class T> void f (char#, T%); /1 (1)
void £ (char*, Ax); // (2)
class B : public A { ... } #b;
f (.Ilfll’ b);
// two possibilities: f(char#*, T*) and f(char*, As)
// instantiates (1): f(char*, B*) -~ two exact matches --—
Example 3
// file b.c
extern void f (int); // (1)
template <class T> void f (T); /7 (2
£(1789); // calls (1) -- tie-breaker applies
// file c.c
template <class T> void f (T); /7 (3)
£(1789); // calls the template version (3)

Linking together files b.o and c.o may lead to two different definitions of the same function
f if definitions (1) and (3) are provided in, for example, b.c and c.c. But this issue does
not relate directly to the resolution mechanism and is not considered further in this study.

Example 5
// file a.c
template <class T> void f (T, int): /7 (1)
void f (int, int); // (2)
£ (10, ’c’); // calls (2) -- tie-breaker applies
// file b.c
template <class T> void f (T, int); /7 (3)
void f (int, long); // ()
£ (10, ’¢’); // calls (3)
// choice between:
// f(int, int) // (3)
// f(int, long) // (@)

// integral promotion > standard promotion: (3) is a better match

4. for backward compatibility, Stan Lippman has proposed to exclude instances of a template
function without non-parameters arguments. For example:

13



template <class T> void f (T, T); /7 (1)
void f (int, long); /7 (2)

f (10, '¢?); // calls (2), (1) not considered

Is backward compatibility an issue needing such a burden?

4 Expression Parameters

Expressions may be parameters of class templates, as in:
template <class T, int size> class Vec; // ok
and, consequently, parameters of member function templates, as in:

template <class T, int size>
T& Vec<T,size>::operator [] (int i) { // ok
assert (i >= 0 && i < size);
return vecl[i];

}
but cannot be parameters of function templates, as in:

template <class T, charx msg> void error (const T&, char*); // error

Different attempts to revise the use of expressions in templates has been proposed. These
proposals conflict each other and the previous proposals 1, 2, and 3 can interfere. So. this section
do not aim at providing an exhaustive analysis for each of these proposals.

This section discusses the introduction of expressions in function template definitions, then
some restrictions on expression parameters, and finally, the suppression of expressions from any
list of template parameters, in other terms, the restriction of template parameters to types.

4.1 Introducing Expressions in Function Templates

4.1.1 Member Function and Function Templates

A preliminary issue concerns the obligation for every template parameter specified in a function
template definition to be used in the argument list of the function. This section discusses why
this is required for function templates and not for member function templates.

Template Instantiation Mechanism
We must first distinguish between the different mechanisms used for template instantiation:

¢ class template instantiation is achieved by explicitly passing the template parameters, as
in:

typedef Vec<int, 1789> Vint;
Vec<int, 1789>* vi1;

We will refer to this mechanism as parameter-based.

14



¢ function template instantiation is achieved with the support of the function overloading
mechanism, as in;:

template <class T> void error (const T&, char#);
class A { ... } a;
error (a, "error"); // instantiates: error (const A%, charx*)

We will refer to this mechanism as overloading-based.

¢ member function template instantiation is achieved in part through the template param-
eters of its class and in part with the support of the function overloading (and overriding)
mechanism, as in:

Vec<int> vi;
vi[0] = 0; // Vec<int> :: operator [] (int)
// object type then function selection

We will refer to this mechanism as hybrid.

These instantiation mechanisms are suitable for classes and functions, but (see below) may be
problematic for member functions.

Difference between Function and Member Function Templates . '
Expression parameters are allowed as template parameters of a member function to specify the
template class of the function. The issue is that the same parameter list is used both to specify

the function class and to select the member function. The following definition concentrates the
issue:

template <class T, int size>
Vec<T,size>::print (int size) {
/...
}

The Working Draft states §1..1 that template parameters are in the scope of the template

declaration. The use of size in the argument list of print is thus an error. If we change size
into, for example, sz:

template <class T, int size>
Vec<T,size>::print (int sz) {
// ...
}

we have now a legal definition, where T and size are used to select the object type on which
print is applied. The function is itself selected on the basis of the type of its argument.

Conclusion

Expression parameters are allowed in the declaration of a member function template only to
specify the object type. Permitting expression parameters in the declaration of a function
template should lead to undesirable contortions in the specifications of function template.

15



Discussion

1. Conversely, requiring every template parameter to be used in the argument list of a member
function template would be a conceptual error. with respect to operator overloading for
example:

template <class T, int size>
T& Vec<T,size>::operator {] (int index, T, int size); // 777

2. Another difference between function and member function, more precisely between their
instantiation mechanisms, relates to the overloading mechanism. It is allowed to overload
a template function with different template parameter lists, as in:

template <class T> void error (T#, char*);
template <class T1, class T2> void error (Ti*, T2%);

whereas a similar overloading is disallowed for template classes. and so for template mem-
ber functions. By the same way, this restriction does not allow to include different classes
Vector from different libraries although potentially unambigous:

// -- file a.c
// # include "1ibi.h"
template <class T>
class Vector { /* ... »/ };

template <class T>
T& Vector<T>::operator[] (int index) { /* ... %/ };

// # include "1ib2.h"
template <class T1, int size>
class Vector { /x ... %/ }; // error

template <class T, int size>
T& Vector<T, size>::operator[] (int index) { /% ... */ }: // error

3. Other scope issues are listed in §8.

4.1.2 A Severe Constraint
A severe flaw comes from friend declarations. Consider:

template <class T, int size> class Vec {
// ...
friend Vec<T> operator+ (Vec<T>%, Vec<T>&);
friend ostream& operator << (ostream&, Vec<T>%);

};

template <class T, int size>
ostream# operator << (ostream& os, Vec<T>%k vec) { // error

}

16



template <class T, int size>
Vec<T> operator+ (Vec<T>& vi1, Vec<T>& v2) { // error

}

The above declarations are errors since an expression parameter is specified as template
parameter of template functions. Should expression parameters be legal, these declarations
would be errors since the parameter should not be used in the argument types. In fact, friend
functions act like member functions.

Conclusion
We have a severe contradiction between the function template instantiation mechanism and the
current practice of friend functions.

Discussion

1. There may be other occasions where this restriction on template functions is too strict.
There may be cases where it is possible to deduct the type/value of the template argument
even while being not ambigous in the function template prototyvpe. For example:

template <class T, int size> void f(T, Vec<T, size>&);

If £ is called as follows, both T and size can be determined:

Vec<int, 1955> v;
f (1789, v);
// T is an int, v is a Vec<int, size>, therefore size is 1955 !

f can be instantiated without problem. Note however that in:
Vec<int, 1992> vv;

f (1789, vv);
// T is an int, vv is a Vec<int, size>, therefore size is 1992 !

vv is of a different tvpe and a different template £ should be instantiated.

2. A similar flaw could concern static template class functions. Although in essence func-
tions, they are currently treated as template member functions unlike friend functions.

4.2 Restrictions on Expressions Parameters
The Working Draft states §14.3 that the following instantiations:

Vec <int, 1789> vi1;
Vec <int, 894x2+1> v2;

declares v1 and v2 of the same type. Integral mapping between 1789 and 894%2+1 is obvious.

Conversely, floating mapping seems unsolvable. For example:

template <double d> class Equation { /x ... %/ };
Equation <10.0/3.0> e1; // are el and e?2
Equation <3.333> e2; // of the same type ?

17



Proposal 4
Alternatives are:

* torestrict expression parameters to integer expressions (including integral promotions and
conversions) that can be evaluated at compile-time (current rule).

¢ to consider each template instance involving a floating type parameter or a parameter that
cannot be evaluated in a determinist way at compile-time as a different instance.

Discussion

Unconvincing. One could just as easily construct examples where the template parameter types
are well defined and deterministic. These two examples relay on certain undefined characteristics
of floating point constants and floating point constant arithmetic. A third alternative could be

to use the type system as defined for floating point expressions. (and undefined as the case may
be!)

4.3 Restricting Template Parameters to Types

The previous sections show that a radical solution should be to disallow expressions as template
parameters.® The resolution mechanisms should not be affected by this restriction (parameter-
based for classes, overloading-based for functions, hybrid for member functions). Every type
parameter specified in the template parameter list must be used in the argument tvpes of a
function template. This should not be required for member function templates.

Proposal 5

The proposal is to exclude expressions parameters from the list of template parameters and
to restrict template parameters to be types.

Discussion

Is there some examples from the current practice that can be achieved with expressions param-
eters and that could not he with the above restrictions? It seems that the answer is no. For
example:

1. a class Buffer with an in-core buffer without use of free store

// -- usual declaration
template <class T, int size>

class Buffer {

T vec[size];
public:

T& operator[] (int index);
Buffer ();
/...

}

Buffer<int, 1789> buffer;

®Syntactic issues should go away by the same way!

18



// -- (type-based) alternative
template <class Ti, class T2>
class Buffer {
int size;
T2 vec;
public:
T1& operator[] (int index);
Buffer (int size);
/...
};

Buffer<int, int[1789]> buffer (1789);
2. subrange types similar to the types supplied in Pascal

// -- usual declaration
template <int min, int max>
class Subrange {

protected:
int value;

public:
Subrange ();
Subrange& operator= (int);
operator int ();

Y
// -- non-template classes
class Subrange {
protected:
int min;
int max;
int value;
public:
Subrange (int min, int max);
Subrange& operator= (int);
operator int ();
h

Concerning this latter example, we will refer to the designers of the Emerald language
[Black and Hutchinson 91]: “Emerald does not have subrange types of the kind found in
Pascal... this is not because we do not believe that it is useful to specify the range of an
integer variable, but because we regard the enforcement of such a specification as range
checking, not type checking”.

5 Partial Template Instantiation

This section discusses diverse uses of typedef definitions with respect to template instantiations.
First, a typedef definition can explicitly involve a template instantiation. For example:

template <class T1, class T2> class Vec { /# ... */ };
typedef Vec<int, int[1789]> Buffer; // instantiates: Vec<int, int[1789]>

19



A specific instantiation of class Vec is created. Buffer is a synonym for the template instance.

Secondly, a typedef definition may be parameterized within a class template definition. For
example:

template <class T1, class T2>
class Vec_RC : Vec<T1, T2> {
typedef Vec<T1, T2> inherited;
/...
I

In this example, inherited is a type which scope is a particular instance of the class tem-
plate Vec RC.

Now, this extension proposal would allow typedef to be used to construct a partial instanti-
ation of a class template. For example:

template <class T>
typedef Vec<int, T> intVec; // partial instantiation of Vec<T1, T2>

intVec<int [1789]> vec (1789); // full instantiation of Vec<int, int{1789]>

Partial template instantiation would create intermediate class templates. For example.
intVec should correspond to the following class template:

template <class T>
class intVec{
T vec;

3
Another example of partial instantiation might be an associative array:

template <class Index, class Item>

class Map

// arrays of Items indexed by Indexes

1/

Item& operator [J (Index); // generic definition
};

// an associative array indexed by integers
template <class Item>
typedef Map <int, Item> MapInt; // partial instantiation

// specialized instantiation of a partial member function template
template <class Item>
Itemg MapInt <Item>::operator [] (int index) { /x ... %/}

Semantics (limited to type parameters for legibility) of a typedef template can be expressed
as follows:

20



// definition of class template X
template <class Ti, ... , class T,> class X { /* ... #/ };

// partial instantiation of X
template <class T,, ... , class T,> typedef X <Py, ..., P,—1> XX;

// full instantiation of X
XX <U,, Up> xx; // equivalent to: X <Py, ..., P,_1, U,, ..., Up> xx;

where:

e Ty, ..., T, are parameters of class template X,

¢ Ti, ..., T, are parameters of class template XX.
¢ Py, ... P,y are arguments of the partial template instantiation of X,
¢ Ui, ..., Uy, are arguments of the full template instantiation of X

Standard typedef definitions are limited to type equivalence definitions. Function templates are
thus excluded from this proposal.

Proposal 6

Assuming a class template definition with n parameters (n>1). the proposal is to permit partial
instantiation of the class template by defining a typedef template for the partial instantiation
of the i first types (i<n) of the original template definition. This feature is sometimes referred
to as curryfication?.

Partial instantiation of a class template defines a new class template. Partial instantiation of
a member function template may be supplied once the partial instantiation of its class defined.
When adequate, a partial instantiation of a member function template is a better match than
the generic member function template.

Discussion

1. A possible issue arise when we consider whether two tvpes are the same. For example, is
MapInt<char> the same as Map<int, char>?

2. We should consider also an intermediate point on this proposal where the typedef can just
be introduced as an alias, not a way of creating a new template.

6 Type Restriction on Template Parameters

[Gautron 91] is a proposal to specify the restriction of template type parameters to a class hier-
archy.

A type restriction on a template shoud be specified as follows:

*From the mathematician Curry.

21



// -- class template
template <class T : public A> class X { /% ... */ };

or

// -~ function template

template <class T : public A> void f (T& t) { /% ... %/}
// -- member function template
template <class T : public A> void X<T>::f (T& t) { /* ... */ }

where “ : public A” is optional.

Type restrictions apply on template arguments at the time of template instantiation. The
template declarations above mean that a template argument must be of class A or of a class
derived from A. For example:

class B : public A { /* ... */ };
X<A> xa; // ok

X<B> xb; // ok

X<int> xi; // error

void g (A% a, B& b, int i){
f (a); // ok
f (b); // ok
f (i); // error

}

Support of type restriction in parameterized types is sometimes called constrained genericity.
In the context of C++, type restrictions can only apply on type parameters of a template,
excluding expression parameters. A type restriction is intended to be a specification for the
use of the template as well as a support for earlier analysis of the template definition. In
[Gautron 91], we explain why public derivation is required.

Proposal 7

Function and class templates can be specified with type restrictions on their template type
parameters.

Discussion

Multiple restrictions may occur on the same template parameter list and should have to be
simultaneously verified. For example:

template <class T1 : public A, class T2 : public B> class Y { /% ... %/ };
template <class Ti : public A, class T2> class Z { /* ... %/ };

class DA : public A { /* ... =/ };

class DB : public B { /% ... */ };

Y<DA, DB> yi; // ok

Y<DA, int> y2; // error

Z<DA, DB> z1; // ok
Z<DA, int> z2; // ok

22



7 Type Restriction and Template Overloading

[Lea 91] is a proposal to support overloading of both class and (member) function templates on
the basis of type restrictions. Examples are first presented and rules are then stated.

7.1 Examples

A First Example

Consider, first, an abstract base class Matrix with a friend declaration of operator+. Imple-
mentations will be provided by subclasses. To overcome the contravariance issue, this operator
can be declared as a template:

// Matrix is an abstract base class
class Matrix {
/7 ...
template <class T> friend T operator+ (T&, T&); // (1)
};

// an implementation
class M : public Matrix { /+ ... %/ };

// operator+ is a generic operation for Matrix hierarchy
template <class T>

T operator+ (T%& t1, T& t2){ /1 (2)
T ¢
// fills t
return t;
}
void £ (M& m1, M& m2){
Mm=mil+mn2; // instantiation of: M operator+ (M&, M%)
/...

}

Suppose now that, during the same compilation unit, we include the declaration of a second
abstract base class, Vector for example, defined as follows:

// a vector of ints
class Vector {

/...
template <class T> friend T operator+ (T&, T&); // (3)

};

void g (Vector& v1, Vectorg v2){
Vector v = v1 + v2; // which operator + 7
/...

}

In this example, an instantiation of the operator defined for Matrix can be silently created
for Vector: we have two similar declarations of operator+,(1) and (3), and one definition, (2).

Type restriction is a clean solution to avoid this potential conflict:

23



class Matrix {
/...
template <class T : public Matrix> friend T operator+ (T&, T&);
};

class Vector {
/...
template <class T : public Vector> friend T operator+ (T&, T&);
N

template <class T : public Matrix>
T operator+ (T& t1, T& t2){
/...
}

template <class T : public Vector>
T operator+ (T& ti, T& t2){
/...
}

A Second Example

A second potential use of tyvpe restrictions relates to argument passing semantics. Choice be-
tween passing-by-value versus passing-by-reference is an usual dilemma for any user. The former
fits well for small object such as instances of built-in types whereas the latter is more convenient
for large objects. Templates amplify this issue: must the argument of the insert member func-
tion of class template Array be passed by value or by reference? Tvpe restrictions can provide
an appropriate solution. For example:

// a class template without type restriction

template <class T> class Array { /7 (D
/...
void insert (T); // insert by value

};

// a class template with type restriction
class A { /* ... %/ };

template <class T : public A> class Array { /1 (2)

/...

void insert (T&); // insert by reference
};
Array <int> ai; // instantiates (1)
Array <A> a?2; // instantiates (2)

7.2 Overloading Resolution Mechanism

This section studies the impact of type restrictions on the overloading resolution mechanism
both on function and class templates, first when an exact match is required for template ar-
guments (current rule) and then when this rule is relaxed to support polymorphic conversions
according to the proposal 2.

24



The impact of type restrictions on the rules for overloading resolutions is in fact small:

1. Function Template

Introducing type restrictions on function templates requires to modify the exact match
rule as stated in the Working Draft §11.1.

Instead of:
“Look for a function template from which a function that can be called with an exact
match can be generated; if found, call it.”

state that:
“Look for the unique best-matching function template (§13.x) from which a function that
can be called with an exact match can be generated: if found. call it.”

The new section 13.x would state that type restrictions on template parameters act as a
selection mechanism on template instantiation in the same way usual standard conversions
allow the conversion of function arguments: If the actual argument is of type B and B is
publicly derived from class A. then a match with:

template <class T: public B> void f (T%)
is better than:

template <class T: public A> void f (T%)
and both are better than:

template <class T> void f (T#)

Type restriction never involves a conversion of the template argument into the template
parameter. It involves a check for legality of the conversion with respect to a class hier-
archy. Since overloading resolution for a set of functions is first based on the resolution
of corresponding arguments, this rule can be easily generalized to functions with multiple
arguments.

. Class Template

Introducing type restrictions on class templates® requires to introduce a specific rule for
the instantiation of class templates: When type restrictions apply on class templates, the
best matching class is generated: If the actual argument is of type B and B is publicly
derived from class A, then a match with:

template <class T: public B> class X { /* ... %/ };
is better than:
template <class T: public A> class X { /* ... %/ };

and both are better than:

®We assume here that class templates with a same name own a similar number of template parameters.

25



template <class T> class X { /* ... %/ };

On another hand, there should be no specific impact if standard conversions on template func-
tion arguments was made legal. Argument conversions and type restrictions are uncorrelated.
Type restrictions could occur first and, iff satisfied. would allow the function to be sclectable
accordingly to the usual conversion rules.

Proposal 8

Parameters of function and class templates can be specified with type restrictions. Syntax.
semantics and overloading rules are defined as explained in this section.

Discussion

1.

The two proposals 7 and 8 rely on function templates being overloaded on the basis of the
template parameters, which is wrong.

. These additions ought to be first traded for a tolerable resolution of contravariance issues.

. Type restrictions are a clean solution to name space pollution of templates. For example:

// 1ib 1

template <class T> class Stack { /% ... */ };
// 1lib 2

class A { /* ... */ };

template <class T : public A> class Stack { /x ... %/ };
// 1ib 3

class X { /% ... »/ };

template <class T : public X> class Stack { /* ... */ };

Major drawback is to introduce an overloading mechanism for classes (new language fea-
ture) and another mechanism for functions. Nevertheless, these two mechanisms are or-
thogonal and never interfere each other.

. It was argued that a constraint on a class template can he expressed with the support of

nested classes. For example:

template <class T>
class Vector {
class T::S;

};

This declaration should mean that a nested class S is required in the definition of the class
argument. Nevertheless, type restrictions relate to class inheritance, a concept orthogonal
to nested types.

26



7.3 Interference with Other Proposals

Below are briefly examined how type restrictions could fit with diverse other language supports
or other proposals from this paper.

1. Forward declarations

A forward declaration is just a name registration or a reservation in the user name space.
There is no reason to require to constrain such declarations. For example:

template <class T> class Stack;

template <class T : public A> class Stack { /* ... */ };
template <class T : public B> class Stack { /* ... */ };

Conversely, type restrictions on a forward declaration could restrict its name reservation.

2. Specific versions of templates

Consider for example:

class A { /% ... &/ };

clagss B : public A { /* ... */ };

template <class T : public A> void error (T*);
void error (Bx);

A match with error(B#) is better than a match with the template definition. No specific
rule is required.

3. Proposal 3: relaxing the exact match rule

Type restrictions are checked regardless of the order function overloading is done.

4. Proposal 6: partial instantiation

Type restrictions do not have to interfere with the partial instantiation of a template class
since template typedefs are just type equivalences. For example:

class A { /* ... %/ };
class B : public A { /* ... %/ };

template <class T1: public A, class T2: public X>
class X {
/...
}

template <class T>
typedef X<B,T> XX;

In this typedef declaration. B must a publicly derived class from A. Further instantiation
of XX must verify the type restriction applied on the original parameter T2.

27



8 Name Reuse of Template Arguments

In duality with scope issues stated in §4, reuse of the name of a type parameter for a variable
within a template declaration seems not clearly specificd. Below are listed different examples:

template <class T>
void £ (T t){

int T; // legal or not?
// ...

}

template <class T>

class X {
int T; // legal or not?
// ...

};

typedef int T;
template <class T, T size> class Vector: // what T?

template <class T, void (*pf)()> class Vector; // is pf a compile-time constant?

There is no real proposal here, except proposal 5 and that the scope issues above will have
to be tuned with the rules stated in [Pennello 92].

9 Static Function Templates

The Working Draft does not address specifically the issue of function template linkage. Tem-
plate (member) functions may have external or internal linkage and so conform to non-template
function linkage. But the nature of the template components requires the support of the envi-
ronment.

We do not have a specific proposal. But the issue and the handling of instantiations of static
(member) function templates have to be addressed (probably by the Environment Working
Group).

Discussion
It seems to be at least two issues here:

¢ the default linkage of function templates and member function templates.

¢ the one definition rule and how it applies to template classes and template functions.

As an aside, one could imagine that function templates with internal linkage should be allowed
and the instances should be defined within the compilation unit in the same way as normal
functions. One could specify that they should not take part in any global unification of template
functions with external linkage. For example :

Unit 1 Unit 2
template <class T> template <class T>
void £(T); void £(T);

28



template <class T> template <class T>

static void g(T) { ... } static void g(T) { ... }
template <class T> template <class T>
void h(T) { ... } static void h(T) { ... }
main() { void h() {
£(1); // calls common f(int) £(1); // calls common f(int)
g(2); // calls unit 1’s g(int) g(2); // calls unit 2’s g(int)
h(3); // calls common h(int) h(3); // calls unit 2’s h(int)
} }
Acknowledgements

Indelible and invaluable thanks are addressed to Stan Lippman for his contributions to this
paper. Thanks to Doug Lea for having provided valuable contributions and critism. Thanks to
Nancy Wilkinson and to Dave Streeter.

References

[ANSI/ISO-C++ 91] ANSI/X3J16-1S0/SC22/WG21. Working Paper for Draft Proposed American Na-
tional Standard for Information Systems - Programming Language C++.
Doc No: ANSI X3J16/91-0115, ISO WG21/N0048, September 1991.

[Black and Hutchinson 91} Andrew P. Black and Norman Hutchinson. Typechecking Polymorphism n
Emerald.
D.E.C. Cambridge Research Lab., CRL 91/1, July 1991.

[Gautron 91] Philippe Gautron. Introducing Constrained Genericity in C++ Templales.
Doc No: ANSI X3J16/91-006, January 1991.

[Lea 91] Doug Lea. Personal communication.

July 1991.

[Lippman 91a] Stanley B. Lippman. C++Primer.
Addison Wesley, 1991, ISBN (0-201-54848-8.

[Lippman 91b] Stanley B. Lippman. Personal communication.
December 1991.

[Pennello 92] Tom Pennello. Scope of names in classes.
Doc No: ANSI X3J16/92-0009 - WG21/N0087, January 1992.

[Streeter 91a] Dave Streeter. Personal communication.
December 1991.

29





