X3316/97-00uYy
wezl /o2

W;ZMAMW“WK'

Allowing Default Arguments Anywhere ; ﬁ
Steven E. James
April 15, 1992

As [wish to be as concise as possible, I would like to first state the essential elements of my proposal, and
then expound upon my reasons later in this letter.

What I propose is a minor extension to the C+ + syntax to allow a programmer to define and use parameters
with defauit arguments that do not necessarily occur at the end of an argument list. The extension would
allow a programmer to specify that default argument values should be used for a particular function call by
placing commas as place hoiders among the arguments for a particular call. For example, you could then
hypothetically specify a function call as follows:

myfunctionl(,,arg3,,arg5) // 1st, 2nd, & 4th arguments should
// use default values

As you can see, this would serve two purposes... The compiler could be easily be signalled that default values
for arguments are desired. Since this approach uses the same delimiter as for normal function calls, it is likely
that the impact upon compiler authors in order to implement this would be relatively small. Secondly, [feel
that this approach is very intuitive for the programmer and provides good readability.

Please allow me to add one additional element to this by noting that perhaps this extension could allow one
to even use this proposed syntax in places where the normal "defaulting syntax” could be used, as an
alternative. For example, I'd like to see the following call also be legal:

myfunction2(argl,arg2,,) // 4th and 5th arguments are explicitly
// specified to use default values

myfunction3(argl,arg2) // Perfectly legal, but cannot tell by
// looking at the function call itself
// whether any arguments are to be defauited
// upon. Must review the function
// prototype to make meaning of this,
// assuming I can find the header file
// where [put it.

This additional consideration would just allow the programmer another method to specify that defauit
arguments shouid be used.

[have basically five reasons for proposing this:
1. Readability. This extension would improve the readability of function calls where the use of default
arguments are specified. You could easily see by just looking at the function call itself which

arguments are to use default values.

2. It is intuitive. By using commas as placeholders, it is obvious that the programmer has intentionally
omitted certain arguments, and thus those arguments must be assuming default values.

-1-

3, It should be rather easy to implement in compilers. This extension would nc- “equire major changes
in the way that compilers parse argument lists, since the compiler could jus. :ssume that whenever
an empty string is found as an argument, that the programmer intends for the argument to assume
a default value. Also, I cannot think of any situations where this extension would break any existing
code.

4. It allows the programmer to organize the ordering of parameters in argument lists in a way that seems
most natural and intuitive. Currently, if a programmer wishes to use default argument values, the
ordering of the parameters in the parameter list must be set up to accommodate the use of default
argument values. Thus, the use of default arguments currently imposes a restriction that my proposal
would remove.

5. It allows the programmer to define a function that uses both default argument values as well as having
a variable argument list, and be able to make use of both in the same function call. It is my
understanding that currently this cannot be done. So, in effect, the use of defauit argument values
in C++ currently restricts the use of variable argument lists. While I understand that default
argument lists can be used now in many cases where variable argument lists were used in the past
(although I have never used variable argument lists in C for the purpose of defaulting on arguments),
there are still situations where I could make use of both in the same function. For example,

int HandlePrint(int handle = Screen, int argg, ...);

This could declare a function that receives a handle argument corresponding to different devices, and
prints the contents of a variable argument list. The device handle would default to the screen device,
whose handle is stored in the global const Screen.

With my proposed syntax extension, the above hypothetical function could be called as follows:

RetVal = HandlePrint(ThisHandle, 2, Argl, Arg2);
OR
RetVal = HandlePrint(, 2, Argl, Arg2);

(many other possibilities, but above two illustrate my point)

Please note that I am assuming that the above "HandlePrint" function should be able to deal with
function calls containing an infinite number of possibilities in terms of number of arguments. [am
purposely trying to show a situation where it is possible that just a mixture of function overloading
and default arguments won’t work.

Also, since there are obviously more elegant ways that the printing operation performed by the above
function could be done in C++, please note that the above simple function is for purposes of
illustration only.

Steven E. James

4654 Coldsprings Ct, Apt. A

Columbus, OH 43220

Phone: (614) 459-2724

Compuserve ID: 70670,1025

I believe the Internet equivalent is: 70670.1025@COMPUSERVE.COM

