Project : Programming Language C++
Reference Documents : X3J11.1/92-037
X3J11.192-008
Reply To: Bill Homer
homer@cray.com

To: Members of X3J11, WG14, X3J16, WG21, and X3HS X3J11.1/92-037

From: X3J11.1
Topic: Comments on Aliasing Proposal by the Aliasing Subgroup

Date: May 11, 1992

The X3J11.1 committee is chartered to explore additional features that will make C a better language for numeric
and scientific programming. We are not producing a standard, but rather a technical report that can be used by
X3J11 and WG14 as guidance for a future standard, and by vendors that wish 10 keep pace with the state of the art
in C language development. Finding an acceptable solution to the aliasing issue in C was identified by X3J11.1 as
being the most important issue to address. Recently a letter ballot was sent out to X3J11.1 voting members 0
determine if they wanted to send a proposal titled, ‘ Restricted Pointers in C*', 10 a wider audience for additional
comment. This ballot passed by vote of: 12 Yes, 3 Yes with comment, 1 No with comment, and 4 did not vote. We
are sending this proposal to each of your committees because we would like to receive your input on the technical
merits of this proposal. Please send your comments to the author, Bill Homer, whose name and Email address
appear on the proposal. Response by Email is preferred. We need to receive your comments by September 11,
1991. All of your comments on this proposal will be collated, and the resuits will appear in future revisions of the
proposal. There is an existing implementation by Cray Research, Inc. that supports this proposal. Please feel free
to comment on all parts of the proposal. Specifically, we would appreciate receiving comments about the following
three key points:

o The typing system of C has been enhanced 1o permit a declaration to specify that a pointer provides
exclusive access to an object. Specifically, a powter can be restrict-qualified. This indicates to the
translator that it can assume that this pointer points to a unique object at the time the pointer is declared.
Is this use of the type system an appropriate way to deal with aliasing issues?

¢ Even though the assumption is that a restrict-qualified pointer is pointing into a unique object at the point
of declaration, this unique access can be relinquished by the programmer. For instance, an unrestricted
pointer can be assigned the value of a restricted pouwnter, and now both pointers point into the same object.
By contrast, two restrict-qualified pointers must pont into different objects. Is the level of alias-free
assertion adequate, too much, or too litle? This proposal falls in between the noalias proposal explored
by X3J11, and the current C Standard. The noalias proposal did not allow any aliasing of a noalias-
qualified object, while the C Standard provides no mechanism for saying that two pointers to the same
type point into different objects. Does this proposal provide the right level of alias-free semantics?

o A new keyword spelled raestrict has been added. s adding a new keyword acceptable? It follows
from the formal definition of restrict that a correct program will not change its behavior if every
occurrence of the keyword restrict is either deieted from the program or ignored by the translator.
However, this does take one more name away from the user’'s name space.

All of the comments that accompanied the letter ballots are auached to the proposal. Most of the comments are
related to the three points listed above. Proposed responses from the subgroup have been attached. The comments
and the proposed responses may help you understand the issues. Thank you for your time and effort.

X3J16/92-0052, WG21/NC129

Restricted Pointers in C (revision 3)
X3J11.1 92-008

Bill Homer
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121
homer@cray.com or uunet!cray'homer

February 25, 1992

This document is a revision of the proposal in NCEG 91-054 (see also
91-024, 90-043, 90-029, 90-003 and 89-027).. The alternative phrasings of
the formal definition of restrict presented in 91-054 have been replaced by
a single phrasing. Relevant portions of 90-043 have been merged into this
document (rather than being incorporated by reference, as they were in
91-054). For the sake of brevity, only key examples are incorporated here.

1 Rationale

1.1 Aliasing

For many compiler optimizations, ranging from simply holding a value in
a register to the parallel execution of a loop, it is necessary to determine
whether two distinct lvalues designate distinct objects. If the objects are not
distinct, the lvalues are said to be aliases. It is aliasing through pointers that
presents the greatest difficulty, because there is often not enough information
available within a single function, or even within a single compilation unit,
to determine whether two pointers can point to the same object. Even when
enough information is available, this analysis can require substantial time
and space. For example, it could require an analysis of a whole program to
determine the possible values of a pointer that is a function parameter.

2 X3J11.1 92-008 Restricted Pointers in ('

1.2 Library examples

Consider how potential aliasing enters into implementations in C of two
Standard C library functions. There are no restrictions on the use of nemmove.
and the implementation shown below follows the model described in the
Standard by copying through a temporary array. (Other approaches are
possible, but this one is straightforward and strictly-conforming.) Since
memcpy cannot be used for copying between overlapping arrays, its imple-
mentation can be a direct copy.

Figure 1 Sample implementation of memmove.

void *memmove(void *s1, const void #s2, size_t n) {
char * t1 = s1;
const char * t2 = g2;
char * t3 = malloc(n);
size_t 1i;

for(i=0; i<m; i++) t3[i] = ¢2({i];
for(i=0; i<a; i++) t1[i] = ¢3[i];
free(t3):
return si;
¥

Figure 2 Sample implementation of memcpy.

void *memcpy(void *si, const void *s2, size_t n);
char * t1 = s1;
const char = t2 = 32;
while(n-~ > 0) *ti++ = st2++:
return si;

)

Note that the restriction on memcpy is expressed only in its Description
in the Standard, and cannot be expressed directly in its implementation in
C. While this does allow the source-level optimization of eliminating the
temporary used in memmove, it does not provide for compiler optimization
of the resulting single loop. In many architectures, it is faster to copy bytes
in blocks, rather than one at a time. The implementation of memmove uses
malloc to obtain the temporary array, and this guarantees that the tem-
porary is disjoint from the source and target arrays. From this a compiler
can deduce that block copies may safely be used for both loops. The imple-
mentation of memcpy, on the other hand. provides the compiler no basis for

X3716/92-0052, WG21/N0129

Restricted Pointersin C X3J11.1 92-008 3

ruling out the possibility that, for example, s1 and s2 point to successive
bytes. Therefore unconditional use of block copies does not appear to be
safe. and the code generated for the single loop in memcpy may not be as
fast as the code for each loop in memmove.

1.3 Overlapping objects

The restriction in the Description of memcpy which prohibits copving be-
tween overlapping objects does not make it clear whether these are “objects
as declared” or “objects as referenced.” For example, is the behavior of the
following call of memcpy defined. because the arguments point into the dis-
joint array objects, al1] and a{0]? Or is the behavior undefined because
the arguments both point into the same array object, a?

Figure 3 Memcpy between rows of a matriz.

void f1(void) {

extern char al[2](N];

memcpy(al1], al0], N); /= Defined? =/
}

In the following variation, can each of the first and last half of array b
be regarded as an object in its own right?

Figure 4 Memcpy between halves of an array.

void £2(void) {

extern char b{2+¢N];

memcpy(b+N, b, N); /* Defined? =/
}

These questions have been submitted in a Request for X3J11 Interpreta-
tion, document number 92-001, entitled “Questions about overlapping ob-
jects.” For the sake of exposition, it is assumed in what follows that the
calls of memcpy in Figure 3 and Figure 4 do give defined behavior.

1.4 Restricted pointers

If an aliasing restriction like the one for memcpy could be expressed in a
function definition, then it would be available to a compiler to facilitate
cffective pointer alias analysis. The preceding discussion suggests the form
that the restriction should take. It should be possible to specify in the

4 X3J11.1 92-008 Restricted Pointers in

declaration of a pointer that it provides “exclusive initial access™ to the
. object to which it points, as though the pointer were initialized with a call to
malloc. Because it is the unqualified versions of function parameter types
that are compared for type compatibility, it is convenient to specify the
restriction with a type qualifier, spelled restrict, on the pointer type. The
following prototype for memcpy thus both expresses the desired restriction
and is compatible with the current prototype. Note that although both
pointer parameters in the new prototype for memcpy are restrict-qualified. it
would also be sufficient to qualify only one of the two.

Figure 5 Restricted pointer prototype for memcpy.

void smemcpy(void * restrict si, const void * restrict s2, size_t n);

1.5 Design choices

Given this general concept of restricted pointers, there remain a number of
design choices. Most may be characterized as a choice between simplicity
and expressive power. From one perspective, it seems better to simplify
the analysis of restricted pointers by confining their use to the simplest
paradigms. For example, restricted pointers would be quite useful even if
they could be declared only as function parameters and if the restricted
pointers themselves could not be modified. This would support what is
clearly the most important paradigm, an alias-free function call interface
in C, analogous to that in Fortran. From another perspective, it seems
better to support the expression of aliasing restrictions in as many paradigms
as feasible. This would be helpful in converting existing programs to use
restricted pointers, and would allow more freedom of style in new programs.

The definition given below favors the view that supporting a variety of
common paradigms is worth the risk of allowing usages too complicated for
compilers to analyze. It allows restricted pointers to be modifiable, to be
members of structures and elements of arrays, and to be “strongly scoped.”
in the sense that a restricted pointer declared in a nested block makes a
non-aliasing assertion only within that block.

Note that the design choices in the following two sections are not central
to the proposal. They are included for reasons given, but could also easilv
be omitted, with corresponding omissions from the formal definition.

X3J16/92-3052, WG21/NC129

Restricted Pointers in C X3J11.1 92-008 5

1.6 Aliasing of unmodified objects

Comparison with Fortran suggests an additional issue concerning aliasing
unmodified objects, as illustrated in Figure 6. Knowing that parameter a
provides exclusive access to the array into which it points is sufficient to
allow the the loop in £3 to be vectorized or executed in parallel. Knowing
that b and c are not used to access overlapping portions of a single arrav
allows no additional optimizations.

Figure 6 Aliasing matters only for modified objects.

void £3(int n, float * restrict a, float *b, float *c) {
int i;
for (i=0; i<n; i++)
alil = vli] + c[i];
}

As a practical matter, some compilers may be better able to analvze
functions in which all pointer parameters are restricted. This usage is bet-
ter supported by avoiding restrictions that do not afford opportunities for
optimization. Therefore the formal definition given below allows aliasing
of unmodified objects through distinct restricted pointers. This is closely
analogous to the restriction on Fortran dummy arguments. and thus is con-
venient for programmers who use both languages. perhaps even in the same
program. It means that b and ¢ can be restrict-qualified in the definition of
£3 without prohibiting calls for which b and ¢ are used to access overlapping
portions of a single array.

1.7 Array-like syntax for parameters

By section 3.7.1 of the Standard, a declaration of a function parameter as
“array of type” is adjusted to “pointer to type.” As an extension of this
syntax, if the keyword restrict appears ~ither preceding or in place of
the array size expression, and then the deciaration is adjusted to “restrict-
qualified pointer to type.”

Figure T U[se of array size expreesicn
void £4(int n, float alrestrict z.. flca: blrestrict nl);
void g4(float *p) {

14(100, p, p*+1); /* Inconsistent with prototype. =/
/* This call is an error :! <:re array is modified. =/

6 X3J11.1 92-008 Restricted Pointers in '

There are two advantages to this syntax. The first is for multi-dimensional
arrays. The form int (* restrict p)[100] requires parentheses, but the
equivalent form int p[restrict] [100] does not. The latter form seems
less awkward and less error-prone.

The second advantage is that the array size expression may be used by
a compiler for bounds checking within a function definition, and to check a
function call for arguments that overlap. For these purposes, the adjusted
pointer is assumed to point to the initial (lowest addressed) element of the
array that is referenced through the parameter. Figure 7 also uses a proposed
variable length array syntax.

2 Formal definition of restrict

What follows are proposed additions to the American National Standard
X3.159-1989. The relevant sections are noted in brackets in each header.

Keywords {3.1.1]
Add a keyword: restrict

Type Qualifiers [3.5.3]
Syntax

Add a type-qualifier: restrict

Constraints

Add a constraint:

Types other than pointer types derived from object or incomplete types
shall not be restrict-qualified.

X3J16/92-0052, WG21/N012%

Restricted Pointers in C X3J11.1 92-008 7

Semantics

Add the following tezt after line 22.

Let D be a declaration of an ordinary identifier that provides a means of
designating an object P as a restrict-qualified pointer.

If D appears inside a block and does not have storage-class extern. let
B denote the block. If D appears in the list of parameter declarations of
a function definition, let B denote the associated block. Otherwise. let B
denote the block of main (or the block of whatever function is called at
program startup, in a freestanding environment).

During each execution of B, P must point into a single object. 0. and if 0
is modified. then all references to values of 0 must be through pointer values
derived from P.

Here an execution of B means that portion of the execution of the pro-
gram during which storage is guaranteed to be reserved for an instance of
an object that is associated with B and has automatic storage duration. A
reference to a value means either an access to or a modification of the value.
During an execution of B, attention is confined to those references that are
actually evaluated (this excludes references that appear in unevaluated ex-
pressions. and also excludes references that are “available,” in the sense of
employing visible identifiers. but do not actually appear in the text of B).
Finally, the object 0 is the array referenced through pointer values derived
from P, as in the String Function Conventions in 4.11.1.

A translator is free to ignore any or all aliasing implications of uses of
restrict.

Declarators [3.5.4]

Syntax

Add new direct-declarator:
direct-declarator [restrict constant-ezpression opt J

Array Declarators [3.5.4.2]
Constraints

Add a constraint:

The type qualifier restrict may appear preceding or in place of a size
expression only in a declaration of a function parameter of array tvpe. and
then only in the outermost array tvpe derivation.

8 X3J11.1 92-008 Restricted Pointers in C

Function Definition [3.7.1]
Semantics

Modify lines 23-24 to read:

A declaration of a parameter as “array of type” shall be adjusted
to “pointer to type”, or “restrict-qualified pointer to type” if the outermost
derivation has the form [restrict €IPTopt 1, ...

3 Examples

3.1 Function parameters

One of the most useful paradigms for restricted pointers is for pointer pa-
rameters of a function. In the function £5 in Figure 8, it is possible for a
compiler to infer that there is no aliasing of modified objects, and so to op-
timize the loop aggressively. Upon entry to £5, the restricted pointers a and
b must provide exclusive access to their associated arrays. Within £5. the
file scope pointer ¢ must not point into the array associated with a because
¢ is not assigned a pointer value derived from a.

Figure 8 Restricted pointer function parameters.

float x{100];
float =*¢;

void £5(int n, float * restrict a, float * restrict b) {
int 1i;
for (i=0; i<m; i++)
afil = bli] + c[i];
}
void g6(void) {
float d[100], e[100];
¢ = x; £5(100, d, e); /* Behavior defined. =/
£5(50, d, d+50); /* Behavior defined. =/
25(99, d+i, d); /+ Behavior undefined. =/
¢ =d; £56(100, 4, a); /* Behavior undefined. =/
£5(100, e, d); /* Behavior defined. */
}

Two of the calls shown in g5 result in aliasing that is inconsistent with
the restrict-qualifiers, and their behavior is undefined. Note that it is per-
mitted for c to point into the array associated with b, if that array is not

X3J16/92-0052, WG21/N0129

Restricted Pointers in C X3J11.1 92-008 9

modified. Note also that, for these purposes, the “array” associated with
a particular pointer means only that portion of an array object which is
actually referenced through that pointer.

3.2 Block scope

A block scope restricted pointer makes an aliasing assertion that is limited
to its block. This seems more natural than allowing the assertion to have
function scope. It allows local assertions that apply only to key loops. for
example. When inlining a function by converting it into a macro, it is safe to
represent restricted pointer parameters by block scope restricted pointers.
as illustrated in Figure 9.

Figure 9 Inline version of f5.

float x[100];
float *c;

#define £5(N, A, B)

{ int n = (N);
float * restrict a = (4);
float * restrict b = (B);

int i;
for (i=0; i<n; i++)
afil = b[i] + <[i];

P e e

3.3 Extern restricted pointers

An extern restricted pointer is subject to a quite strong restriction. It should
point into a single array for the duration of the program, and may not alias
any other extern object name or restricted pointer. Such a pointer would
typically be used to point to an array allocated with malloc.

Figure 10 Eziern resiricted pointer does not alias exfern array.

float af[100];

float * restrict c; /* Overlapping portions of the
array a may not be referenced
through both ¢ and a. */

10 X3J11.1 92-008 Restricted Pointers in C

3.4 Members of structs

A restricted pointer member of a struct makes an aliasing assertion. and
the scope of that assertion is the scope of the ordinary identifier used to
access the struct. Thus although the struct type is declared at file scope in
Figure 11, the assertions made by the declarations of the parameters of £6
have block (of the function) scope.

Figure 11 Restricted pointers as members of a struct.

struct t { /* Restricted pointers assert that =/
int n; /* members point to disjoint storage. /
float * restrict p;
float * restrict g;

I
void £68(struct t *r, struct t =s) {
/* r->p, r->q, s->p, s->q should all poeint to */

/* disjoint storage during each execution of £6. */
/% ... %/

3.5 Ineffective usages

Although it is not a constraint violation, no assertion is made by restricting
the return type of a function. The reason for this is that a function call
expression £() is not an lvalue, and so there is no restricted pointer object
involved. Thus the presence of the restrict qualifier in the declaration in
Figure 12 has no effect.

Figure 12 Function returning restricled pointer.
float * restrict f7(void); /e No assertion about aliasing. */

Although it is not a constraint violation. no assertion is made by a cast
to a restricted pointer type. The reason for this is that a cast expression

(T * restricz)P

is not an lvalue, and so there is no restricted pointer object involved.

X3J16/92-0052, WG21/NQ129

Restricted Pointers in C X3J11.1 92-008 11

3.6 Constraint violations

It is a violation of the constraint in 3.5.3 to restrict-qualify an object type
which is not a pointer type, or to restrict-qualify a pointer to a function.

Figure 13 Restrict cannot qualify non-pointer object types.

int restrict x; /* Constraint violation. =/
int restrict »p; /* Constraint violation. =/

Figure 14 Restrict cannot qualify pointers to functions.

float (* restrict £8)(void); /* Constraint violation. =/

4 Compar:son with noalias

Tom MacDonald provided the following overview of the differences between
restrict and the previously proposed noalias.

The X3J11 committee attempted to solve the aliasing problem in C by
introducing a new type qualifier noalias. That effort failed because of
technical problems with the proposed semantics of noalias. This restricted
pointer proposal is different in many ways.

¢ Only pointers can be declared to be restricted. In the noalias pro-
posal, all objects were permitted to be declared noalias-qualified.

e It is the declaration of the restricted pointer that makes the alias-
ing assertions, while it was the noalias-qualified lvalue that made the
aliasing ass~--ions.

® A restricte7 pointer can be an alias with an . .2stricted pointer.
whereas a pointer to a noalias-qualified type was guaranteed to be
completely alias free.

o The proposed semantics of noalias defined an alternate execution
path in which virtual objects were created and later synchronized
with the original object. No alternate execution path is defined for
restricted pointers. The proposed semantics for restricted pointers
merely permit the optimizer to statically analyze restricted pointers.

o A block scope restricted pointer only makes assertions on the contain-
ing scope. In the noalias proposal, a block scope noalias-qualified
object made assertions that affected the entire containing function.

12

X3J11.1 92-008 Restricted Pointers in C

* A pointer to a noalias-qualified type made no aliasing assertion if it
was a member of a structure (because identifiers designating members
of structures were not “handles”). A restricted pointer member of a
structure does make an aliasing assertion.

X3J16/92-0052, WG21/N0129

Comments re Restricted Pointers received with the let-er ballots

=== ==== ======= =

> This prefix is used for responses from the subgroup.
> The comments themselves are indented.

From: Paul Kohlmiller -- CDC

There is nothing I like better than trying to improve the
performance of a program. As an optimizer person I want to
learn every trick in the book. The restricted pointer idea
would certainly make life easier for people like me. However,
I think the proposed solution is not the correct way to solve
the problem.

First, I have a problem calling restrict a qualifier. It can
appear in places that a gqualifier cannot (like (restrict]).
It can change the way a program can execute when highly
optimized (although not for strictly conforming programs). It
has additicnal constraints that other qualifiers do not share
(L.e., it can only be used for pointers). This really makes
restrict a new kind of type modifier and we are trying to
force it to be a qualifier (not unlike making typedef a
storage specifier).

influence optimization, and it seems more natural (and economical) to
add another than to invent a whole new syntactic category. While it
is unusual for a constraint to single out one instance of a category,
it is not unprecedented. For example: ‘‘The only storage-class
specifier that shall occur in a parameter declaration is register.’’

VVVYVYVYVY

Second, the notion of adding a keyword to the language to
improve optimization has a familiar ring to it. We already
have one keyword, register, that has become a problem. Most
optimizing compilers ignore it. It was created during a time
when there were few compilers that did glcbal register
allocation. With modern compilers, the register keyword just
doesn’t add much information. The restrict keyword is doing
the same thing. It is being created at a time when most
compilers do not do full application optimization. These
newer compilers will be able to make all the aliasing
assertions that the restrict keyword can make. When they do,
we will have another keyword that is essentially ignored.

Finally, when we get to the point that restrict is just as
useful as register is today, we will still have all of the
compiler overhead that we have for register. For example, for
ANSI C we had to add code to make it illegal to take the
address of a register variable. For restrict, even an
implementation that has decided to ignore the optimizaticn
aspects of restricted pointers must still diagnose errors
like using restrict on non-pointers.

> Since aliasing was identified as the most important issue at the first

> NCEG meeting, simply waiting for ‘‘full application optimization’’ to
> become generally available apparently did not seem realistic.

There is already one type qualifier, ‘‘volatile,’’ that is designed to

fon

VVVVYV

Comments re Restricted Pointers received with the letter ballots

There are two other points that I would like to make. First,
I know that this proposal has been very well crafted to solve
a very real problem. I just think that compiler technology
will catch up to the problem faster than programmers will
modify their code. Second, there is another proposal on the
table, the Ritchie-Prosser "fat pointer" proposal. This
proposal solves a different problem that cannot be solved by
the latest compiler technology (variable dimensioned arrays),
does not introduce any new keywords and it doesn’t create a
class of implementations that ignore the feature except for
constraint violation detection. Granted, it only partially
solves the optimization problem (for formal parameters) but
it solves the problem for a very large segment of the number
of programs that might otherwise be modified to use the
restrict keyword.

The time and effort in developing this proposal has been
useful and enlightening. I feel that other solutions will be
used in the near future. This particular solution would be
useful for a while. I prefer a solution that can’t be sc
readily obsoleted by new compiler technology.

Many thanks to Tom MacDonald for his efforts on this
proposal.

T TS D 5 . e e e - ——— — ———— — ——— - - - - ———— ————— - - —

From: David Prosser -- AT&T and USL

92-008 (aliasing) Yes w/comment: "It is inappropriate to use
the type system to express aliasing information -~ it is
inherently an algorithmic property."

From: Jim Thomas -- Taligent
aliasing - Yes w/comment:

1.7 (top of p6) I don’t see why there is a special issue for
multi-dimensional arrays. Change ‘‘plrestrict] (100}’ to
‘‘plrestrict 100]’’. The construction of the first sentence
of the second paragraph is not parallel.

In the first paragraph referenced, p is intended to be a pointer to
the first row of a two-dimensional array. The length of each row is
specified to be 100, but the number of rows is not specified.
Therefore, the suggested change is not appropriate, since it would
change p into a pointer to the first element of an array of 100 ints.

2 (p7) Should there be a statement that behavior is undefined
if a restrict assertion is not met? I don‘t understand the
last sentence of the fourth paragraph: ‘‘Finally, the object
O ... in 4.11.1.’’ Add ‘‘of the Standard’’ to the end of this
sentence.

The two instances of ‘‘must’’ in the third paragraph on page 7 should

-
n

VVVY

read ‘‘shall,’’ to indicate that if the requirements of that paragraph
are not met, the behavior is undefined. There could also be an explicit
statement to that effect, for emphasis.

VVVY

X3J16/92-0052, WG21/N0129

Comments re Restricted Pointers received with the letter ballots

3.6 (pll) After ‘‘... the constraint in 3.5.3’‘ insert
something like ‘‘of the Standard modified as proposed’’.

4 (pll, 4th bullet) Move ‘‘only’ to after ‘‘... assertions’’.

S D D " > - - —— - —— - —— - - - - -

From: David Keaton -~ Cray Computer Corp
Aliasing - Yes w/comment:

One of the stated intents was to interoperate efficiently
with Fortran. Therefore, some effort should be expended to
see that the rules coincide with Fortran rules so that
equally efficient ‘‘drop-in‘’ replacements for Fortran code
can be written in C.

The subgroup believes that C restricted pointer function parameters
are compatible with Fortran dummy arguments in interlanguage calls
in both directions. This should be stated more clearly in the
proposal.

Accredited Standard Committee! Doc. No: X3]16/92-0056
X3, INFORMATION PROCESSING SYSTEMS WG21/N0133
Date: June 1, 1992
Project: Programming Language C++
Ref Doc: X3J16/91-0067
Reply To: Bill Gibbons
Taligent Inc.
10725 N. De Anza Blvd.
Cupertino, CA 95014
bgibbons@taligent.com

Proposal for Compile Time Constants in Class Scope
Bill Gibbons and David Goldsmith

This document is a revision of X3]16/91-0067 with
additional examples, including problems caused by the
absence of this feature; and additional details about
semantics and implementation. The document number
has been changed to accommodate WG21 numbering.

The Problem

The class scoping features of C++ are very helpful in maintaining large projects, because they allow you to
keep most names out of the global namespace. Compile time constants are important for parametrizing
constant values which might change, such as array bounds.

However, compile time constants are currently not allowed in class scope:

class Foo (
static const int maxSize = 500; // illegal
char localBuffer(maxSize]; // illegal
}i

It’s possible to declare a static const data member and initialize it elsewhere. This is a compile time con-
stant, but it cannot be used within the class declaration (because the initialization appears after the class
declaration). The only alternative is to declare such a constant in global scope.

There is a workaround: a similar effect can be had by declaring an appropriate enumeration in class scope:

class Foo { ‘é;i;(r~:§ wuulebfyzf/
emum (maxSize = 500}; ,{,‘,éf ,
}: / a\c

This works, but is highly inelegant. The constant is not an integral type; €ither. What’s more, enumerations
are not guaranteed to be able to hold the largest integral types they may not be able to hold the same range
of values as a long.?

1. Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First St. NW, Suite 500, Washington, DC 20001

2. §7.2, Enumeration Declarations: "The value of an enumerator must
be an int or a value that can be promoted to an int by integral promotions (§4.1).”

Document X3]16/92-0056, WG21/N0133 Page 1

