Accredited Standard Committee! Doc. No: X3J16/92-0054
X3, INFORMATION PROCESSING SYSTEMS WG21/N0131
Date: May 29, 1992
Project: Programming Language C++
Reply To: Bill Gibbons

Taligent Inc.

10725 N. De Anza Bivd.

Cupertino, CA 95014

bglbbons@taligent.com

Second Analysis of Keyword Arguments
Bill Gibbons

Background

A proposal has been made? to add keyword arguments to C++. The initial analysis of this proposal®
recommended that the proposal be accepted. During discussions in the extensions working group in
March 1992, several additional points against the proposal were made. This second analysis incorporates
those points and recommends that the original proposal be rejected.

Any proposal for an extension should address the eight areas described in the guide to writing extension
proposals.* Although the guide is meant to ensure completeness of a proposal, it also effectively
enumerates the points which an analysis must address. This analysis looks at each of these areas and then
summarizes. The reader should be familiar with the original proposal, the first analysis and the guide to
writing proposals.

Precision (S S ics/Fit)

The syntax of the proposal is formally described and aépears to be correct. The new digraph “:a” should

prevent any new ambiguities; this is important since the argument list portion of the grammar already has
several serious ambiguities.

The digraph “:=" does not use any of the characters not present in non-ASCII character sets and does not
conflict with any of the digraphs proposed by NCEG, X3J11, WG14 or X3]16/WG21. It does use up a
digraph which might otherwise be used for some future extension to assignment semantics.

The semantics appear to be consistent. However, they complicate the rules for selecting among a set of
overloaded functions, which is already one of the most complex areas of the language.

L. Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First St NW, Suite 500, Washington, DC 20001

2. Hartinger, Schmidt & Unruh, Keyword Parameters in C ++, X3116/91-0027 & WG21/NO0O60.
3. Bruce Eckel, Analysis of C ++ Keyword Arguments, X3J16/92-0010 & WG21/N00SS.

4. X3J16/WG21 extensions WG, How 10 write a C ++ language extension proposal for ANSI-X3J16/ISO-WG21,
X3J16/91-0041 & WG21/NOO74.

Document X3J16/92-0054, WG21/N0131 Page 1

In some ways keyword arguments “fit” the language well. They provide some measure of safety in
function calls. They make default arguments more usable.

But in some ways keyword arguments make function calls much less safe. And default arguments are
often considered an anachronism because they can be replaced with overloaded functions.

Rationale

The primary rationale is improved readability of function calls. There are two aspects: (1) By associating
descriptive names with each argument at the call site, (2) by generalizing default arguments so that only a
few arguments need be given, regardless of their position in the (formal) argument list.

These reasons are much more important for functions which take a large number of arguments. For
functions with few arguments, the nature of the arguments is usually obvious from the name and purpose
of the function call. There is usually no need for more than one default argument and little confusion about
which argument should be defaulted.

Then the question is, “Should the language have additional support for large argument lists?”. Formal
studies and informal polls indicate that the average number of function arguments is quite small, on the
order of 24. Member functions have an implicit argument (the object), and so tend to have one fewer
explicit arguments. For most programs, there isn't a great need to make long argument lists easier to read.

Certain kinds of functions, though, are traditionally written with many arguments. For instance, an
equation solver may have arguments describing the equations, the size of the system, numeric tolerances,
the type of solution to attempt, types of error recovery, the result, and status results such as an error code.

One approach to simplifying the interface to such functions is to design a class containing all the
information about the problem. The class members are given default values in the constructors, and can be
explicitly set to different values as needed. The member names serve the same descriptive role as keyword
parameters would. This approach provides an even more flexible (if less compact) solution to the long
argument list problem.

On the other hand, unnecessarily long argument lists are generally considered poor style. A feature which

makes long argument lists easier to use might encourage their use in cases where they were not really
needed.

The proposal notes that several other languages, including Ada, support keyword arguments. But C++ is
designed to encourage very short functions which perform single tasks; such functions are more likely to
have short argument lists.

There are serious problems with keyword arguments used in separately-supplied libraries; this is discussed
below.

Implementation Experi

The proposal only mentions plans to implement keyword arguments. Since the proposal was written the
authors have reported that they implemented the feature as described. They encountered no unforeseen
problems.

Keyword arguments are processed at the point where overloaded function calls are resolved; after that
point the intermediate representation is the same as for a traditional function call. There is no impact on
code generation. There is no need for run-time support.

Page 2 Document X3J16/92-0054, WG21/N0131

Impact on Clien de

Code which took advantage of keyword arguments would be simpler and more readable where functions
with long argument lists were called. The changes would be mostly at the call sites. There would be
incentive to make argument names in function declarations more readable, since they might be used in
calls also.

There is no way to disable keyword arguments except by omitting the argument name in the declaration. If
an author of a function wanted to prohibit calls using keyword arguments, he would be forced to omit the
argument names and thus make the declaration less readable. It is possible that the majority of existing
headers would be revised to omit (or at least comment-out) the argument names.

The net impact on readability of C++ programs might actually be negative.

It would be very misleading to declare the same function with different argument names in different
translation units. In such a program, a source code fragment copied from one translation unit to another
would behave differently even though exactly the same function names were in scope. There would be a
need for a multiple translation unit analysis tool (such as lint) to find such problems.

Impact on Efficiency

There is no direct impact on run-time efficiency since identical code wouid be generated for programs
which used keyword arguments and programs which did not. To the extent that the feature encouraged a
different coding style, there might be a small impact on efficiency in either direction.

Compilers would become slightly more compiex, but the effect would probably not be noticeable. There is
no impact on linkers unless they attempt to verify matching argument names across compilation units, i.e.
“argument-name-safe” linking.

I c bl

All function declarations which use named formal arguments would automatically become keyword-style
function declarations. Although this is not a compatibility problem for existing libraries, it is a serious
problem for the future. Existing header files were written without planning for keyword arguments.
Vendors would most likely want to revise their headers to disallow inappropriate keyword arguments and
to provide more reasonable names for appropriate ones, but they would not be able to revise them because
the existing headers already provide keywords.

Worse yet, two vendors providing libraries with different implementations of an identical interface (e.g. a
published interface such as Posix or X11) would suddenly find their libraries incompatible because of their
choice of argument names.

In the long term, there might be a small improvement in compatibility because of the additional checking
which could be done with keyword arguments.

D ion/Teachi

Keyword arguments would be relatively easy to document; the proposal gives a clear description of the
syntax and semantics.

The major impact on teaching is the increased complexity of the overloading resolution rules. This is
already one of the most difficult areas of the language for novices (and others). I would expect an
instructor to defer discussion of keyword arguments until the students were thoroughly familiar with

Document X3]16/92-0054, WG21/N0131 Page 3

overloading. This would be difficult if any standard headers usec -2 extended default argument
capabilities.

Keyword arguments also resemble default arguments. In the following code fragment, which are
declarations and which are calls?

void myPunction() ¢
T t(x = 5);
U u(x := 5);
V v(int x = 5);
}

[ssues of assignment, initialization and default argument uses of “=" are already complex enough for
beginners without learning about “:=".

Alternatives

As suggested above, designing classes to represent complex interfaces provides more functionality and is
more readable.

Summary

Although keyword arguments would improve the readability of a certain programs, these programs are
rare and can be improved with other techniques such as a class-based interface.

There are major compatibility problems with the proposal, including existing libraries, separate
compilation and separate implementations of the same interface.

At best, instructors would put keyword argument on their “advanced features” list to be taught late in a
class. At worst, the feature could confuse already totally overwhelmed students of the language.

Recommendation
[recommend that the X3J16/WG21 Extensions Working Group reject this proposal on the grounds that it
makes minimal improvements to the language at an unacceptable cost in complexity and compatibility.

Page 4 Document X3J16/92-0054, WG21/N0131

