X216 /92-00¢ 8
"UGL’/N olys

Run-Time Type Identification for C++ (Revised)

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Dmitry Lenkov
HP Language Labs

ABSTRACT

This paper describes a proposal for a mechanism for run-time type identification and
checked type casts. The mechanism is simple to use, easy to implement, and extensibie.
This proposal evolved through a series of earlier proposals and ideas. The basic parts of
the proposal are a run-time checked type conversion operator (?rype-name) and an oper-
ator typeid () that returns objects of class Type_info providing a run-time represen-
tation of types. Experimental implementations exist. Waming: This is a proposal and the
features described may never be accepted into C++.

1 Introduction

Consider:
class dialog_box : public window {
/7 ..
public:
virtual int ask{):
/...

}2

class dbox_w_str : public dialog_box |
/7 ...
public:
int ask();
virtual char* get_string();
/...
b

We may call ask () for every dialog_box but may call get_string() only for dialog_boxs
known to be dbox_w_strs. Given only a dialog_box* how can we figure out if it really points to a
dbox_w_stzr?

There are several ways of defining dialog_box and dbox_w_str so that the answer can be found.
The most popular are to place a type field in dialog_box and/or define a virmal function in
dialog_box that gives the answer. Many C++ libraries provide mechanisms for explicit use of run-time
type identification (RTTI) for their classes (3.4,6, and 12] and detailed explanations of how to implement
them can be found in (1,5,9,10]. However, these mechanisms are mutally incompatible so that they
become a barrier (0 the use of more than one library. Also, all require a considerable amount of foresight
on the part of a base class designer. What is proposed here is a language supported mechanism.

A naive solution would be:

void my_fct(dialog_box' bp)
{
if (typeid (*bp) == typeid(dbox_w_str)) { // is *bp a dbox_w_string?
dbox_w_str+ dbp = (dbox_w_str*)bp;

// here we can use dbox_w_str::get_string()
}

else |

// ‘plain’ dialog box

denotes. In particular, typeid (*bp) returns an object that allows the programmer to ask questions about
the type of the object pointed to by bp. In this Case, we asked if that type was identical to the type

void my_fct(dialcg_box* bp)
{
dbox_w_str* dbp = (?dbox_w_stzr*)bp; // checked cast

if (dbp) {

// here we can use dbox_y_str::goc_string()
}
else {

// ‘plain’ dialog box
}
}

The checked cast operator (2T*) p converts its operand P 10 the desired type T* if *p really is a T; other-
wise, the value of (2T*) pis 0.

Such a cast is often called safe because the result of an attempt to cast a pointer o a WTONg type resuits
in the well-defined pointer 0. It is also often called a downcast because many people draw class diagrams
with derived classes below their bases. To avoid making users overconfident, we prefer to call such casts
checked rather than safe.

Nawrally, an implementation of the checked cast will rely on the same kind of information as the
typeid () operator and share 2 large part of its implementation.

are not fully defined in the scope of the cast; see §8.
~ A cchecked cast makes it impossible to mismatch the test and the cast.
As examples of such mismatches, consider:

void my_fect (dialog_box* bp)
{
if (typeid(*bp) == typeid(dialog_box)) { // check, then cast
dbox_w_str* dbp = (dbox_w_str*)bp;

// here we can use dbox_w_str::get_string()

}

1/ ..
}

where the user checked against the type of the base class dialog_box instead of the derived class
dbox_w_str, and

void my_fct (dialog_box* bp)
{
if (typeid(*bp) != typeid(dbox_w_str)) (// check, then cast
dbox_w_str* dbp = (dbox_w_str*)bp;

// here we can use dbox_w_str::get_string()
}

/7.
}

where the user applied the explicit cast on the wrong branch of the i £ statement. Both kinds of errors have
been seen in real systems.
The notation is still redundant in that dbox_w_st r is mentioned twice in

dbox_w_str* dbp = (?dbox_w_str*) bp;

However, removing that redundancy would leave the programmer without a clearly visible clue that some-
thing ‘‘interesting’’ is going on. This redundancy also enables an added degree of checking:

extarn void £ (dbox_w_str* dbp):;
e

void g(dialog_box* bp)
{
£(bp); // error: cannot (implicitly) convert
// from a base to a derived class

f((?dbox_w_stz*)bp); // ok: checked cast
}

The (?rype-name) notation was chosen to parailel the traditional (type-name) cast notation. It has the
advantage over the traditional notation that is is easy to spot in a program ~ both for a human and for a sim-
ple search ool (for example, grep).

As a final simplification we might adopt the Algol68 notion that declarations yield values and thereby
allow declarations in conditions. We could then write this:

void my_fct (dialog_box* bp)
{
if (dbox_w_str* dbp = (?dbox _w_str*) bp) {

// use ‘dbp’
}

VAN
}

The value of a declaration is the value of the declared variable after initialization. To avoid ambiguities, we
do not suggest that declarations should be allowed in any new places in the grammar except as conditions.

See Appendix A for further details.

In §8 we will return to the typeid () operator and examine what it and the objects it returns are good
for.

2 Uses and Misuses of RTTI

One should use explicit run-time type information only when one has to: static (compile-time) checking
is safer, implies less overhead, and - where applicable - leads to better structured programs. For example,
RTTI can be used to write thinly disguised switch statements;

// misuse of run-time type information:

void rotate (const Shape& r)
{
if (typeid(r) == typeid(Circle)) {
// do nothing
))
else if (typeid(r) == typeid(Triangle)) {
// rotate triangle
}
else if (typeid(r) == typeid(Square)) {
// rotate square
}
VA
}

This style of code is usually best avoided through the use of virtual functions. It was the first author's
experience with Simula code written this way that caused facilities for run-time type identification to be left
out of C++ in the first place.

For many people trained in languages such as C, Pascal, Modula, Ada, etc. there is an almost irresistible
urge 10 organize software as a set of switch statements. This urge should most often be resisted. Please
note that even though we are proposing a RTTI mechanism for C++ we do not propose o support it with a
type-switch statement (such as Simula’s INSPECT swatement, for example).

Many examples of proper use of RTTI arise where some service code is expressed in terms of one class
and a user wants to add functionality through derivation. The dialog_box example from §1 is an exam-
ple of this. If the user is willing and able w0 modify the definitions of the library classes, say
dialog_box, then the use of RTTI can be avoided: if not, it is needed. Even if the user is willing to
modify the base classes, such modification may have its own problems. For example, it may be necessary
to introduce dummy implementations of virtual functions such as get_string() in classes for which the
virtual functions are not needed or not meaningful.

For people with a background in languages that rely heavily on dynamic type checking, such as
Smalltalk, it is tempting to RTTI and overly general types. For example:

// misuse of run-time type information:

class Object { /* ... */ };

class Container : public Object {
// ...

publiec:

void put (Object®);
Object* get ();
/7 ...

}:

class Ship : public Object { /* ... */ };

Ship* £(Ship* pl, Container* c)
{
c=>put (pl);
/7 ..
Object* p2 = c->get ():
if (Ship* p3 = (?Ship*) p2) // run-time type check
return p3;
else {
// do something else
}
}

Here, class Object is an unnecessary implementation artifact. Problems of this kind are often better
solved by using container templates holding only a single kind of pointer:

template<class T> class Container ({
/7 ..
public:
void put (T*);
T* get ()
VA
}i

Ship* f{(Ship* pl, Container<Ship>* c)
{ . .

c=>put (pl);

// ..

return c->get ()

}

Combined with the use of virtual functions, this technique handles most cases.

RTTI can be a reasonable choice where the type of an object returned from some function cannot be
determined at compile time from the types of its arguments. For example, consider a couple of classes
where objects can be compared using information from a common base class only:

class X {
// ...

public:
X* greater(X* arg); // return greater of *this and *arg
/7 ...

}:

class D1 : public X { /* ... */ };
class D2 : public X { /* ... */ };

void £(D1* a, D2* b)
{
X* res = a->greater(b):
if (D1* p = (?D1*)res) {
/7 ...
}

else {
// ..
}
}

Note that there is no requirement that objects should only be compared to objects of their own type, and
that the type of the returned object cannot be determined from the types of the operands only. Had either of
those conditions been true, superior solutions could have be achieved without using RTTI. The recent
relaxation of the virtual function overriding rules also provides an alternative to RTTI in some cases: see

Appendix E.
Finally, RTTT has an important role in optimizations. Consider a function using an abstract set class:

void fct (set<T>* g3)
{
for (T* p = s=->first(); p; p = s->next()) {

// ordinary set algorithm
}

/] ...
}

This is nice and general, but what if we knew that many of the sets passed were implemented by singly
linked lists, slists, if we knew an algorithm for the loop that was significantly more efficient for lists
than for general sets, and if we knew (from measurement) that this loop was a bottleneck for our system? It
would then be worth our while to expand our code to handle s1ists separately:

void fct (set<T>* a)
{
if (slist<T>* sl = (?slist<T>*)s) (// s is an slist

for (T* p = sl->first(); p; p = 9l->next()) {

// souped up list algorithm
}
}
else .
for (T* p = s->first(); p; p = s->next()) {

// ordinary set algorithm
}

/...
}

Naturally, this leads to messier code and makes fct () depend directly on the the s1ist class, but that
can sometimes be a worthwhile price o pay. In particular, in the case above we not only get the benefit
from an improved slist algorithm but also avoid virtual function calis (on the abstract class set) in
favor of inline functions (on the concrete class s1ist). Combined, these two optimizations can amount to
one or two orders of magnitude. Please note that the *“‘optimized’’ example is still as general as the origi-
nal. It handles every argument properly (as opposed to the buggy Shape example above). All that has
been done is to insert code dealing with an important special case. Should the representations used for
set<T>s change, the grimy optimization code will simply become redundant; it will not become a source
of bugs caused by false assumptions.

Evidence from library design and use suggests that almost everybody needs RTTI occasionally, but that
one should aim to design systems so as to minimize its use. Where applicable, static type checking pro-
vides stronger guarantees, smaller and and faster code, and cleaner designs. Therefore RTTI should only be
used where it is clearly needed. One should be suspicious of ‘‘arguments’’ of the form ‘‘RTTI is clearly
needed in this case.’”’ In our experience, such arguments are often wrong and hide a lack of understanding
of the problem area or of the design choices available in C++.

3 Checked and Unchecked Casts

The introduction of run-time type identification separates objects into two categories: The ones that
have run-time type information associated so that their type can be determined (almost) independently of
context and those that haven’t. Why? We cannot impose the burden of being able to identify an object’s
type at run-time on built-in types such as int and double without unacceptable costs in run-time, space,
and layout compatibility problems. A similar argument applies to simple class objects and C-style structs.

-7-

Consequently, from an implementation point of view, the first acceptable dividing line is between objects
of classes with virtual functions and classes without. The former can easily provide run-time type informa-
tion, the latter cannot.

Further, a class with virtual functions is often called a polymorphic class and polymorphic classes are
the only ones that can be safely manipulated through a base classt. It thus, from a programming point of
view, seems natural to provide run-time type identification for polymorphic types (only): They are exactly
the ones for which C++ supports manipulatdon through a base class. Supporting RTTI for a non-
polymorphic type would simply provide support for switch-on-type-field programming. Nawrally the lan-
guage should not make that style impossible, but we see no need to complicate the language solely to
accommodate it.

Experience shows that providing RTTI for polymorphic types (only) works acceptably. However, peo-
ple can get confused about which objects are polymorphic and thus about whether a checked cast can be
used. This is discussed further in Appendix C.

Applying the checked cast (?T*) to a pointer p of a non-polymarphic type is a compile time error.
Given checked casts, an ordinary cast from a polymorphic type could be considered suspicious and we
expect that good compilers will optionally issue wamnings for such casts. For example:

class X {
// no virtual functions
}:

class B (
virtual int £():
// ...

}e

void £ (X* px, B* pb)
{
Y* p = (?Y*)px: // error: X is not polymorphic
D* q = (D*)pb; // optional warning: B is polymorphic,
// you could have used (?D*)
}

Note that checked and unchecked casts are fundamentally different in that an unchecked cast is based
(almost) exclusively on type information whereas a checked cast is based (almost) exclusively on the value
of the object.

A checked cast of pointer with the value 0 yields 0 because 0 does not point to an object of a polymor-
phic type. For example:

x*puo;

Y* ql = (?Y)p: // gl = 0
Y* ql = (?Y)0; // compile time error

The relationship between checked and unchecked casts is discussed further in §8. Checked casts of ref-
erences are considered in §5. Syntax issues are discussed in §8.

4 Cross Hierarchy Casting

Two related questions must be answered:

- Should casting be constrained to derivation relationships known at compile time?

~ Should it be possible to cast from a class to a sibling class in a multiple inheritance hierarchy?
For example:

+ Here *‘safely’’ means that the language provides guanantees that objects are used only according to their defined type. Naturally, n-
dividual programmers can in specific cases demonstrate that manipulations of a non-palymorphic don't violate the type system.

class A (/* ... */ virtual void £0); }:
class B { /* ... */ virtual void g(): };
class D : public A, public B { /* ... */ }:
class X;

void f(A* pa)
{
X* px = (?X*)pa; // X undefined: legal? -
B* pb = (?B*)pa; // B apparently unrelated to A: legal?
}

In both cases checking is possible and performing it is useful, thus both cases are legal.

In the case of a checked cast to an undefined class this decision ensures that the same result is obtained
independently of whether the class declaration has been seen or not. This is not the case for ordinary casts;
see §8. Note that a checked cast requires its operand to be of a known and polymorphic type.

Consider the following set of classes:

class employee { /* ... */ };

class manager : public employee { /* ... */ };

class analyst : public employee { /* ... */ };

class engineer { /* ... %/ };

class electrical_engineer : public engineer (/* ... */ };
class mechanical_ engineer : public engineer { /* ... #*/ b2

If we want to ask questions like:
- Isthis engineer a manager ?

~ Does this employee have an EE degree ?

- How many analysts have an engineering degree ?
and we want 1o use language features rather than algorithms based on data stored by the programmer, then
we define:

¢lass manager_with_ee

¢ public manager, public electrical_engineer
{ /% ... */ };

class manager with_me
: public manager, public mechanical_engineer

(/% ... %/ };
Or graphically:
engineer employee engineer employee
me manager ee analyst

manager_w_me manager w_ee

We can then use checked casts like this:

my_fct (engineer* pel, employee* pe2)
{
if (manager* m = (?manager*)pel) ({
// this engineer is a manager
} .
/..
if (electrical_engineer* ee = (?electrical_engineer*)pel2) ({
// this employee has an EE degree
}
/...
}

Note that we can do this even where the connection between employee and electrical_engineer
is unknown because no class derived from both, such as manager_with_ee, has yet been defined. In
general, it is not possible to know that two classes are unrelated because there is always the possibility that
a class defined in some other compilation unit is derived from both. However, given an object of polymor-
phic type we can always (at run time) determine if the classes are related for that object.

The decision to allow cross-hierarchy casting also matches the rule that a virtual function can be defined
on one branch of a multiple inheritance hierarchy and called through another,

5 References

The discussion thus far has focussed on pointers. However, a reference can also refer to objects of a
variety of base and derived classes and is subject to casting in a way very similar to pointers. For example,
the set example from §2 could be written using references instead of pointers. However, we cannot sim-
ply rewrite the critical test

if (slist<T>* sl = (?2slist<T>*)s)

if (slist<T>& sl = (2slist<T>¢)s)

That wouldn’t make sense in general because there is no ‘‘zero reference’” to test. Consequently, a refer-
ence cast throws an exception if the cast cannot be performed. The example thus becomes:

void my (set<T>& s)
{
try |
slist<T>& sl = (2?slist<T>&)s; // s is an slist

for (T* p = sl.first(); p; p = sl.next()) ({

// souped up list algorithm
}
}
catch (Bad_cast) |
for (T* p = s.first(); p; p = s.next()) {

// ordinary set algorithm
}

/7 .
}

This is a very poor example of a reference cast because it uses an exception to handle ordinary local control
flow rather than an error. In this case, a pointer cast would have been more appropriate:

-10-

1f (slist<T>* p = (?slist<T>*)gs) {(// s is an slist
slist<T>§ sl = *p;
/] ..

}

The difference in results of a failed checked pointer cast and a failed checked reference cast reflects a fun-
damental difference between references and pointers. A pointer may or may not point to an object, whereas
a reference may be assumed to refer to one. As ever, the possibility of zero pointers makes explicit tests
necessary where pointers are used.)

Explicit tests against 0 can be - and therefore occasionally will be - accidentally omitted. One might
argue that a checked pointer cast that fails should throw an exception just like a failed checked reference
cast. However, this would only handle one minor source of 0 pointers and not all 0 pointers lead to errors.
The programmer has a choice, though:

void f(dialog_box* p)

{
dbox_w_string* pl = (?dbox_w_string*)p; // por Q
dbox_w_string* p2 = (?dbox_w_string*&)p; // p or exception
dbox_w_string* p3 = &(?dbox_w_string&)*p; // p or exception
/7.

}

A checked reference cast can be a good way of testing an assumption. In contrast, the checked pointer cast
allows (and requires) a test to select between two reasonable aiternatives.

6 How Much Information?

The basic notion of the RTTI mechanisms described here is that for maximal ease of programming and

implementation independence we should minimizing the use of RTTI:

(1] Preferably, we should use no run-time type information at all and rely exclusively on static (compile
time) checking,

(2] If that is not possible, we should use only checked casts. In that case, we don’t even have to know
the exact name of the object’s type and don’t need to include any header files related to RTTL

(3] If we must, we can compare typeids, but to do that we need to know the exact name of at least
some of the types involved. It is assumed that ‘‘ordinary users’’ will never need to examine run-
time type information further.

[4] Finally, if we absolutely do need more information about a type - say because we are trying to
implement a debugger, a data base system, or some other form of object /O system [1) - we can use
operations on typeids to obtain more detailed information.

This approach of providing a series of facilities of increasing involvement with run-time properties of
classes contrasts to the approach of providing a class giving a single standard view of the run-time type
properties of classes. We feel that the proposed approach encourages greater reliance of the (more safer and
efficient) static type system, has a smaller minimal cost (in time and comprehensibility) to users, and is also
more general because of the possibility of providing multiple views of a class by providing more detailed
type information.

The typeid () Operator

In §1, we presented the typeid () operator only briefly before making its use implicit in the checked
cast mechanism. However, typeid () can be used explicitly to gain access to information about types at
run time; typeid () is a built-in operator. Had it been a function its declaration would have looked some-
thing like this:

class Type_info;

const Type_info& typeid (type-name); // pseudo declaration
const Type_info& typeid (expression); // pseudo declaration

Thatis, typeid () returns a reference to an unknown type called Type_info. Given a fype-name as its
operand, typeid () returns a reference to a Type_info that represents the fype-name. Given an

.11 -

expression as its operand, typeid () retums a reference 10 a Type_in£o that represents the type of the
object denoted by the expression. For example:

class B { /* ... */ virtual void £(); }; // a polymorphic base class
class D : public B { /* ... */ };

B* p = new D; // a B* pointing to a D

B& r = *p; // a B& referring to a D

int i;

typeid(p) == typeid(B*)
typeid(*p) == typeid(D)
typeid(r) == typeid(D)
typeid(&r) == typeid(B*)
typeid(7) == typeid(int)
typeid(0) == typeid(int)
typeid(i) == typeid(int)
typeid(§i) == typeid(int*)

Note that for a polymorphic type accessed through a pointer or a reference the actual object is examined
and its (dynamic) type reurned. For a non-polymorphic type the object returned represents the static type:

class X { int i }; // a non-polymorphic class
class Y : public X { int j; };

X* xp = new Y; // unwise: typeid(*xp) == typeid(X)

As ever, manipulating a non-polymorphic class through a base class relies on the programmer knowing
exactly what is being done.
Because typeid (*p) involves examining the object *p the case p==0 preseats a problem. The solu-
tion is to throw an exception:
p=0;
ptypeid(*p): // throw Bad_typeid

Naturally, a simple test prevents the exception:

if (p == Q) |
/...

}

alse {
ptypeid(*p);
/o

}

Acmially, typeid () slightly favors the use of references:

void £(B& r)
{
if (typeid(r) == typeid(D) {
// use r as a D

}

// used r as a plain B
}

Here we are entitled to assume that r refers to an object and we don’t have to decorate r with any operators
the way we had to decorate a pointer p with a dereference operator to get the type of the object *p.

The reason typeid () returns a reference to Type_info rather than a pointer is that it is not clear
that every implementation will be able to guarantee uniqueness of type identification objects. In particular,
it is not obvious that every dynamic loading and linking mechanism will be able to avoid occasional dupli-
cation of such objects. With a Type_info4 there is no problem defining == to cope with such duplica-
tion.

Some typeid () s can be obtained only using the typeid (typename) syntax. For example:

-12-

charé r = obj;
typeid(r) == typeid(char) // NOT typeid(charg)

Itis possible, however, to express the typeid() for every type that an object can have, This is important
for writing code, such as some object I/O systems, that relies on using descriptions of objects at run-time.

Class Type_info

Class Type_info is defined in the standard header file <Type_info.h> which needs to be included
for the result of typeid() to be used. The exact definition of class Type_info is implementation
dependent, but it is a polymorphic type that supplies comparisons and an operation that returns the name of
the type represented:

class Type_info |
// implementation dependent representation

private:
Type_info (const Type_infog); // objects cannot
Type_info& operator=(const Type_infos); // be copied by users
public:
virtual “Type_info(); // is polymorphic
int operator==(const Type_info&) const; // can be compared

int operator!=(const Type_info&) const;

const char* name() const; // get the type name
};

More detailed information can be supplied and accessed as described below. However, because of the great
diversity of the *‘more detailed information’’ desired by different people and because of the desire for mini-
mal space overhead by others, the services offered by Type_info are deliberately minimal.

Extended Type Information

Consider how an implementation or a tool could make information about types available to users at
run-time. Say we have a tool that generates a table of (member_name,offset,typeid) entries for each mem-
ber of a class. The preferred way of presenting this to the user is to provide an associative array (map, dic-
tionary) of type names and such tables. To get such a member table for a type a user would write:

void £ (B* p)

{
My_member_info* pi = my_type_table({typeid(p).name()]:
// use *pi

}

where My_member_info is the name of the type of our information, and my_type_table is the name
of the associative array in which we keep the (typename My_member_info*) pairs. If we wanted to, we
could index the tables directly with t ypeids rather than requiring the user to use the name () string:

My_member_info* pi = my_type_table{typeid(p)]:

It is important to note that this way of associating t ypeids with information allows several people or tools
to associate different information to types without interfering with each other. This is most important
because the likelihood that someone can come up with a set of information that satisfies all users is zero. In
particular, any set of information that would satisfy most users would be so large that it would be unaccept-
able overhead for users that need only minimal run-time type information.

Using these techniques, we might have several independent sets of information about types in a pro-
gram:

-13.

My _type_info ' Type_info Your_type_info
T "T"
N
"Tﬂ
Standard Type Information - \
Implementation Specific
Type Information

The function typeid: :name () is logically redundant in that the name string could be obtained
through the association technique described above. However, that wouldn’t allow association tables to be
sorted according to the spelling of type names and would make it less easy for programmers to obtain string
representations of type names. We would prefer it to be trivially easy to print the name of a class. For
example:

#include <Type_info.h>

template<class T> class Vector {
/! ...
void my _namel () { cout << "Vector<"” << typeid(T).name() << ’'>’; }
void my_name2 () { cout << typeid(Vector<T>).name(); }
void my_name3 () { cout << typeid(Vector).name(); }
}:

where all functions happen to be equivalent.

What information might a tool or an implementation make available 0 a user? Basically any informa-
tion that a compiler can provide and that some program might want to take advantage of at run time. For
example:

- Object layouts for object [/O and/or debugging.

Tables of functions together with their symbolic names for cails from interpreter code.

Lists of all objects of a given type.

References to source code for the member function.

Online documentation for the class.

The reason such things are supported through libraries, possibly standard libraries, is that there are 0o
many needs, too many potentially implementation specific details, and too much information © support
every use in the language itself. Also, some of these uses subvert the static checking provided by the

214 -

language. Others impose costs in run time and space that we do not feel appropriate for a language feature.

7 Implementation Issues

Consider how to implement RTTI. The typeid() operator and the checked cast notation (27)
affects syntax checking and type checking minimally. To deal with run-time aspects of the mechanism
three separate issues must be addressed:

(1] How do we get hold of run-time type information given a pointer or a reference? -

(2] How do we use the run-time type information to implement typeid () and checked casts?

(3] How do we generate the run-time type information?

The implementation described here is only one of several possible. It assumes a traditional and fairly
straightforward implementation of C#++ along the lines described in (2]. That is, each object of a class with
virtual functions contains a pointer (vpt r) to a table of virtual functions (vtbl).

The basic idea is to place a pointer to an object describing an object’s type in the vtbl. Such descrip-
tion objects will be of some type derived from class Type_info.

Basically typeid (expression) is nothing but a test to protect against zero-valued pointers followed by
a double indirection to retrieve the pointer to the Type_info object.

A call typeid (fype-name) degenerates into the name of the type’s Type_info object.

Here is a plausible memory layout for an object with virtual function table and type information object:

my_object

For each type with virtual functions an object of type Type_info is generated. These objects need
not be unique. However, a good implementation will generate unique Type_info objects wherever pos-
sible and only generate Type_info objects for types where some form of run-time type information is
actually used. An easy implementation simply places the Type_info object for a class right next to its
vtbl.

Checked Casts

In most cases the implementation of a cast (2D *) px where the static type of *px is X is straightfor-
ward: retrieve a pointer to the run-time type identification object from *px, generate a pointer o the run-
ume type identification object for D, and have a library routine see if *px’s class is D or a base of D and
return a - possibly slightly adjusted - pointer. The adjustment is needed when X class isn't a first base of D
class. For example: .

-15-

class D : public A, public X (/* ... */ };

void £()
{
X* px = new D; // px doesn’t point to the start of the D object
D* pd = (?D*)px; // pd should point to the start of the D object
}

This adjustmeni 1s trivially implemented.
However, cases where a base class X appears more than once in a class hierarchy need more care. Con-
sider first ordinary (non-virtual) base classes:

class Dl : public X { /* ... */ };
class D2 : public X (/* ... */ };
class D : public D1, publie D2 { /* ... */ };

void £(D* pd)

{
X* pxl = (Dl*)pd:
X* px2 = (D2*)pd;

pd = (?D%)pxl; // pd should point to the start of the D object
pd = (?D*)px2; // pd should point to the start of the D object

Dl* pdl = (?2D1*)pxl;
pdl = (?D1*)px2;
}

Or graphically ' .
pxl----ccocoieiioom X) & - px2
pdl---cceeiee. D1 D2

D

Clearly the adjustments needed for the two (?D*) casts are different. Similarly, the adjustments needed
for the two (2D1*) casts are different. Consequently, we need (o store (in the vtbl or equivalent) the
offset of the sub-object in the overall object. Given that, we can not only perform the correct adjustment of
pointers but also resolve the case of multiple sub-objects. Virtual base classes are haridled slighdy differ-
ently; see Appendix B.

8 Alternatives

The current proposal is a result of a series of ideas and experiments with both the syntax and semantics
of run-time type identification. Here, we would like to explain some of the alternatives we considered. The
ideals we looked for were the usual: Ease of leaming, ease of reading, direct representation of the underly-
ing semantics, no pointless redundancy, minimal syntactic innovation, minimal compatibility problems
(including a minimal number of new keywords), ease of implementation, reasonable run-time and space
efficiency, etc.

Checked and Ordinary Casts

Casts are one of the most error-prone facilities in C++. It is also one of the ugliest syntactically. Nam-
rally we considered if we could

(1] eliminate casts, and if not then

(2] make casts safe, and if not then at least

(3] provide a cast syntax that makes it obvious that an unsafe operation is used.
Basically, this proposal reflects our conclusion that none of the above are feasible in C++ at this time so we

-16-

must settle on the policy that has been followed for years:

(4] Provide alternatives to casting and discourage the use of casts.

Considering (1], we observed that no language supporting systems programming has completely eliminated
the possibility of casting and that even effective support for numeric work requires some form of type con-
version. Thus the aim must be to minimize the use of casts and make them as well behaved as possible.
Starting from that premise we devised a proposal that unified checked and ordinary casts using a single syn-
tax [11]. This seemed a good idea, but upon closer examination several problems were uncovered:

(1] Checked casts and ordinary unchecked casts are fundamentally different operations. Checked casts
look into objects to produce a result and may fail giving a run-time indication of that failure. Ordi-
nary casts perform an operation that is determined exclusively by the types involved and doesn’t
depend on the value of the object involved (except for occasional checking for 0 pointers). An ordi-
nary cast doesn't fail; it simply produces a new value. Using the cast syntax for both checked and
unchecked casts led to confusion about what a give cast expression really did.

(2] If checked casts are not syntactically distinguished it is not possible to find them easily (grep for
them, to use Unix-speak).

[3] If checked casts are not syntactically distinguished then it is not possible to have the compiler check
for unsuitable uses of checked casts. If distinguished, we can make it an error to attempt a checked
cast for objects that don’t support run-time checking.

(4] Programs using ordinary casts would have their meaning changed if run-time checking were applied
wherever feasible. Examples are casts to undefined classes and casts within multiple inheritance
hierarchies. We did not manage to convince ourselves that this change of meaning would never
break a reasonable program.

(5] The cost of checking would be incurred even for old programs that already carefully checked that
casts were viable using other means.

(6] The suggested way of ‘‘turning off checking,” casting to and from void*, wouldn’t be perfectly
reliable because the meaning would be changed in some cases. These cases might be perverted, but
because understanding of the code wouid be required the process of ‘‘turning off checking’* would
be manual and error-prone. We are also against techniques that would add yet more uncheckable
casts to programs. |

(7] Making some casts ‘‘safe’’ would make casting more respectable; yet the long-term aim is to
decrease the use of all casts (including checked casts).

After much discussion we found this formulation: ‘‘Would our ideal language have more than one notation
for type conversion?'* For a language that distinguishes fundamentaily different operations syntactically
the answer is “‘yes.” Consequently we abandoned the attempt to **hijack’’ the old cast syntax.

We considered if it would be possible to ‘‘deprecate’” the old cast syntax in favor of something like:

Checked<T*> (p); // checked conversion of p to a T*
Unchecked<T*>(p); // checked conversion of p to a T*

This would eventually make all conversions obvious, thus eliminating the problem that traditional casts are
too hard 0 spot in C and C++ programs. It would also give all casts a common syntactic pattern and share
the <T*> notation for types with templates. This line of development was abandoned (for now) because
we realized that even though Checked<T*> (p) looks a bit like a template it cannot in fact be defined as
a template. Thus we would have another syntactic oddity on our hands. Most likely, there would also be
the traditional uproar over the introduction of new keywords to contend with. Finally, we considered it
possible that the inevitable confusion over compatibility and transition issues might derail the consideration
of run-time type identification so that we would end up with no improvements at all.

The notion of checked casts extends cleanly to arithmetic types. The meaning of (2T) v would be *‘if
the value v can be represented as a T return that representation; otherwise throw Bad_cast.” The use of
an exception is necessary because many arithmetic types does not have a distinguished value (like a zero-
pointer or NaN) that we could retumn for the user to test for. This facility would be a pure extension o the
current proposal, but we decided not to complicate matters by adding it now.

-17-

Implementation and Tool Concerns

A key line of thought was to try to define a notation for run-time type identification that did not involve
anything a user couldn’t define in C++ itself; that is, trying to guarantee that the new mechanisms would fit
smoothly into the language by actually defining them in the language and then relying on compilers and
other tools for optimization.

We were only partially successful. Our previous proposal [11] had that property, but providing it
involved notations and concepts that many deemed confusing and too complicated. :

The proposed solution involves three extensions to the syntax:

(1] The (2rype-name) syntax for checked casts.

[2] The typeid ({ype-name) syntax for ‘‘t ypeid literals.”

(2] The typeid (expression) syntax for getting type information from an object.

The typeid () Operator

We felt that the t ypeid () operator was more appropriate than a ‘‘magic’’ member function that could
be applied to all objects. Had we defined typeid () as a member function we would have had to allow
something like:

void £(X* p, Y& r, int i, char*a(])
{

p->typeid () :

r.typeid();

i.typeid();

a.typeid():

X::typeid();

int::typeid();

char*::typeid{();
}

Once all possibilities had been taken into account, the ‘‘magic’’ member function solutions looked messy.

Type Relations

We considered defining <, <=, etc., on Type_info objects t0 express relationships in a class hierar-
chy. That is easy, but too cute. It also suffers from the problems with an explicit type comparison opera-
tion as described in §1. We need a cast in any event so we can just as well use a checked cast,

Unconstrained Methods

There are many ways of using run-time type information in a language and a diverse set of facilities has
been used in programming languages. We considered a couple of alternatives with implications beyond
run-time type identification. Given RTTI, one can support ‘‘unconstrained methods;’’ that is, one could
hold enough information in the RTTI for a class to check at run time whether a given function was sup-
ported or not. Thus one could support Smalltalk-style dynamically-checked functions. However, we felt
no need for that and considered that extension as contrary tw our effort to encourage efficient and type-safe
programming. In other words, that extension would take C++ in a new direction contrary to its direction so
far. The checked cast enables a check-and-call strategy:

if (D* pd = (?D*)pb) { // is *pb a D?
pd->dfct(); // call D function
/...

}

rather than the call-and-have-the-call-check strategy of Smalltalk:
pb->dfct(); // hope pd has a dfct

The check-and-call strategy provides more static checking (we know at compile time that dfct is defined
for class D), doesn’t impose an overhead on the vast majority of calls that don’t need the check, and pro-
vides a visible clue that something beyond the ordinary is going on.

.18 -

Multi-methods

A more promising use of RTTT would be to support *‘multi-methods,”” that is, the ability to select a vir-
tual function based on more than one object. Such a language facility would be a boon to writers of code
that deals with binary operations on diverse objects. Generalized addition, geometric intersect operations,
and other reasonably common operations belong to this class of problem. We make no such proposal, how-
ever, because we cannot clearly grasp the implications of such a change and do not want to propose a major
new extension without experience in C++. In the context of C++, we would have to work out argument
conversions and ambiguity rules, find a call mechanism that approached the virtual call mechanism in effi-
ciency, and work out the interaction between multi-method declarations and separate compilation.

9 Survey of Issues

There are several issues and proposals wrapped up into the RTTI mechanism. They can and should be
considered individually but we feel that the final evaluation of any run-time type identification scheme
should be based on the utility and elegance of a complete set of features. The individual aspects of the pro-
posal here are:

(1] We use checked casts. The alternatives are checking all casts where sufficient information is avail-
able (§8) or relying on some alternative notion such as an isKindof operator (§1, §8) or a rela-
tional operator on t ypeid () s (§8) for determining inheritance relationships.

{2] We use virtual functions to distinguish types that support run-time type idendfication from types
that don’t The altemative would be to support RTTI for all types or to support RTTI for types
explicitly declared to support it (§3, Appendix C).

[3] We use a syntax extension to allow declarations in conditions (Appendix A).

{4] We allow cross hierarchy casting. The alternative is to allow casts only within known class hierar-

chies (§4).

{51 We use reference casts. The alternative is to disailow reference casts and thus avoiding the use of
exceptions (§5).

[6] We disallow objects of non-polymorphic types as operands for checked casts. The altemative is to
interpret such checked casts as ordinary unchecked casts (§3). In addition, one might support
checked casts for arithmetic types also (§8).

(7] We allow casts 10 a non-unique sub-object from within an object. The alternative is 10 define cast-
ing as conversion from the run-time determined class of the object to the desired type and then
consider a cast to a non-unique sub-object ambiguous (§7).

(8] We use the typeid operator (§6). The alternatives is either to provide no way of getting access
to objects describing a type or to provide a complete typeid type for manipulating type identi-
fiers instead of using Type_info objects directly (11].

[9] We allow non-polymorphic types as operands for typeid () and in such cases typeid () yields
values that depend on the static type of its operand. The alternatives is to cause compile time
errors or supplying RTTI for every object (§6).

(10] We allow expressions od any type as operands to t ypeid (). The alternative is to accept pointers
and/or references only (Appendix D).

(11] We use a Type_info class defined in a standard library. The alternative is to support checked
casts and type identity only (§6).

[12] We use a minimal Type_in£fo class. The alternative is to guarantee the presence of a much more
extensive type information class.

There are of course many additional details, such as the exact name of the Bad_cast and Bad_typeid
exceptions, but we feel that any RTTI facility designed along the lines we suggest will be characterized by
the choices outlined here.

10 How to Manage until RTTI comes

This proposal for RTTI is most unlikely to be available on your C++ implementation any day soon.
What can you do to get the benefits until some variant RTTI becomes generally available? If you use one
of the major libraries, you already have some mechanism available and even if you don’t you can build
your own using the technique described in [10]). The real problem is how to stay compatible with others

-19.

and to make sure that you can convert the ‘‘real’” RTTI system once it becomes available.
We suggest you write your code in terms of five macros

const Type_info& static_type_info (type) // get Type_info for type
const Type_info& ptr_type_info(pointer) // get Type_info for pointer
const Type_info& ref_type_info(reference) // get Type_info for reference
pointer ptr_cast (type,pointer) // convert pointer to type*
reference ref_ cast (type, reference) // convert reference to type&

We believe that these can be defined for any reasonable RTTI mechanism so that your user code becomes
independent of its particulars. That makes portability manageable and once your C++ implementation pro-
vides a standard RTTI mechanism you can either redefine your macros or (preferably) rewrite the code to
use it directly.

11 Acknowledgements

Jim Coplien, Brian Kemighan, Andrew Koenig, Doug Mcllroy, Rob Murray, and Jonathan Shopiro pro-
vided valuable insights that heiped shape this proposal. Tom Penello checked that allowing declarations in
conditions would not introduce any new syntax ambiguities. Michey Mehta and Shankar Unni provided
many ideas of different approaches to run-time type identification and its implementation that helped better
understand probiems and solutions presented in this proposal. Steve Clamage found (too) many minor mis-
takes in an earlier version of this paper.

The current proposal evolved from the one presented to the ANSI/ISO C++ committee for discussion
and published to solicit further comments [11]. The discussion extensions working group ANSI/ISO C++
committee at the London meeting was particularly useful. We found almost universal application of run-
ume type identification in various forms, confirmed the general structure of the proposal, and — somewhat
to our surprise — demonstrated that ordinary and checked casts could not be unified by a single syntax.
Thanks to all who took part in that discussion.

12 References

(1] Frank Buschmann, Konrad Kiefer, and Michael Stal: A Runtime Information System for C++. Proc.
TOOLS Europe 1992.

(2] Margaret A. Ellis, Bjame Stroustrup: The Annotated C++ Reference Manual. Addison-Wesley,
1990.

(31 Mary Fontana, Martin Neath: Checked Out And Long Overdue: Experience in the Design of a C++
Class Library. USENIX C++ Conference Proceedings, April, 1991.

(4] Keith E. Gorlen: An Object-Oriented Class Library for C++ Programs. Proceedings of the USENIX
C++ Workshop, 1987.

(5] Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico: Data Abstraction and Object-Oriented
Programuming in C++. Wiley, 1990,

(6] John A. Interrante, Mark A. Linton: Runtime Access to Type Information in C++. USENIX C++
Conference Proceedings, 1990.

(71 Andrew Koenig and Bjame Stroustrup: Exception Handling for C++. USENIX C++ Conference Pro-
ceedings, 1990.

(81 Mark A. Linton, John M. Vlissides, and Paul R. Calder: Composing user interfaces with InterViews.
Computer, 22(2):8-22, February 1989.

(91 Dmitry Lenkov, Michey Mehta, Shankar Unni: Type Identification in C++. USENIX C+ Confer-
ence Proceedings, April, 1991.

(10] Bjamne Swoustrup: The C++ Programming Language (Second Edition). Addison-Wesley, 1991.

(11] Bjame Stroustrup and Dmitry Lenkov: Run-Time Type Identification for C++. Long version for
ANSI/ISO committee discussions: ANSI/X3J16 document 92-00028. Shorer version: The C++
Report, Vol.4 No.3, pp 3242. March/April 1992.

[12] Andre Weinand, Erich Gamma, and Rudolif Marty: ET++ - An Object-Oriented Appiication Frame-
work in C++, ACM OOPSLA'88 Conference Proceedings, 1988.

-20-

13 Appendix A: Declarations in Conditions

In §1 we mentioned in passing that we'd like to allow the use of declarations in conditions:

void my_£ct (dialog_box* bp)

{
if (dbox_w_str* dbp = (dbox_w_str*) bp) {

// use ‘dbp’
}

/.
}

The value of a declaration is the value of the declared variable after initialization. To avoid syntax prob-
lems, we do not suggest that declarations can appear everywhere an expression can (which would be the
cleanest semantic notion) but only that declarations of a single initialized variable can appear in the condi-
tion part of if, for, while, and switch statements. Allowing declarations in conditions of conditional
expressions and do statements seems to add complications rather than utility so we don’t propose that. For
example:

do £() while(int i = g{()): // error: declaration in do condition
while(int i = g()) £(); // ok

while(int i = g(), j = g2()) £(); // error: two names declared in condition

This extension is, of course, independent of the notion of run-time type identification. It simply auacks
the problem of use of uninitialized variables directly. For example:

void f(Iter<Name> it)
{
while (Record* r = it.next()) {
// procaess ‘*r’
}
}

The scope of a variable declared in a condition is the statement or statements controlled by the condition.
In particular, a variable declared a condition of an if statement is in scope in the e 1se part of that state-
ment. Naturaily, the variable will most often be 0 in the else statement, but it is possibie o construct
examples where it is not. For example, consider a class X with an operator int ():

void g(double d)
{
if (X x1 = d)
// we get here if xl.operator int ()
// doesn’t yield 0
}
else {
// x1 has a meaningful value even here
}
}

It is not legal to declare a variable with the same name in both the condition and in the outermost block of a
statement controlled by the condition. For example:

if (Name* p = find(s))

{
char* p; // error: multiple definition of ‘p’
/1l ...

}

This rule parailels the rule that an argument name may not be redefined in the outermost block of a func-
tion:

.21 -

void f (Name* p)
{

char* p; // error: multiple definition of ‘p’

/...

14 Appendix B: Casting from Virtual Bases

It is not possible to cast from a virtual base class to a derived class using an ordinary cast. This restric-
tion does not apply to checked casts from polymorphic virtual base classes:

class B { /* ... */ virtual void £(); }:
class V { /* ... */ virtual void g(); }:

class D : public B, public virtual V { /* ... */ };

void g(D& d)

{
B* pb = &d;
D* pdl = (D*)pb; // ok, unchecked
D* pd2 = (?2D*)pb; // ok, checked

V* pv = §d;
D* pd3 = (D*)pv; // error: cannot cast from virtual base
D* pdd4 = (?D*)pv; // ok, checked

}

The reason for the restriction to checked casts from polymorphic classes is that there isn’t enough informa-

tion available in other object to do the cast from a virtal base. In particular, an object of a type with layout

constraints determined by some other language such as Fortran or C may be used as a virtual base class and

for objects of such types only static type information will be available. However, the information needed to

provide run time type identification includes the information needed to implement the checked cast.
Naurally, such a cast can only be performed when it is unambiguous. Consider:

class A : public virtual V {(/* ... */ };
class D1 : public A { /* ... */ };

class D2 : public A { /* ... */ };

class X : public D1, public D2 (/*. ... */ };

Or graphically:
A/ \A
b

D2

N/

Here, an X object has two sub-objects of class A. Consequently, a cast from V to A within an X will be
ambiguous and return a 0 rather than a pointer t0 an A:

void hl (X& x)
{

V* pv = §X;

A* pa = (?A*)pv; // pa will be initialized to 0
}

This ambiguity is not in general detectabl_c at compile time:

-22.

void h2 (V* py)
{
A* pa = (?A*)ypv; // pv might point to an X
// and then 0 will be returned

// or it might point to a ‘‘plain A’”
// and then a correct pointer to A Wwill be returned
})

This kind of run-time ambiguity detection is only needed for virtual bases. For ordinary bases, the proper
sub-object to cast to can always be found; §8.

15 Appendix C: Explicit RTTI Declaration

First we note that there already is a way. Simply define a class with a virtual function and derive from
it any class that you desire to be explicit about:

class rtti { virtual void —dummy () = 0; }2
class X : public retj (/% ... =/ y;

Unfortunately, this implies a space overhead (especially if rtti is included in lots of places) and because
Class rtti is so small, making it a virtual base will not provide any significant saving:

class X : public virtual reei { /% ., */)

It is also clear that “public virtual rtti”is long enough to be tedious to write 30 we considered
some syntactic sugar:
class X : virtual { /% ... */ };

virtual class X (/% ... */),
class X { virtual; VAR VAR)

However, people instantly started imagining a variety of meanings for such notations. In particular, ‘‘Oh
neat, so X is an abstract class!”’ and *‘ have always wanted to be able to declare all functions virtual in
one place’” were not uncommon reactions. For now, we don’t have an acceptabie suggestion for a more
explicit way of saying *this class has run-time type information."”’ If you want such information, be sure to
have at least one virtual function in the base class you want a checked cast from or leave it 1o the compiler
to tell you.

16 Appendix D: Alternative typeid () Semantics

We considered two aiternatives for the semantics of typeid(). Both are consistent and roughly equiva-
lent. This appendix explains why we chose the one we did. Because we saw no major flaw in either alter-
native the discussion gets a bit involved.

To help the discussion, let’s here call the two alternatives Ptypeid() and otypeid(). The
typeid () semantics adopted and described in §6 is that of ot ypeid (). We will assume the definitions

class B { /+ ,,, »/ virtual void £(); Y: /7 a polymorphic base class
class D : public B {/* ... =/ y;

B* p = new D; // a B+ pointing to a D
B& r = »p; // a B& referring to a D

Semantics of Ptypeid()
The original idea was Ptypeid (p) meaning “‘the object describing the object pointed to by the pointer
p.”" One could imagine ptypeid () to take an argument of any pointer type:

template<class T> Type_info¢ Ptypeid(T*);

-23-

The expected most common uses are:

if (ptypeid(p) == typeid(D)) // is the object pointed to by p a D?
if (ptypeid(4r) == typeid(D)) // is the object referred to by r a D?

Clearly the design of pt ypeid () is geared to making the use of pointers convenient. What then if p is 07
This is easily handled by letting typeid (0) denote an object representing the 0 pointer; typeid (0)
compares not equal to typeid (T) for every type T:

p=0:;

if (ptypeid(p) == typeid(D)) // fails

if (ptypeid(p) == typeid(0)) // succeeds

It is a compile time error to apply pt ypeid () to a non-pointer:

int i;

ptypeid (i) ; // error: ‘i’ is not a pointer
ptypeid(7); // error: ‘7’ is not a pointar
ptypeid(*p); // exror: ‘*p’ is not a pointer

So far, so good. Now consider references:

ptypeid(r); // == ptypeid(*p), that is, error, or
// == typeid(D) ?

B*s pr = p; // pr refers to a B*

ptypeid(pr):; // == ptypeid(p) == typeid(D) or
// == typeid(B*) or
// == typeid (D) ?

In both cases, the first aiternative is obtained by assuming that there is no special interaction between
ptypeid () and references so that ptypeid () is applied to the object referred to, that is *p (of type B)
a p (of type B*) respectively. The second alternative assumes that ptypeid () treats a reference similar
to the way it treats a pointer, that is, it looks at the object referred to and finds its type. The third alternative
for ptypeid (pr) is obtained by saying that both references and pointers are followed until a non-pointer
and non-reference is found and that object is examined. The third alternative, *‘just chase pointers and ref-
erences as far as we can’’ is an approach that has caused problems with other type systems and would be
unique in C++ so we rejected that

We considered the first two alternatives plausible. Using the first altemative, the result of
ptypeid (z) will be surprising to many because it is the static type of the object referred to (B). Using
the second altemative, the result of ptypeid (pr) will be surprising to many because ptypeid(pr)
will differ from ptypeid (p) even though pr refers to p. In both cases comparisons with t ypeid (D)
will fail.

Having ptypeid (pr) differ from ptypeid (p) even though pr refers to p seemed too odd a depar-
ture from the general rule that a name of an object and a reference to that object behave identically. Thus,

B¢ r = *p; // r refars to a D
B*g pr = p; // pr refers to a B*

ptypeid(r); // == ptypeid(*p), that is, error
ptypeid(pr); // == ptypeid(p) == typeid(D)

This means that 0 use ptypeid () effectively on a ‘‘typical reference argumeat’’ we must obtain a
pointer using the address-of operator:

void £(B& 1)

{
if (ptypeid(&r) == typeid(D))
/] ..

}

This works nicely except where & is overloaded for B. It does look odd, though.

-24-

We conclude that pt ypeid () can be made to work acceptably within the type system, but that there
are a few details that are less than elegant. ’

Semantics of otypeid ()
Consider the otypeid () alternative: otypeid (obj) yields an object representing the type of obj.
- One could imagine otypeid () to take an argument of type ‘‘reference to any type:'’

template<class T> const Type_info& otypeid(T&);
The expected most common uses are

if (otypeid(r) == typeid(D)) // is the object referred to by r a D?
if (otypeid(*p) == typeid(D)) // is the object pointed to by p a D?

Clearly the design of ot ypeid () is geared to making the use of references convenient. The ot ypeid ()
operator differs from the mythical typeof () operator only in that its call by reference semantics ensured
that the dynamic type of an object is determined rather than its static type. For example, the (static) type of
the expression *p is B, whereas otypeid (*p) is the type of the (dynamic) object pointed to by p, that is,
D.

Applying ot ypeid () to non-pointers is no problem:

int i;
otypeid (i) // == typeid{int)
otypeid(7); // == typeid(int)

This implies that ot ypeid (0) isn’t special:
p=20;
otypeid (p); // == typeid(B*)
otypeid (0); // == typeid(int)

There is however, however, a problem related to *‘zero references:’’
p =0
otypeid(*p); // == typeid(B) or

// == typeid(veid) or
// throw exception ?

The first alternative simply returns the static type of *p if there is no object to examine. This is confusing
and error prone. The second altemative returns a distinguished object (much as ptypeid(0) yields
typeid(0)). The third alternative relies on the observation that any use of *p where p==0 would be an
error. The probable most common case would be the one where a reference r had somehow been bound 0
a non-object; that is, & r==0,

Any use of such an r will cause an error. The choice is between an explicit test to avoid such a use and
the possibility of throwing an exception. Since one can already test for & r==0 and p==0 there is no need
for an additional test otypeid (*p) ==typeid (void). Throwing an exception provides an implicit
mechanism for detecting such errors. Therefore:

p=0;
otypeid(*p); // throw exception

Again, the difference between pointers and references shows up in the way a reference to a non-existent
object is handled.

Comparison
Now consider a summary:

=25 -

class B { /* ... */ virtual void £(); }; // a polymorphic base class
class D : public B { /* ... */ };

B* p = new D; // a B* pointing to a D

B&s r = *p; // r refers to a D

B*s pr = p; // pr refers to a B*

ptypeid(p) == typeid(D) otypeid(p) == typeid(B*)
ptypeid (*p) error otypeid(*p) == typeid(D)
ptypeid(r) error, otypeid(r) == typeid(D)
ptypeid(&r) == typeid(D) otypeid(&r) == typeid(B*)
ptypeid(pr) == typeid(D) otypeid(pr) == typeid(B*)
p=0:

ptypeid(p) == typeid(0) otypeid(p) == typeid(B*)
ptypeid(*p) error otypeid(*p) throw exception

If either ptypeid () or otypeid () should be called typeid () which would you choose? We chose
otypeid () for several minor reasons.

We wanted a single typeid () operator that could be applied to both expressions and types. This
weighed against the ptypeid () semantics. Having an implicit dereference for expression arguments but
not for type arguments seemed odd:

typeid(p) == typeid(D) // but the type of p is B*, not D
This simple point becomes significant when thinking about templates. For example:

template<class T> const char* snameof(T& r) // return name of static type

{
return typeid(T).name():

}

template<class T> const char* dnameof (T& r) // return name of dynamic type
{

return typeid(r).name();
}

are simple to write using the ot ypeid () model.
Whatever we choose, somebody will make false assumptions about the model used for typeid () and
write the equivalents to:
if (otypeid(p) == typeid(D}) // error or simply failed test?

// ..
if (ptypeid(*p) == typeid(D)) // error

The test will fail because otypeid(p) is typeid (B*). However, this is a trap and might warrant a
compiler warning. Making it an error to compare the otypeid () of a pointer o the typeid () of a
non-pointer seems Draconian, though, and might complicate the writing of templates. Error handling is
easier for the ptypeid () semantics so this favors the pt ypeid () semantics.

If the address-of operator has been overloaded for a class then we cannot take the pt ypeid () of a ref-
erence to that class:

class X {

/7l ...

Xhandle operators&():
}:

X x;
X&é r = x;
ptypeid(&r); // error ptypeid() of non-pointer.

This could be a nasty problem. There is no equivalent problem for the ot ypeid () semantics because *p

-26-

is the application of a built-in operator to a pointer.
Finally, consider zero pointers. Using ptypeid () we would write

void £(B* p)
{
if (ptypeid(p) == typeid(D) {
// use p as a D*
}

// used p as a plain B*
}

and get burned if we use p as a plain B* without testing for 0. We could test for zero immediately upon
entering £ () or after the type test. Since typeid (0) is well defined it doesn’t matter whether p==0 is
checked before or after.

Using ot ypeid () we would write

void £(B& r)
{
if (otypeid(r) == typeid(D) {
// use r as a D

}

// used r as a plain B
}

We are entitled to assume that r refers to an object and would normally not test for & r==0. If someone
had cheated and passed a zero reference otypeid (r) will throw an exception. This is in our opinion
preferable to the undefined behavior we’d get from using r. If we felt the need to check for & r==0 we’d
have to do it before using ot ypeid(r):

void £(B& r)
{
if (&r == Q) (// something is rotten
/..
}
else if (otypeid(r) == typeid(D) ({
// use r as a D
}

// used r as a plain B
}

We consider the behavior in the case of p==0 very marginally in the favor of the ot ypeid () semantics.

Allowing typeid (oo) where the result will not depend on any run-time information - that is, where
oo does not refer to a polymorphic type ~ could be considered redundant and therefore a possible source of
confusion and errors. Instead of typeid (oo) you could use typeid(T) where T is the type of the
object referred to by oo. This is an argument for the ptypeid () semantics. However, if you didn't
declare oo, you don’t necessarily know its type and whether that type is polymorphic or not. This can hap-
pen with templates with templates.

Further, suppose you're trying to define some kind of smart pointer class. If t ypeid () applies only w0
pointers, then it would be impossible 0 make t ypeid () work transparently with smart pointers. That is,
if p is a smart pointer, ptypeid (p) would be illegal because p isn’t what C++ thinks of as a pointer.
However, otypeid (*p) would be whatever the type of *p is and operator* () can be defined for a
smart pointer type.

.27-

17 Appendix E: Return Types

The March 1992 meeting of the ANSI/ISO C++ standards committee in London decided ~ after almost
two years of deliberations - to relax the rules for overriding virtual functions to allow a function returning a
B* to be overridden by a function returning a D* when B is a public base class of D. Similarly, a function
returning a B& can be overridden by a function returning a Ds.

This provides an alternative to uses of casts that might have been considered candidates for RTTL. For
example,)

class X ¢
// ...
virtual X* clone(); // return copy of *this

}:

class Y : public X {
/7 ...
X* clone():;
}

void £(X* p, Y* g)
{
X* pp = p->clone():
Y* qq = (Y*) g=->clone(); // the clone of a Y is at least a Y

if (Y* q2 = (?Y*) pp) { // was the X really a Y?
/...

}
/7 ...

}
The return type relaxation makes a better solution possible:

class Y : publiec X {

/7 ...

Y* clone(); // override X::clone()
}

void £(X* p, Y* q)
{
X* pp = p->clone(): ‘
Y* qq = q->clone(); //no cast (checked or unchecked) needed

if (Y* q2 = (?Y*) pp) { // was the X really a Y?
/7 ...
}
/...
}

We mention this to remind people that blindly changing all casts to checked casts isn’t a good way to try o
improve old programs.

18 Appendix F: typeid () During Construction

A call of typeid (*p) reflects the dynamic type of *p in the same was as a call of a virtual function
P->£() weuld. This implies that in a constructor of destructor of X the cail typeid(*this) will be
return (X) rather than the typeid () of some derived class that the X object might be part of after con-
struction and before destruction.

