
 n1066

 X3J16/97-0028
 WG21/N1066
 March 12, 1997
 Josee Lajoie
 josee@vnet.ibm.com
+------------------+
| Core 1 WG Issues |
+------------------+

CD2-core 1-1 (core issue 745):
==============================
 Does &inline_function for an inline function that has external
 linkage yield the same result in all the translation units?

 Proposed Resolution:

 Yes.
 Add to the end of 7.1.2 para 4:
 "An inline function with external linkage shall have the same address
 in all translation units."

CD2-core 1-2 (core issue 686):
==============================
 Where is a function name looked up if an argument type is introduced
 with a using-declaration?

 3.4.2 [basic.lookup.koenig] says:

 "When an unqualified name is used as the postfix-expression in a
 function call (_expr.call_), other namespaces not considered during
 the usual unqualified look up (_basic.lookup.unqual_) may be
 searched; this search depends on the types of the arguments.

 For each argument type T in the function call, there may be a set of
 zero or more associated namespaces to be considered; such namespaces
 are determined in the following way:
 [...]
 - If T is a class type, its associated namespaces are the namespaces
 in which the class and its direct and indirect base classes are
 defined.

 What happens if the type was introduced with a using-declaration:

 namespace N1 {
 struct T { };
 void f(T);
 void g(T);
 }

 namespace N2 {
 using N1::T;
 void f(T);
 }

 void foo() {
 N2::T t;
 f(t); // which f?
 }

 Proposed Resolution:

 Page 1

 n1066

 Replace in 3.4.2 para 2 sentence 3:
 "Typedef names used ..."
 with:
 "Typedef names and using-declarations used ..."

CD2-core 1-3 (core issue 665):
==============================
 How are qualified destructor names looked up?

 The current CD does not allow the following:
 struct A {
 ~A();
 };

 typedef A AB;

 int main()
 {
 AB *p;
 p->AB::~AB();
 }

 The name AB in ~AB following the nested-name-specifier is looked up
 in the scope of class A, the class nominated by the
 nested-name-specifier. Because AB is not a member of class A, the
 program is ill-formed.

 This is different from what happens with the pseudo destructor call.
 3.4.3[basic.lookup.qual] para 5:
 struct A {
 typedef int I;
 };
 int *p;
 p->A::I::~I(); // ok

 Proposed resolution:

 Replace 3.4.3 [basic.lookup.qual] paragraph 5, before the example,
 with:
 "If a pseudo-destructor-name (5.2.4) contains a
 nested-name-specifier, the type-names are looked up as types
 in the scope designated by the nested-name-specifier."

 and add:
 "In a qualified-id of the form:
 ::opt nested-name-specifier ~class-name
 where the nested-name-specifier designates a namespace scope, and
 in a qualified-id of the form:
 ::opt nested-name-specifier class-name::~class-name
 the class-names are looked up as types in the scope designated by
 the nested-name-specifier."

CD2-core 1-4:
=============
 A pseudo-destructor call should allow the object expression to have
 a different cv-qualification from the type-name naming the
 destructor. For example:

 const int* pci;
 typedef int I;
 pci->~I(); //ill-formed

 5.2.4[expr.pseudo] para 2 says:
 "The left hand side of the dot operator shall be of scalar type.

 Page 2

 n1066

 The left hand side of the arrow operator shall be of pointer to
 scalar type. This scalar type is the object type. The type
 designated by the pseudo-destructor-name shall be the same as
 the object type."

 Proposed Resolution:

 The last sentence quoted above should say:
 "The cv-unqualified versions of the object type and of the type
 designated by the pseudo-destructor-name shall be the same
 type."

CD2-core 1-5 (core issue 672):
==============================
 Can a using-declaration introduce a copy assignment operator?
 7.3.3[namespace.udecl] should indicate what happens if a
 using-declaration refers to a base class assignment operator and the
 type of this assignment operator corresponds to the type of the
 derived class copy assignment operator.

 struct B;
 struct A {
 B& operator=(const B&);
 };
 struct B : A {
 // introduces B's copy-assignment operator
 using A::operator=;
 };

 Proposed Resolution:

 Add at the end of 7.3.3[namespace.udecl] paragraph 4:
 "If an assignment operator brought from a base class into a derived
 class scope has the signature of a copy assignment operator for the
 derived class (12.8), the using-declaration will not by itself
 suppress the implicit declaration of the derived class
 copy-assignment operator, and if the implicitly-declared operator
 has the same parameter type as an assignment operator brought in by a
 using-declaration, that assignment operator from the base class will
 be hidden or overridden by the implicitly-declared operator, as
 described below."

 Add in 12.8 paragraph 10, after the first sentence:
 "A using-declaration (7.3.3) that brings in from a base class an
 assignment operator with one of the parameter types of a copy
 assignment operator is not considered an explicit declaration of a
 copy assignment operator, and if the base class assignment operator
 has the same parameter type as the implicitly-declared copy assignment
 operator, the operator from the using-declaration will be hidden by
 the implicitly-declared operator."

CD2-core 1-6 (core issue 749):
==============================
 What is the meaning of
 extern "C" static void f();
 ?

 Proposed Resolution:

 Add to 7.5[dcl.link] at the end of paragraph 7:
 "A linkage-specification directly containing a single declaration
 shall not specify a storage class. [For example:
 extern "C" static void f(); // error
 -- end example]

 Page 3

 n1066

 "

CD2-core 1-7 (core issue 751):
==============================
 Should { } be allowed around an initializer that is a string?

 8.5[dcl.init] disallows:
 const char a[5] = {"asdf"};
 paragraph 13 says:
 "If T is a scalar type, then ...
 T x = { a };
 is equivalent to
 T x = a;
 "
 An array is not a scalar type.

 However, this is allowed in C and some C++ implementations allow it.

 Proposed Resolution:

 In 8.5.2[dcl.init.string] paragraph 1, after each occurence of
 "can be initialized by a string literal" insert "optionally
 enclosed in braces".

CD2-core 1-8 (core issue 505):
==============================
 Must anonymous unions be declared static when static is deprecated?

 9.5[class.union] p3 says:
 "Anonymous unions declared at namespace scope shall be declared
 static."

 An alternative should be to declare the anonymous unions as members
 of an unnamed namespace.

 Proposed Resolution:

 Replace the sentence above with the following:
 "Anonymous unions declared in a named namespace or in the global
 namespace shall be declared static."

CD2-core 1-9 (core issue 753):
===============================
 Is 'new char[size]' aligned properly to hold an object of any type T?

 12.4[class.dtor] paragraph 13 has the following example:
 void* operator new(size_t, void* p) { return p; }
 struct X {
 // ...
 X(int);
 ~X();
 };
 void f(X* p);

 void g() // rare, specialized use:
 {
 char* buf = new char[sizeof(X)];
 X* p = new(buf) X(222); // use buf[] and initialize
 f(p);
 p->X::~X(); // cleanup
 }

 The lines

 Page 4

 n1066

 char* buf = new char[sizeof(X)];
 X* p = new(buf) X(222); // use buf[] and initialize

 are not strictly conforming, because there is no guarantee that
 ̀ buf' will be sufficiently aligned to hold an object of type ̀ X'.
 5.3.4[expr.new]/12 includes some examples which show that this is
 not guaranteed.

 However, this is a common idiom that should be supported by the
 language.

 Proposed Resolution:

 5.3.4 paragraph 9
 replace:
 "When the allocation function is called, the first argument
 shall be the amount of space requested (which shall be no
 less than the size of the object being created and which
 may be greater than the size of the object being created
 only if the object is an array)."
 with:
 "When the allocation function is called, the first argument
 shall be the amount of space requested. If the object
 being created is not an array, the size requested shall be
 the size of the object. If the object is an array, the
 size requested may be larger than the size of the object.
 For arrays of char and unsigned char, the difference
 between the result of the new expression and the address
 returned by the allocation function shall be an integral
 multiple of the most stringent alignment requirement (3.9)
 of any object type whose size is no greater than the size of
 the array being created. [Note: since allocation functions
 are assumed to return pointers to storage that is
 appropriately aligned for objects of any type, this
 constraint on array allocation overhead permits the common
 idiom of allocating character arrays into which objects of
 other types will later be placed.]

 Also the first line of the example above should be deleted. The
 library placement new is not replaceable.

CD2-core 1-10:
==============
 Can a base class copy assignment operator that is virtual be
 overriden by an assignment operator declared in a derived class?

 struct B {
 virtual B& operator=(const B&);
 };
 struct D : B {
 B& operator=(const B&);
 };

 If D's copy assignment operator is implicitly defined, does is
 call B's copy assignment operator such that the virtual function
 mechanism is not used:
 B::operator=(...)
 or such that the virtual function mechanism is used:
 ((B*)(this))->operator=(...)
 to initialize its base class?

 Proposed Resolution:

 The virtual mechanism is not used.

 Page 5

 n1066

 Replace the first bullet of 12.8[class.copy], para 13, with:
 "-- if the subobject is of class type, the copy assignment operator
 is used (as if by explicit qualification, i.e., ignoring any
 possible virtual overriding functions in more derived classes);"

CD2-core 1-11:
==============
 During the construction of a const/volatile object, the constructor
 and, functions called by the constructor, can modify the object
 under construction. Does this mean that the implementation
 cannot use optimization techniques (like assume that a const
 object does not change during the execution of a function) for
 functions called by constructors?

 struct C;
 void no_opt(C*);

 struct C {
 int c;
 C() : c(0) { no_opt(this); }
 };

 const C cobj;

 void no_opt(C *cptr)
 {
 int i = cobj.c * 100;
 cptr->c = 1; // must the implementation assume that
 // cobj is modified by this assignment?
 cout << cobj.c * 100 << '\n';
 }

 Proposed Resolution:

 Give the program above undefined behavior.

+------------------------------------+
| Core 1 WG |
| Editorial Issues for the US ballot |
+------------------------------------+

1.1[intro.scope] and Annex C.1.2:
 (core issue 604 & 680):
 The last sentence of 1.1[intro.scope] para 2 and Annex C.1.2 (on the
 extensions to C++ since 1985) should be deleted. Its content is
 incomplete.

1.7[intro.object]:
 (Public comment 34):
 Make it clear that though functions are regions of storage, they are
 not objects.

2.3[lex.trigraph]:
 (core issue 744):
 2.3[lex.trigraph] paragraph 4 should be deleted (it is incorrect) and
 paragraph 3 should be made normative (just like it is in C).

2.11[lex.key]:
 (Public Comment 21-1)
 The export keyword is missing from the table in para 1.

3.3.6[basic.scope.class]:
 (core issue 664):

 Page 6

 n1066

 3.3.6[basic.scope.class] para 1, the second bullet should show the
 following example:
 typedef int I; //1

 class D {
 typedef I I; //2
 };
 to illustrate the difference between bullet 2) and bullet 3) of the
 class scope rules.

3.4.2[basic.lookup.koenig]:
 3.4.2[basic.lookup.koenig] para 2:
 "For each argument type T in the function call, there is a set of
 zero or more associated namespaces to be considered. The set of
 namespaces is determined entirely by the types of the arguments."
 The list does not cover arguments of function types.
 An argument can have function type if the parameter has type
 reference to function.

 3.4.2[basic.lookup.koenig] para 2, fifth bullet
 change:
 "If T is a pointer to function type, ..."
 to:
 "If T is a function type, ..."

3.4.2[basic.lookup.koenig]:
 There should be an example to illustrate that a function name
 does not have to be known to be a function at the point of the call
 for the function call to be well-formed. i.e. parsing must not
 assume for:
 name()
 that 'name' is visible in the scope of the call for this to be
 interpreted as a function call.

 namespace NS {
 class T{ };
 void f(T);
 }
 NS::T parm;
 int main() {
 f(parm); //ok, calls NS::f
 }

3.5[basic.link]:
 (core issue 729):
 3.5[basic.link] para 10 says:
 "After all adjustments of types [...], the types specified by all
 declarations of a name in a given namespace shall be identical
 [...]."
 Because this says "of a name in a given namespace", it does not cover
 the following properly:
 extern "C" int f(int);
 namespace NS {
 extern "C" void f(int); // ill-formed? undefined behavior?
 }
 because the "C" function is declared in difference namespaces.

 Amend 3.5[basic.link]p10 to read:
 "After all adjustments of types (during which typedefs
 (_dcl.typedef_) are replaced by their definitions), the types
 specified by all declarations referring to a given object or
 function shall be identical, except that declarations for an array
 object can specify array types that differ by the presence or
 absence of a major array bound (_dcl.array_). A violation of this

 Page 7

 n1066

 rule on type identity does not require a diagnostic."

 Amend the first two sentences of 7.5[dcl.link]p6 to read:
 "At most one function with a particular name can have C linkage. Two
 declarations for a function with C language linkage with the same
 function name (ignoring the namespace names that qualify it) that
 appear in different namespace scopes refer to the same function."

3.6.2[basic.start.init]:
 (core issue 746):
 3.6.2[basic.start.init] para 1 says:
 "Objects of namespace scope with static storage duration defined in
 the same translation unit and dynamically initialized shall be
 initialized in the order in which their definition appears in the
 translation unit."
 This doesn't take into account static data members because static
 members have class scope, not namespace scope.
 This should say: "Objects defined in namespace scope..." instead.

3.6.2[basic.start.init]:
 (core issue 747):
 The term "static initialization" should be defined.
 It means zero-initialization and initialization with constant
 expressions.
 The term dynamic initialization should also be defined to mean "not
 static initialization".

3.9.3[basic.type.qualifier]:
 (core issue 772):
 3.9.3/3 says:
 "Each non-function, non-static, non-mutable member of a
 const-qualified class object is const-qualified, ..."

 "non-reference" should be added to this list.

5.3.4[expr.new] and 5.3.5[expr.delete]
 (core issue 669):
 The semantics for new and delete expressions should be separated
 from the requirements for operator new and delete.
 See core issue 669 for proposed wording.

5.9[expr.rel]:
 (core issue 721):
 5.9[expr.rel] para 2 says:
 "If two pointers point to nonstatic data members of the same
 object, ..."
 The "point to" provision probably should also cover "point within".

5.19[expr.const]:
 (core issue 722):
 5.19[expr.const] para 4 & 5 should say that the index of the subscript
 operator used in an address constant expression should be a constant
 expression.

 Add to paragraph 4 and 5:
 "If the subscript operator is used, one of its operands shall be an
 integral constant expression."

7.1.1[dcl.stc]:
 7.1.1 para 8 says:
 "The name of a declared but undefined class [...] cannot be used
 before the class has been defined."
 This should say: "can be used in ways that do not require a complete
 class type (3.2)".

 Page 8

 n1066

 7.1.1 paragraph 8 says:
 "The mutable specifier can be applied only to names of class
 data members (9.2) and cannot be applied to names declared const
 or static."

 The omission of "reference" in the restrictions in 7.1.1
 appears to be an almost-editorial oversight.

7.5[dcl.link]:
 (core issue 750):
 7.5[dcl.link] p4 says
 "A non-C++ language linkage is ignored ... for the function type of
 class member function declarators"
 It should be made clear that this apply to the member function in a
 shallow sense.
 extern "C" {
 struct S {
 void f(void(*)()); // parameter is a pointer to C function
 };
 }
 It should be rewritten to read something like, "The language linkage
 of member names and member function types is C++, regardless of the
 linkage specification in which the class may be defined."
 (An example is also a good idea.)

9[class]:
 para 3, the first two sentences and the footnote should be replaced
 with:
 "Complete objects and member subobjects of class type shall have
 nonzero size.
 Footnote: base class subobjects are not so constrained."

10.1[class.mi]:
 (core issue 624):
 10.1[class.mi] para 3:
 It should be clarified that when a class has a direct and indirect
 base class that is the same class, only limited things can be done
 with the direct class non-static members.

 Add after the 2nd sentence of paragraph 3:
 "There are limited things that can be done with such a class.
 The non-static data members and member functions of the direct
 base class cannot be referred to in the scope of the derived
 class. However, static members, enumerations and types can be
 unambiguously referred to."

11[access]
 para 1 only list a subset of the members that can refer to the
 private and protected members of a class. The description should
 be made more general.

 The first two bullets should be replaced with:
 "-- private; that is, its name can be used only by members and
 friends of the class in which it is declared.
 -- protected; that is, its name can be used only by members and
 friends of the class in which it is declared and by members
 and friends of classes derived from this class (see 11.5)."

12.2 [class.temporary]:
 (core issue 777):
 It should be made clear that the exception object is not a
 temporary affected by the rules in this subclause.

 Page 9

 n1066

12.4[class.dtor]:
 Make it clear that a derived class destructor implicitly calls a base
 class destructor such that the virtual function mechanism is never
 used.

 After the first sentence of paragraph 6, add the following sentence:
 "All destructors are called as if they were referenced with a
 qualified-id, i.e. ignoring any possible virtual overriding
 destructors in more-derived classes."

12.6.2 [class.base.init]:
 Public Comment 20 4)
 A note should indicate that when a class has a base and a member
 with the same name, a mem-initializer-id designates the class member
 and it is not possible to refer to the base class in a
 mem-initializer-id.

 Add the following note after the first sentence of para 2 in
 12.6.2[class.base.init]:
 "[Note: if the constructor's class contains a member with the same
 name as a direct or virtual base of the class, a mem-initializer-id
 naming the member or base class and composed of a single identifier
 references the class member. A mem-initializer-id for the hidden
 base class may be specified using a qualified name.]"

Annex C.3
 (core issue 743):
 The Annex C.3 on anachronisms should be deleted.
 Its content is incomplete.

Annex E:
 (core issue 777):
 The title of Annex E needs to be made shorter. Maybe "Extended
 Identifiers"?

 Page 10

