

N1511=03-0094

 September 18, 2003

Literals for user-defined types
Bjarne Stroustrup

(bs@research.att.com)

Abstract
This note proposes a notion of user-defined literals based on literal constructors without requiring new
syntax. If combined with the separate proposal for generalized initializer lists, it becomes a generalization of
the C99 notion of compound literals.
 Basically, a constructor defines a user-defined literal if it is inline and specifies a simple mapping of
its arguments to object representation values and is invoked with constant expressions or objects that can be
trivially copied (such as pointers).

The Problem
C++ does not provide a way of defining literals for user-defined types. Instead, constructors are used. For
example:

 15 // int literal
 "15" // string literal (zero terminated array of characters)
 complex(15) // “sort of complex literal”

When a constructor is simple and inlining is done well, such constructor calls provide a reasonable substitute
for literals. However, a constructor is a very general construct and there have been many requests for a way
to express literals for user-defined types in such a way that a programmer can be confident that a value will
be constructed at compile time and potentially stored in ROM. For example:

 complex z(1,2); // the variable z can be constructed at compile time
 const complex cz(1,2); // the const cz can potentially be put in ROM

A Solution
The most direct and obvious solution would be to introduce syntax to distinguish a literal constructor and to
distinguish literals of user-defined types. For example:

 class X {
 int x,y,z;
 public:
 literal X(int a, int b) :x(a+1),y(0),z(b) {} // literal constructor
 // ...

 };

 X"1,2" // a literal of type X

This syntax is just for the illustration of the idea; a better syntax is suggested below.
 This “literal constructor” illustrates the requirements for any specification of a literal for a user-
defined type. It specifies a (simple) mapping from a set of arguments to the representation of the type. Often,
that will simply specify a value for each member of the type's representation, but slight generalizations are
possible and sometimes useful. Here, I have indicated that the member y's value need not be specified by the
user and that a slight transformation takes place on the argument used to specify a (x becomes a+1).
 The body is empty. Since the construction of the representation of a value takes place at compile
time, very few constructs could reasonably be allowed in a literal constructor body. The simplest rule would
be to require that body to be empty. That is, the mapping of arguments to representation (member values)
must be specified as member initializers. In addition, a literal constructor must be inline.
 What can be accepted as an argument type? An argument must of a type that can be copied without
the use of a nontrivial copy constructor (e.g. ints, pointers, and references). What can be accepted as an
initializer? An initializer can be another argument, a value of a type that can be copied without the use of a
non-trivial copy constructor, or a constant expression.
 Note that this definition is recursive in that it allows the use of literals of user defined types as
arguments to be used. For example:

 class Y {
 complex x, y;
 literal X(complex a, int b) : x(a), y(complex"a,0") {}
 // ...
 };

 const int c = 3;
 Y"complex"1,2",c";

This simple definition could be elaborated. For example, should we accept floating point expressions, such
as d+1.7 where d is an argument of floating point type? I think not. Even if d is a literal so that the
expression to be evaluated is something like 2.3+1.7, I suspect that the complication of requiring floating
point arithmetic at compile time is not worth the bother – especially for cross compilers.

Syntax for user-defined literals
The syntax used to illustrate the idea of a “literal constructor” above has some obvious problems. Consider
that last use:

 const int c = 3;
 Y"complex"1,2",c";

That use of quotes (chosen to emphasize the literal nature of the construct) would clearly confuse any
traditional lexer (and many human readers). Also, it doesn't exactly extend to string literal arguments.
Furthermore, it would not be easy to get used to the idea that elements of the string-like part are separate
values and that variable can occur there. I think that a much more natural (i.e. familiar) and readable notation
would use parentheses:

 const int c = 3;
 Y(complex(1,2),c);

After all, parentheses are the way we usually express arguments. However, by doing so, we lost the syntactic
distinction of the literal. That is,

 Y(complex(1,2),c)

is a literal because it is expressed in terms of the literal constructors of Y and complex. Does this lack of
distinction matter? Consider:

 int i;
 const int c = 3;
 Y(complex(1,2),i); // can't be a literal
 Y(complex(1,2),c); // is a literal

We have three alternatives:

(1) The result of the constructor call is a literal if its arguments are acceptable to a literal constructor
(and then evaluate the constructor at compile time)

(2) Make it an error to call a literal constructor with unacceptable arguments
(3) Syntactically distinguish a user-defined literal (as before)

I think that (2) is unacceptable because the kind of arguments from which we'd want to construct literals will
always be very similar to the kind of arguments we'd want to construct non-literal values from. Often, the
distinction would be only const vs. non-const arguments.
 Personally, I prefer (1): basically, a value is a literal if it is composed out of literals and
implemented by a literal constructor. The problem with that is that some people will not trust compilers to
do proper resolution, placement in ROM, placement in text segment, etc. Choosing that solution would
require text in the standard to constrain and/or guide implementations.
 So consider (3): What syntactic alternatives do we have? I conjecture that the notation must be
somewhat similar to constructor calls, be terse to emphasize the simple semantics of the construct, and not
offend simple tools. For example:

 Y"complex"1,2",c" // offends lexers, doesn't indicate argument passing
 Y"(complex(1,2),c) // offends lexers
 Y'(complex(1,2),c) // offends lexers
 Y'(complex(1,2),c)' // odd, offends lexers
 Y"(complex(1,2),c)" // odd, offends lexers
 Y@(complex(1,2),c)
 @Y(complex(1,2),c)
 Y<complex<1,2>,c> // too(?) template like
 literal Y(complex(1,2),c) // verbose
 Y{complex{1,2},c} // nice generalization of the initializer-list syntax
 (Y) { (complex) { 1,2 }, c } // odd, verbose, and almost C99 compatible

I consider "offends lexers" a serious problem because tools as well as compilers have the current lexical
rules built in.
 Requiring extra syntax, such as @ or literal, to distinguish simple semantics from a more
complicated semantics seems backwards. For example:

 complex z = a + literal complex(1,2); // elaborated for restricted semantics
 complex z = a + complex(1,2); // simple notation for general semantics

The simplest and most obvious syntax should express the simples and most efficient implementation
(assuming simplicity and efficiency isn’t at odds, and they don’t seem to be in this case).
 That leaves just two alternatives:

 Y{complex{1,2},c} // generalized initializer-list syntax
 Y(complex(1,2),c) // usual constructor syntax

These two notations are roughly equivalent. In fact, the Stroustrup and Dos Reis proposal for generalizing
initializers makes them both valid and semantically equivalent whenever a user hasn’t defined a sequence
constructor. Therefore, taking the generalized initializer syntax to indicate user-defined literals seem
unattractive. That proposal also addresses C99 compatibility as any proposal touching upon a {}-based
notation in expressions must.

Syntax for literal constructors
Do we need syntax to distinguish literal constructors? Not really, we could define a literal constructor simply
as a constructor with the constraints that allows it to define literals.
 Why would we want syntax to define literal constructors? I see three reasons:

• to allow the compiler to check that a constructor we think meets the criteria for a literal
constructor really does meet them

• to discourage compiler writers from implementing a literal constructor as a run-time construct.
This could also be expressed, possibly more politely, as “reassuring the programmer that literal
constructors really are implemented at compile time”, though it is hard to guarantee that

• to ease the teaching of constructors and the discussion of literal constructors.
The main reason for not distinguishing a literal constructor is that we often (typically) will want an identical
non-literal constructor. For example:

 class complex {
 double re, im;
 public:
 literal complex(double r, double i) : re(r), im(i) { }
 complex(double r, double i) : re(r), im(i) { } // not literal
 // ...
 };

 complex z1(1,2); // literal
 complex z2(1,sqrt(2)); // not literal

That would appear to be a pointless redundancy. Programmers do not like to type the same thing twice, and
here there are no significant complementary benefits.
 By having “literal” mean “potentially literal”, we might abbreviate this to

 class complex {
 double re, im;
 public:

 literal complex(double r, double i) : re(r), im(i) { } // literal and not literal
 // ...
 };

 complex z1(1,2); // literal
 complex z2(1,sqrt(2)); // not literal

However, that's rather a small benefit from introducing a new keyword. Note that the current semantics
already implies this without the use of a keyword:

 class complex {
 double re, im;
 public:
 complex(double r, double i) : re(r), im(i) { } // literal and not literal
 // ...
 };

 complex z1(1,2); // might be literal
 complex z2(1,sqrt(2)); // not literal

A quandary and a suggested resolution
So, many users want the facility – user-defined literals – but the obvious and ideal syntax is already provided
by the language and the obvious semantics is already allowed by the standard. The problem is that we
traditionally don't “legislate” performance or specific implementation approaches. What would be the best
way – if any – to ensure efficient implementation of literal constructors and to make users confident with the
concept?
 The obvious approach of introducing new syntax is too heavy handed and would introduce more
problems than it is would solve. Instead, we should introduce the term “literal constructor” into the standard
with wording encouraging efficient implementation of literal constructors. I fear that such wording would
have to be non-normative, but it would express the intent of the committee and introduce the concepts
“literal constructor” and “literal of user-defined type” (and/or “user-defined literal”) into common use:
 A constructor is a literal constructor – that is, a constructor used to define literals of a user defined
type (“a user-defined literal”) – if

• it is inline (either explicitly or because it is defined in-class)
• it’s body is empty
• each initializer expression (if any) is either a constant expression or a copy implemented by a built-

in operation or a literal constructor
For example:

 class X {
 int a;
 X* b;
 Y& c;
 complex d;
 public:
 X(int n, X* p, Y&x, complex<float> z)
 : a(n+2),b(p),c(x),d(z) {} // a literal constructor

 X(int n, X* p, Y&x) : a(n+2),b(p+1),c(x) {} // not a literal constructor
 X(int n) { a=n; } // not a literal constructor
 // …
 };

Unless specifically defined to be a variable (e.g. by being declared as a non-const local variable or created
using new), an object created by a literal constructor can be placed if ROM.

Relationship to other proposals
This proposal should not be considered in isolation from other proposals dealing with initialization.

C99 compound literals
In C99, a initializer list of expressions prefixed by a (C-style) cast is called a compound literal and serves a
similar role to the user-defined literals proposed here. In C99, the expressions in a compound literal must be
constant expressions if the compound literal is in file scope, but do not need to be constant if the compound
literal is in function scope (so a function scope "compound literal" is not a literal as I used the term above).
 In the absence of a joint policy of C/C++ compatibility, this is not by itself a compelling argument
for accommodating the C99 construct, but it would certainly reduce confusion and match some users'
expectations/wishes if the C99 construct was accepted as a special case with identical semantics in C++.
Accepting something with identical syntax and slightly differing semantics would be unfortunate.
 I suggest that we define the C-style cast syntax as equivalent to the constructor syntax. For example:

 (struct Y) { (struct complex) { 1,2 }, c } // C99 (and proposed C++)

is equivalent to

 Y(complex(1,2),c) // C++

This would fit both with the lack of syntactic distinction of the const and non-const cases and with the
companion proposal for generalized constructors (see below).
 Should we allow non-const compound literals (using the C-style cast syntax) and non-const user-
defined literals (using the constructor syntax) in namespace scope? I suggest that both should be allowed,
following the usual rules for initializers in namespace scope. For example:

 extern int x;
 Y a(complex(1,2),x); // ok: run-time evaluation
 Y b = Y(complex(1,2),x); // ok: run-time evaluation
 Y c = (Y) { (complex) { 1,2 }, x } // ok: run-time evaluation

In other words, the C99 syntax should be allowed with extensions to match the more general C++ rules.
 In C99, it is explicitly allowed to take the address of a compound literal. For example:

 f(&(struct foo) { 1,2 });

This makes sense only if we assume that the {1,2} is stored in a data segment (like a string literal, but
different from a int literal). I see no problem allowing that, as long as it is understood that unless & is

explicitly used or the literal, a user-defined literal is an rvalue with which the optimizer has a free hand. For
example:
 void f(complex*);
 // …
 f(&complex(1,2)); // ok

whereas

 complex z1 = complex(1,2);
 complex z2 = (complex) {1,2};

do not require {1,2} to be stored as an object somewhere.
 It would be tempting to expand this rule to user-defined literals bound to references. For
example:

 void f(complex&);
 // …
 f(complex(1,2)); // ok?

However, this would touch upon some rather brittle parts of the overload resolution rules to do with rvalue
vs. lvalue. For example:

 vector<int> v;
 // ...
 vector<int>().swap(v); // ok
 swap(vector<int>(), v); // would become ok

I suggest we don’t touch this unless we are looking at the rvalue/lvalue rules for other reasons.

Generalized initializer lists
This proposal fits together with the proposal for generalized initializer lists (Stroustrup and Dos Reis).

Generalized constant expressions
The notion of constant expression is severely limited and easily extended. For example, we could accept an
inline function defined as an expression of constant expressions as a constant expression, etc.:

 inline int next(int a) { return a+1; }
 int a1[next(2)]; // ok: next(2) cold be a constant expression

 int s[] = { 1,2,3,4 };
 int a2[s[2]]; // could be evaluated at compile time

 int a2[complex(1,2).real()]; // access to member of literal constructed object

 inline length(A) { return sizeof(A) / sizeof(*A); } // constant expression

 template<int N> int size(const T(&)[N]) { return N; } // constant expression

Gabriel Dos Reis will present a proposal to allow a limited form of inline functions in constant expressions.
His proposal fits with this proposal for literal constructors and enhances its usefulness.

Acknowledgements
Gabriel Dos Reis made constructive comments on several early version of this note.

	Literals for user-defined types
	Bjarne Stroustrup
	(bs@research.att.com)
	Abstract
	The Problem
	A Solution
	Syntax for user-defined literals
	Syntax for literal constructors
	A quandary and a suggested resolution
	Relationship to other proposals
	C99 compound literals
	Generalized initializer lists
	Generalized constant expressions

	Acknowledgements

