
N3301-11-0071: Defect Report: Terminology for Container Element Requirements Page 1 of 4

Doc No: N3301-11-0071

Date: 2011-09-04

Author: Pablo Halpern

 Intel, Corp.

 phalpern@halpernwightsoftware.com

Defect Report: Terminology for Container Element Requirements

Contents

Document Conventions .. 1

National Body comments and issues .. 1

Description of Defect ... 1

Proposed Resolution (formal wording) .. 2

References ... 4

Document Conventions

All section names and numbers are relative to the April 2011 FDIS, N3290 as modified by the

proposed resolution for LWG 2033.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

National Body comments and issues

This defect report describes an omission in N3173, which resolved comment US 115 to the July,

2010 FCD. The proposed wording in this paper interacts with the resolution of LWG 2033.

The wording here assumes that the resolution of LWG 2033 has been applied.

Description of Defect

Adoption of N3173 corrected the misuse of the terms CopyConstructible and

MoveConstructible and the phrase “constructible with args” in the containers section of the

FCD. Unfortunately, the paper missed a few incorrect uses of CopyConstructible and failed to

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3290.pdf
http://lwg.github.com/issues/lwg-active.html#2033
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf
http://lwg.github.com/issues/lwg-active.html#2033
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf

N3301-11-0071: Defect Report: Terminology for Container Element Requirements Page 2 of 4

correct similar misuses of the term DefaultConstructible. These errors persist now in the IS

and should be corrected by a TC.

The nature of the terminology misuse is that elements of a container are never constructed

directly within the container (except in the case of array), but rather are constructed by

calling the construct member function of the container’s allocator. The allocator is not

required to call the element’s constructor with exactly the list of arguments supplied to

construct. The scoped_allocator_adaptor is an example of an allocator that modifies

the construct argument list before calling the element’s constructor. Thus, saying that a

container’s value_type is DefaultConstructible is neither necessary nor sufficient for

specifying the requirements on that type. The proposed wording below defines a precise

replacement for the term DefaultConstructible in the containers section just as N3173 did for

CopyConstructible and MoveConstructible. The wording also replaces any incorrect uses of

DefaultConstructible with the new term and corrects any remaining incorrect uses of

CopyConstructible.

Proposed Resolution (formal wording)

Add a new bullet to 23.2.1 [container.requirements.general], paragraph 13 and add a destroy

requirement to each of the existing bullets as follows:

Given a container type X having an allocator_type of A and a value_type of T and given an lvalue m

of type A, a pointer p of type T*, a value v of type T, or a value rv of type rvalue-of-T, the following terms are

defined. (If X is not allocator-aware, the terms below are defined as if A were std::allocator<T>.):

— T is DefaultInsertable into X means that the following expressions are well formed:

allocator_traits<A>::contruct(m, p);

allocator_traits<A>::destroy(m, p);

— T is CopyInsertable into X means that the following expressions areis well-formed:

allocator_traits<A>::contruct(m, p, v);

allocator_traits<A>::destroy(m, p);

— T is MoveInsertable into X means that the following expressions areis well-formed:

allocator_traits<A>::contruct(m, p, rv);

allocator_traits<A>::destroy(m, p);

— T is EmplaceConstructible into X from args, for zero or more arguments, args, means that the

following expressions areis well-formed:

allocator_traits<A>::contruct(m, p, args);

allocator_traits<A>::destroy(m, p);

N3301-11-0071: Defect Report: Terminology for Container Element Requirements Page 3 of 4

[Note: A container calls allocator_traits<A>::contruct(m, p, args) to construct an element

at p using args. The default of contruct in std::allocator will call ::new((void*) p) T(args)

but specialized allocators may choose a different definition. – end note]

There are no incorrect uses of DefaultConstructible, CopyConstructible,

MoveConstructible, or constructible from in section 23.2, including Tables 96 through Tables

103.

In sections 23.3.3 [deque] through 23.5 [unord], make the following text replacements:

Original text, in FDIS Replacement text

T shall be
DefaultConstructible

T shall be DefaultInsertable into *this

key_type shall be
CopyConstructible

key_type shall be CopyInsertable into
*this

mapped_type shall be
DefaultConstructible

mapped_type shall be DefaultInsertable

into *this

mapped_type shall be
CopyConstructible

mapped_type shall be CopyInsertable into
*this

mapped_type shall be
MoveConstructible

mapped_type shall be MoveInsertable into
*this

Key shall be CopyConstructible Key shall be CopyInsertable into *this

value_type is constructible from value_type is EmplaceConstructible into

*this from

Notes to the editor: The above are carefully selected phrases that can be used for global

search-and-replace within the specified sections without accidentally making changes to

correct uses of DefaultConstructible et. al.. Please ensure that the resolution of 2033 is

applied before applying these changes, otherwise, the use of DefaultConstructible in that

resolution will be incorrect.

Separable issue: In 23.4.4.2 map constructor map(first, last), has an incomplete requires

clause. It describes what the requirement is if *first is pair<key_type,mapped_type>

but doesn’t say what requirement is otherwise. What should the requirement be? Does

*this have to be a pair, or merely pair-like? What are the actual requirements on first-

>first and first->second? I believe that the requirement should be fairly broad but

N3301-11-0071: Defect Report: Terminology for Container Element Requirements Page 4 of 4

complex: the iterator’s value type must have members first and second, where key_type

is EmplaceConstructible into *this from first->first and mapped_type is

EmplaceConstructible into *this from first->second. However, it might be sufficient and

simplest to say that value_type is EmplaceConstructible into *this from *first. The

same issue applies to the insert member 23.4.4.4 [map.modifiers]. In the latter case, the

range insert version should probably be separated from the other two and each one’s

requirements precisely described (some use of forward<> might be needed). It is also

confusing that the requirements for insert describes things that are not required. Same issue

for multimap (23.4.5.3).

Separable issue: operator[](key_type&&) is missing a requirement that key_type be

MoveInsertable into *this.

References

N3290: Final Draft International Standard: Programming Languages C++, 2011-04-11

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

N3173: Terminology for constructing container elements

LWG 2033: Preconditions of reserve, shrink_to_fit, and resize functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3290.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3102.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf
http://lwg.github.com/issues/lwg-active.html#2033

