
N3329=12-0019

JTC1/SC22/WG21 N3329

Doc No: SC22/WG21/N3329

J16/12-0019

Date: 2012-01-10

Project: JTC1.22.32

Authors: Walter Bright, Herb Sutter, Andrei Alexandrescu

Reply to: Herb Sutter

Microsoft Corp.

1 Microsoft Way

Redmond WA USA 98052-6399

Fax: +1-928-438-4456

Email: hsutter@acm.org

Proposal: static if declaration

1 The Problem

Today’s state of the art in C++ generic and generative programming in-

cludes an increasing amount of introspection-driven code. C++11 acknowl-

edges and encourages such powerful idioms; the header <traits> includes

many introspection primitives new to C++11, including several that cannot

be defined within the language and are backed by intrinsic compiler support

(e.g., is_trivially_copyable or is_nothrow_constructible).

The use of compile-time introspection overwhelmingly uses the condi-

tional compilation idiom: a data member, a piece of code, a function, or

an entire class is compiled in or not depending on a Boolean compile-time

condition. Uses of this idiom include:

• Handling termination conditions and degenerate cases, most often in

recursive and mutually recursive templates. This necessity is cur-

rently handled by using template specialization (such as in the classic

compile-time factorial example, std::tuple, safe printf using vari-

adics, and many others). We consider this solution undesirable for

several reasons. First, the necessity to repeat the common parts of

1

N3329=12-0019

the declaration leads to a subtle form of code duplication that consis-

tently creeps in all uses of the idiom. Second, if the two specializations

need to share code, additional techniques of varying difficulty and ef-

fectiveness must be used—unless even more duplication is accepted.

Last but not least, the idiom is non-modular at its core because the cor-

rectness of a definition is conditioned by the existence of a separate

one.

• Specializing a class template class or function template depending on

arbitrary type properties, or combinations thereof. This technique

starts from simple motivating cases such as “this function (or class)

template only operates on integrals” and goes all the way up to defin-

ing lightweight concept systems. Total and partial template specializa-

tion have too many limitations to satisfy such needs, which prompted

the development of std::enable_if [5]. Currently, std::enable_if

enables such idioms when used in conjunction with documented tech-

niques [6] (e.g., in the return type of regular functions, as an ad-

ditional defaulted parameter or template parameter in constructors

and classes). Unfortunately, using std::enable_if systematically is

marred by a baroque syntax, frequent and nontrivial corner cases, and

interference of mechanism with the exposed interface. Our proposal

includes a construct that makes arbitrary template specialization sim-

ple, affordable, and uniform.

• Compile-time manipulation of state and layout. For example. a class

would want to define a member if it contains actual state, and a static

member with the same type and name otherwise. This allows the

class to avoid unnecessary space overhead (for example, containers

could handle their allocators that way). Current techniques that ex-

ploit the empty base class optimization scale tenuously (e.g. transform

single-inheritance class hierarchies into multiple-inheritance hierar-

chies, where the compiler actually has difficulty realizing the optimiza-

tion in the first place).

• A policy-based class needs to discretionarily define or leave out data

members and member functions, depending on the policies it was in-

stantiated with. This being a common problem, the community has

developed a variety of techniques to achieve such a goal; however,

neither approach hits at the core problem—absence of integrated con-

ditional compilation—and inevitably adds bulk and code liability.

• Code inside functions may want to opportunistically take advantage of

type characteristics. This is currently unduly difficult because the reg-

ular if requires both branches to be compilable, even when the tested

condition is a constant expression. This is not unlike the pre-C++11

2

N3329=12-0019

situation when coders needed to define a namespace-level functor

whenever they wanted to use a higher-order function.

Generally, just as a programmer should not need to define a new function

wherever a conditional expression (?:) or statement (if/else) is needed, we

consider that a programmer wanting to implement nontrivial compile-time,

introspection-driven data structures and algorithms, should not need to re-

sort to bulky, obscure approaches wherever a casual conditional is needed.

Conversely, requiring arcane techniques makes simple idioms unduly diffi-

cult and complex ones practically unattainable.

The lack of integrated conditional compilation, with its many facets, af-

fects a large category of programmers. It primarily affects advanced pro-

grammers who need expressive power for introspection-driven generic li-

braries. It also affects less sophisticated programmers in two ways. First,

they are unable to solve a simple problem (“this function should only deal

with numbers; this class template applies only to a specific class hierar-

chy”) with a proportionally simple solution (instead they’d need to learn

a widespread array of unrelated techniques). Second, they often need to

cope with expert-written code (e.g. in libraries), which takes disproportion-

ate long times to understand, even superficially. (As an example, even an

expert has difficulties tracing through all layers and compile-time indirec-

tions in a typical standard library implementation.)

Adding integrated conditional compilation has the following benefits:

• Simplification. The feature drastically simplifies a variety of idioms

that today are artificially “advanced”—they don’t achieve advanced

results, instead they use advanced implementation techniques.

• Code reduction. Code using conditional compilation to achieve con-

ditional compilation (sic) is invariably smaller and simpler than code

resorting to an indirect technique.

• Teaching. Conditional compilation makes C++ easier to teach.

• Better error messages. A primary use of conditional compilation is to

guard against undue matching of class and function templates.

All of these benefits have been observed within the context of the D

programming language, which we use as a model for this proposal.

1.1 A Non-Starter: #if

C++ already offers conditional compilation by means of the preprocessor

directives #if, #elif, #else, and #endif. It is appropriate to clarify why

this feature is inadequate for the idioms discussed in this proposal.

3

N3329=12-0019

Preprocessing-time conditional compilation uses an expression evalua-

tor separated from the rest of the language: the only recognized symbols

are those defined within the preprocessor with #define, all arithmetic uses

long, and scopes are not obeyed. Any conditional evaluation within the pre-

processor does not and cannot work with C++ constant expressions (such

as those constructed with artifacts defined in <traits>). An expression

such as std::is_pod<T>::value || std::is_standard_layout<T>::value

would not be recognized as an expression by #if, and even if it was, it

would contain only undefined symbols. It takes a semantic analysis step to

evaluate such expressions, and that only happens long after preprocessing.

To distinguish preprocessing-time conditional compilation from the kind

discussed in our proposal, we call the latter integrated conditional compila-

tion.

2 The Proposal

2.1 Basic Cases

A static if declaration can appear wherever a declaration or a statement

is legal. In the simplest instance, the declaration may occur at namespace

level:

static if (sizeof(size_t) == 8) {

/ / Compiling in 64−bit mode

void fun();

}

The static if declaration syntax follows that of the if statement. The

tested expression tested by static if (in this case sizeof(size_t) == 8)

must be testable with if (i.e., implicitly convertible to numeric or pointer

type). In addition, the expression must be a constant expression (can be

computed during compilation).

If the constant expression evaluates to nonzero, then the code guarded is

compiled normally within the current scope. Note that unlike the if state-

ment, the static if declaration does not introduce a new scope; in the

example above, the { and } braces serve only for grouping, not for introduc-

ing a scope.

If the constant expression evaluates to zero, the guarded code is tok-

enized and ensured to be brace-balanced, but otherwise not analyzed.

The braces are required. This simplifies the parsing task significantly,

and allows only minimal parsing of code that will ultimately not be compiled.

An optional else clause may be present:

static if (sizeof(size_t) == 8) {

void fun();

4

N3329=12-0019

} else {

void gun();

}

The code guarded by the else clause is compiled in if and only if the

condition evaluates to zero. Otherwise, again, the code guarded by the else

clause is tokenized to a sequence of brace-balanced tokens and ignored.

2.2 Advanced Cases

Top-level static if declarations have only a limited range of interesting

uses. A better use case is inserting static if inside a template definition.

Consider redefining the time-honored compile-time factorial class:

template <unsigned long n>

struct factorial {

static if (n <= 1) {

enum : unsigned long { value = 1 };

} else {

enum : unsigned long {

value = factorial<n - 1>::value * n

};

}

};

This compact definition avoids the traditional specialization that termi-

nates recursion. (It should be mentioned that today it might be best to

define compile-time factorial as a recursive constexpr function, but the

example is too venerable to not mention.) There are much more compelling

use cases, however. Consider:

template <class T>

struct container {

...

static if (debug_mode<T>::value) {

class const_iterator {

...

};

static if (std::is_const<T>::value) {

typedef const_iterator iterator;

} else {

class iterator {

...

};

}

} else {

5

N3329=12-0019

class const_iterator {

...

};

class iterator {

...

};

}

};

This hypothetical container design defines iterators in two different

ways, depending on a flag. Unlike designs based e.g. on preprocessor-

driven conditional compilation, the flag is trait-based and can be specialized

per type, meaning that in the same application debug and release contain-

ers could coexist as long as they hold distinct types. Furthermore, the de-

bug version acts differently depending on the constness of the held type,

presumably because it assumes mutability in the debug iterator imple-

mentation.

Such a design would be realizable in today’s C++. It would require sig-

nificant undue complexity for reasons completely unrelated to the desired

design: the iterator types must be most likely pulled outside the class where

they belong, and made a friend of it; the two flags (debug_mode<T>::value

and std::is_const<T>::value) must be parameterized the iterator type,

and the appropriate specializations must be defined appropriately; since

the iterator may degenerate into a typedef it must be a nested defini-

tion (following the pattern of ::type symbol definitions in trait types); and

probably a shrapnel of other smaller inconveniences.

As the number of conditions tested inside one entity grows, approaching

the problem in current C++ quickly becomes more tenuous. Compiling code

conditionally with static if offers a compact implementation.

2.3 Use inside functions

As static if may occur wherever a statement is allowed, it can be used

inside function definitions. Again, the most interesting examples are in-

side function templates. Consider, for example, an implementation of

uninitialized_fill.

template <class It, class T>

void uninitialized_fill(It b, It e, const T& x) {

static if (std::is_same<

typename std::iterator_traits<It>::iterator_category,

std::random_access_iterator_tag>::value) {

assert(b <= e);

}

static if (std::has_trivial_copy_constructor<T>::value) {

6

N3329=12-0019

/ / Doesn ’ t matter that the values were uninitial ized

std::fill(b, e, x);

} else {

/ / Conservative implementation

for (; b != e; ++b) {

new(&*b) T(x);

}

}

}

The implementation takes advantage of a speed-tuned implementation

of std::fill if the type’s copy constructor is trivial. Furthermore, the

function includes a sanity check prior to copying, but only against itera-

tors that can be compared for inequality. Again, such functionality would

be realizable in current C++ only with large costs in terms of syntax, du-

plication, and defining helper functions; in contrast, the proposed code of

uninitialized_fill is simple, compact, and intuitive.

2.4 Template Constraints

Consider constraining the definition of std::uninitialized_fill above to

work only with types T that can be converted to the type iterated by It. In

contemporary C++, the approach would be:

template <class It, class T>

typename std::enable_if<

std::is_convertible<

T,

std::iterator_traits<It>::value_type

>::value

>::type

uninitialized_fill(It b, It e, const T& x) {

...

}

A similar task—constraining the definition of a class template

for e.g. numeric types—is accomplished through another idiom using

std::enable_if:

template <class T,

class = std::enable_if<std::is_numeric<T>::value>::type>

class CheckedNum {

...

};

7

N3329=12-0019

Such restrictions should be best done uniformly and with minimal syn-

tactic overhead. We propose that function and class declarations should

accept an optional if clause:

template <class It, class T>

void uninitialized_fill(It b, It e, const T& x)

if (std::is_convertible<

T,

std::iterator_traits<It>::value_type

>::value)

{

...

}

template <class T>

class CheckedNum

if (std::is_numeric<T>::value)

{

...

};

The condition is evaluated within the context of the declaration (i.e. it

has access to names inside the declaration, such as T in the example above).

If the condition evaluates to nonzero, then the declaration is processed nor-

mally. Otherwise, the declaration “disappears” in a SFINAE manner.

The constraint is not part of the function signature or of the class type

that it restricts.

2.5 Constrained declarations without definition

A class or function declaration may specify a constraint even when it doesn’t

specify a definition:

class Internals if (sizeof(void*) == sizeof(int));

unsigned int forge_cast(void*) if (sizeof(int) == sizeof(void*));

Such constrained declarations are processed in the same manner as

above: if the constraint is satisfied, the declaration counts; otherwise, it

simply vanishes.

3 Interactions and Implementability

3.1 Interactions

Syntactically, the feature integrates easily within the rest of the language.

One minor issue is that else becomes overloaded because it could corre-

8

N3329=12-0019

spond to either an if or a static if. We resolve this in the classic manner—

a trailing else groups with the immediately preceding if or static if

(there is no need for static else).

As noted, the required braces used with static if do not introduce a

new scope. If that’s needed, client code may insert an additional pair of

braces.

An issue is parsing and analyzing the code that ends up eliminated from

the program due to a static if. We argue that only very minimal anal-

ysis should be done, specifically tokenization into a string of tokens with

balanced braces. This allows static if to guard a large range of compiler-

specific extensions.

3.2 Implementability

Walter Bright invented the static if feature [2] in the context of the D

programming language in 2005 [1]. The feature has enjoyed successful use

for years. Template constraints [4] are a more recent addition (2008) [3],

but have rapidly garnered intensive and successful use. This proposal uses

D’s definition as a starting point for this proposal and a proof of concept of

implementability and utility.

References

[1] Walter Bright. D Programming Language Compiler Changelog:

0.124. http://digitalmars.com/d/1.0/changelog1.html#new0124,

May 2005.

[2] Walter Bright. D Programming Language: static if. http://dlang.

org/version.html#StaticIfCondition, May 2005.

[3] Walter Bright. D Programming Language Compiler Changelog: 2.015.

http://dlang.org/changelog.html#new2_015, 2008.

[4] Walter Bright. D Programming Language: template constraints. http:

//dlang.org/template.html#Constraint, 2008.

[5] Jaakko Järvi, Jeremiah Willcock, Howard Hinnant, and Andrew Lums-

daine. Function Overloading Based on Arbitrary Properties of Types.

Dr. Dobb’s Journal, June 2005. http://drdobbs.com/cpp/184401659.

[6] Jaakko Järvi, Jeremiah Willcock, Andrew Lumsdaine, and Matt Cal-

abrese. enable_if in Boost 1.48. http://boost.org/doc/libs/1_48_

0/libs/utility/enable_if.html, 2011.

9

