Project:
Document
Date:
Reply-to:

Programming Language C++, Library Evolution Working Group
number: P0123R2

2016-05-26

Neil MacIntosh neilmac@microsoft.com

string_span: bounds-safe views for
sequences of characters

Contents
(00 T o =01 1o - SR 2
(0 0= o T T3 o o o TN R 2
(0 0= o T T3 o o o TN 1 R 2
T Ao Yo [V 4T ] o U T NPT OTR PSR 2
Y Lo XAV 1A Lol = [ g To I Yol o] oIS 2
TagToFYotdlo o R u a TR =1 g Vo F- o IFS SR 3
DR F=d D= Tl 1 (o] F I TN 3
Interface and Naming SIMIlArity tO SPAN .......ooeiieuviiieeeeeeee e e et be e e e sarae e 3
Removing string-specific member fUNCLIONS .......cooceeeiiiiiie e 3
4] oI (= o g 1T 0 F= 1o o o USRS 3
AV [T Y] o Tl 0 F= Y oSSR 4
0T ot £ T o -V TSP PP P PO ROPOPON 4
) =Y oo ate AV o ¥- ' o 1ol [T o = o o AU SRR 4
MuUtable OF CONSE EIEMENTS ..ottt e st e e s e s b e e e e e e seeesneens 4
Range-checking and boUNdS-Safety .........c.uiiiiiii e e e e e e e e e enaenes 4
L0760 153 1{ £ 0T 1o o PP PTOTOPP 5
CONVENIENCE AlIASES ..eunvieeeeieet ettt ettt ettt et ettt e sh e e sat e saee st e smbesmt e s bt st e et e en b e e b e ebeesneennee 6
Lo T X T 4T o0 T 0 1 VZ=Y ] (o] o NS 6
Proposed Wording Changes.........uiiiiiiie ettt ecettttee e e e ee e tre e e e e e e e s ta bt e e e e e eeesnttteeeeaeesensnnsassaeseseasnsrsaaeeas 6
Vol g o1 1=To F=d< o aT=T oL PP 20
REFEIEINCES ...ttt e h e bttt st e et ea et e st e e se e e sbeeshe e st e ehe e st e ene e et e ebe e nreenae 20



Changelog

Changes from RO

e Changed title to reflect design changes.

e Renamed the proposed type from basic_string_view to basic_string_span following feedback
from LEWG at the Kona meeting.

e Changed basic_string_span from a type alias for span to be a template class of its own, in order
to be able to specify additional, string-specific construction and comparison behaviors.

e Added suggested overload for to_string().

e Separated out convenience type aliases for fixed- and dynamic- size string spans.

Changes from R1

e Added difference_type typedef to span to better support use in template functions.

e Removed const_iterator begin const() and const_iterator end const () members of span based on
LEWG feedback.

e Removed the deletion of constructors that take rvalue-references based on LEWG feedback.

e Added support for construction from const Container&.

e Tightened overload resolution requirements for construction from const container---type
references so that constructing a non-const basic_string_span from a const container reference
is not possible.

Introduction

This paper presents a design for basic_string_span (similar to the basic_string_view proposed in N3762
[1]) that would have an interface consistent with the span type described in P0122 [2]. Doing so
improves the generality of the basic_string_span type and allows it to offer bounds-safety guarantees
like span.

It is worth noting that the basic_string_span type presented here largely matches the interface of the
span type proposed in P0122 [2].

Motivation and Scope

basic_string_span is a “vocabulary type” that is proposed for inclusion in the standard library. It can be
widely used in C++ programs, as a replacement for passing const basic_string objects or zero-terminated
character arrays. The basic_string_span design supports high performance and bounds-safe access to
contiguous sequences of characters. This type would also improve modularity, composability, and reuse
by decoupling accesses to string data from the specific container types used to store that data.

It is desirable that the interface offered by basic_string_span is harmonized with span, given the
similarity between the purposes and functionality of the two types. This has the positive benefit of also
reducing the number of interfaces that need to be learned by C++ programmers who want to perform
bounds-safe, high-performance access to sequences — whether they are sequences of characters, or
objects.

basic_string_span is presented as complementary type to the basic_string_view of N3762 [1]. Each
fulfills an important but different aim. basic_string_view focuses on compatibility with the interface of



basic_string and support for null-termination. basic_string_span is explicitly not null-terminated, and
provides a simpler interface that is closer to a “view over a sequence of characters” model.

Impact on the Standard

basic_string_span is a pure library extension. It does not require any changes or extensions to the core
language.

As described in the Design Decisions section, it would be convenient to overload to_string() for
basic_string_span parameters.

basic_string_span as presented here has been implemented in standard C++ and successfully used
within a commercial static analysis tool for C++ as well as commercial office productivity software. An
open source reference implementation is available at https://github.com/Microsoft/GSL [3].

Design Decisions

Interface and naming similarity to span

The concept of a string is essentially a contiguous sequence of characters. A span is a vocabulary type
that encapsulates access to a contiguous sequence of objects. A basic_string_span is a vocabulary type
that encapsulates access to a contiguous sequence of characters. It is clear that at least conceptually
(even if not necessarily in implementation) basic_string_span and span are related types.

In order to allow code that deals with contiguous sequences to look and behave uniformly (whether
they are of characters or some other element type), basic_string_span consciously copies the interface
of span (with some minor changes to construction and comparison). This design decision reduces the
“surface area” that a C++ programmer must learn and remember to use each of these vocabulary types.

This, in turn, makes the requirement on string containers that basic_string_span can be a view over as
simple as possible. The proposed form of basic_string_span can be used over a wide variety of string
containers - such as CString, const char*, BSTR, QString or any of the other myriad of string types that
are commonly used in C++ today. That capacity — to decouple functions from the details of the string
type being used - is a significant benefit that basic_string_span can bring to C++ programmers.

Removing string-specific member functions

String-specific member functions (such as the overloads of find() on basic_string) are not offered on
basic_string_span. This design decision follows the general approach of the standard library, which is to
separate algorithms such as find_first() from the containers or views they operate over, by making them
free functions. The lack of these string-specific member functions also makes it clearer to users of
string_view objects that they cannot assume they are operating over a basic_string. basic_string_span is
a type that should decouple users from the details of underlying string container types.

Zero termination

Historical conventions around zero-terminating the sequence of characters that form a string reflect
implementation choices, rather than a fundamental aspect of the string concept. basic_string_span is
completely agnostic of zero-termination requirements/promises in the string data it contains. This
allows the view to be broadly adopted, as it can view over character sequences that are not zero-
terminated, as well as those that happen to be.



basic_string_span does correctly initialize from string zero-terminated string constants (dropping the
terminating zero from the view of the constructed basic_string_span object), for the sake of
convenience.

Value Type Semantics

basic_string_span is designed as a value type — it is expected to be cheap to construct, copy, move, and
use. Users are encouraged to use it as a pass-by-value parameter type wherever they would have passed
a pointer to character by value or basic_string by reference.

Conceptually, basic_string_span is simply a pointer to some storage and a count of the elements
accessible via that pointer. Those two values within a span can only be set via construction or
assignment (i.e. all member functions other than constructors and assignment operators are const). This
property makes it easy for users to reason about the values of a span through the course of a function
body.

These value type characteristics also help provide compiler implementations with considerable scope for
optimizing the use of basic_string span within programs. For example, basic_string_span has a trivial
destructor, so common ABI conventions allow it to be passed in registers.

Character traits

Although this proposal does not include character traits support in the proposed definition of
basic_string_span, it is not prejudiced against such inclusion. It would certainly be possible to add an
additional template parameter to the type alias if free functions that wanted to operate over
basic_string_span would find a character traits template type argument helpful.

Static or dynamic length

basic_string_span objects are capable of being declared as either having a static-size (fixed at compile-
time) or dynamic-size (provided at runtime). Conversions between the two varieties are allowed with
limitations to ensure bounds-safety is always preserved. These conversions follow the same rules as for
span. Fixed-size basic_string_span can be implemented with no size overhead when compared to
passing a single pointer.

Mutable or const elements

basic_string_span as a type-alias can also support either read-only or mutable access to a sequence. To
access read-only data, the user can declare a basic_string_span<const char> (for example), and access to
mutable data would use a basic_string_span<char>. While it is acknowledged that the majority of
basic_string_span usage would tend to be for read-only access, there are still uses for mutable access to
an existing string. As an example, some programs deal with fixed-size strings for storage or
communication protocols, and find it convenient to pass such a fixed-size string to functions that set or
modify the elements prior to transmission or serialization.

Range-checking and bounds-safety

All accesses to the data encapsulated by a basic_string_span are conceptually range-checked to ensure
they remain within the bounds of the basic_string_span. What actually happens as the result of a failure
to meet basic_string_span’s bounds-safety constraints at runtime is undefined behavior. However, it
should be considered effectively fatal to a program’s ability to continue reliable execution. This is a



critical aspect of basic_string_span’s design, and allows users to rely on the guarantee that as long as a
sequence is accessed via a correctly initialized basic_string_span, then its bounds cannot be overrun.

As an example, in the current reference implementation, violating a range-check results by default in a
call to terminate() but can also be configured via build-time mechanisms to continue execution (albeit
with undefined behavior from that point on).

Conversion between fixed-size and dynamic-size basic_string_span objects is allowed, but with strict
constraints that ensure bounds-safety is always preserved. At least two of these cases can be checked
statically by leveraging the type system. In each case, the following rules assume the element types of
the basic_string _span objects are compatible for assignment.

1. Afixed-size basic_string_span may be constructed or assigned from another fixed-size
basic_string_span of equal length.

2. A dynamic-size basic_string_span may always be constructed or assigned from a fixed-size
basic_string_span.

3. Afixed-size basic_string_span may always be constructed or assigned from a dynamic-size
basic_string_span. Undefined behavior will result if the construction or assignment is not
bounds-safe. In the reference implementation, for example, this is achieved via a runtime check
that results in terminate() on failure.

Construction
Construction is one place where basic_string_span differs from its “relative” span.

To simplify use of basic_string_pan as a simple parameter, basic_string_span offers a number of
constructors for common string container types that store contiguous sequences of elements. As
basic_string_span does not zero-terminate string data, it does a little extra work in some cases to avoid
inadvertently including a terminator.

Most of the constructors for basic_string_span are equivalent to the constructors for span. However,
the key differences are in the following summarized extract from the specification:

template <size t N>
constexpr basic_string span(element_type(&arr)[N]);

template <size_t N>
constexpr basic_string span(array<remove const t<element type>, N>& arr);

template <size t N>
constexpr basic_string span(const array<remove const t<element type>, N>&
arr);

These three constructors check for a terminating zero in the character sequence provided as input. If
one is found, then it is not included in the basic_string_span being constructed. This allows code such as
the following to behave in a least-surprise fashion:




// ss.size() returns 5. It has been constructed without the terminating €\o’
basic_string span<const char, dynamic_extent> ss = “Hello”;

There are also specific constructors that take basic_string, for convenience.

Convenience aliases
There are a number of “convenience” aliases provided for the various combinations of character types,
const-ness, fixed- and dynamic-size that are commonly useful with basic_string_span:

using string span = basic_string_span<char, dynamic_extent>;
using cstring span = basic_string span<const char, dynamic_extent>;

using wstring span

basic_string span<wchar_t, dynamic_extent>;
using cwstring span = basic_string span<const wchar_t, dynamic_extent>;

template<ptrdiff_t Extent>
using fixed_string span = basic_string span<char, Extent>;

template<ptrdiff_t Extent>
using fixed_cstring span = basic_string_span<const char, Extent>;

template<size t Extent>
using fixed wstring span = basic_string span<wchar_ t, Extent>;

template<size t Extent>
using fixed_cwstring span = basic_string_span<const wchar_t, Extent>;

to_string conversion

In usage, it is often convenient to take a basic_string _span parameter, but then wish to copy the
sequence it views into a new basic_string container for further processing and storage. To support this
scenario, it is proposed to overload the existing to_string() free function in the standard library so that it
will construct a basic_string from a basic_string _span.

template<class CharT, ptrdiff_t Extent>
basic_string<remove const t<CharT>> to string(basic_string span<CharT,
Extent> s);

Proposed Wording Changes

The following proposed wording changes against the working draft of the standard are relative to N4567
[4].




In these changes,

Yellow highlight is used to indicate modified text or sections.

_ is used to indicate deleted text.

Green highlight is used to indicate newly added text.

17.6.1.2 Headers [headers]

2 The C++ standard library provides 54 C++ library headers, as shown in Table 14.

Table 14 — C++ library headers

<algorithm>

<array>
<atomic>
<bitset>
<chrono>
<codecvt>
<complex>

<condition variable>

<deque>

<exception>

<forward list>

<fstream>
<functional>
<future>
<initializer list>
<iomanip>
<ios>
<iosfwd>
<iostream>
<istream>
<iterator>
<limits>

<list>
<locale>
<map>
<memory>
<mutex>
<new>
<numeric>
<ostream>
<queue>
<random>
<ratio>

<regex>
<scoped allocator>
<set>
<sstream>
<stack>
<stdexcept>
<streambuf>
<string>
<string span>
<strstream>
<system error>

<thread>
<tuple>

<type traits>

<typeindex>
<typeinfo>

<unordered map>
<unordered set>

<utility>
<valarray>
<vector>

23 Contains library [containers]

23.1 General [containers.general]

Edit paragraph 2:

The following subclauses describe container requirements, and components for sequence containers,
associative containers, and views as summarized in Table 94.

Add an extra row to Table 94:

Table 94 — Containers library summary

Subclause

Header(s)

23.7 Views

<span>

<string_span>

23 Containers library [containers]

23.1 General [containers.general]

2 The following subclauses describe container requirements, and components for sequence containers,
associative containers, and views as summarized in Table 94.

Table 94 - Containers library summary

Subclause Header(s)
23.2 Requirements
23.3 Sequence containers <array>




<deque>
<forward list>
<list>
<vector>

23.4 Associative containers

<map>
<set>

23.5 Unordered associative containers

<unordered map>
<unordered set>

23.6 Container adaptors

<queue>
<stack>




i




10



il
















16



N~
-



18



19



I
e
e T

Acknowledgements

basic_string_span was designed to support the C++ Core Coding Guidelines [5] and as such, the current
version reflects the input of Herb Sutter, Jim Springfield, Gabriel Dos Reis, Chris Hawblitzel, Gor
Nishanov, and Dave Sielaff. tukasz Mendakiewicz, Bjarne Stroustrup, Eric Niebler and Artur Laksberg
provided helpful review during development. Anna Gringauze provided many useful insights and design
fixes and wrote an initial implementation.

Many thanks to Gabriel Dos Reis and Stephan T. Lavavej for their valuable input to this document.

References

[1] J. Yasskin, "string_view: a non-owning reference to a string, revision 5” 09 January 2013,
[Online], Available: http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2013/n3762.html

[2] N. Maclntosh, "span: bounds-safe views for sequences of objects” P0122R2, 26 May 2016.

[3] Microsoft, “Guideline Support Library reference implementation: basic_string_span”, 2015,
[Online], Available: https://github.com/Microsoft/GSL

[4] Richard Smith, “Working Draft: Standard For Programming Language C++”, N4567, 2015,
[Online], Available: http://open-std.org/JITC1/SC22/WG21/docs/papers/2015/n4567.pdf

[5] Bjarne Stroustrup, Herb Sutter, “C++ Core Coding Guidelines”, 2015, [Online], Available:
https://github.com/isocpp/CppCoreGuidelines




21



